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Abstract
Time-delays are pervasive in such real-world complex networks as social contagions and biological
systems, and they radically alter the evolution of the dynamic processes in networks.Weuse a non-
Markovian spreading thresholdmodel to study the effects of time-delays on social contagions. Using
extensive numerical simulations and theoretical analyses wefind that relatively long time-delays
induce amicrotransition in the evolution of a fraction of recovered individuals, i.e., the fraction of
recovered individuals versus time exhibitsmultiple phase transitions. Themicrotransition is sharper
andmore obviouswhen high-degree individuals have a higher probability of experiencing time-
delays, and themicrotransition is obscurewhen the time-delay distribution reaches heterogeneity.We
use an edge-based compartmental theory to analyze our research andfind that the theoretical results
agreewell with our numerical simulation results.

1. Introduction

Face-to-face contact, Twitter, and Facebook are important channels for such social contagions as the diffusion
of public opinion, the adoption of innovations or new behavior, newproductmarket share, and brand
awareness [1–5]. All of these systems can bemodeled as complex networks [6–8] inwhich nodes are individuals
and links are contacts between them. To investigate the diffusionmechanisms and to predict and control the
dynamics of social contagions,many successfulmodels, bothMarkovian [9, 10] and non-Markovian [11–13],
have been proposed. Unlike such biological contagions as epidemic spreading, the social reinforcement effect is
ubiquitous in social contagions [9, 13–22]. For example, if an individual has nine friends adopt a new behavior
and then a tenth friend adopts it, the individual will take the actions of all ten friends into account when deciding
whether to adopt the behavior, sincemultiple confirmations of the credibility and legitimacy of the behavior are
needed. Researchers have found that the social reinforcement effectmarkedly alters both the type of phase
transition that occurs and the resulting final state [9, 13]. The primary factor in thesemodels is the number of
individuals who adopt a behavior, which is an order parameter of a phase transition.Watts found that when
social reinforcement is introduced into a steady state system the change in average degree causes both
continuous and discontinuous phase transitions [9].Wang et al found that the initial seed size (degree exponent)
has a critical point below (above)which the order parameter increases discontinuously with the transmission
probability, otherwise it increases continuously [13].

Time-delays are pervasive in such real-world complex networks as social contagions and biological systems
[23–25].When individuals seek to accomplish tasks they are limited by the available time and energy, and thus
time-delays become an issue. Although previous studies have found that time-delays affect both the evolution
and the steady state of biological contagions [26, 27] and synchronizations [28–30], we still lack systematic
theoretical and numerical simulations that address the effect of time-delays on the dynamics of social
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contagions, and especially for the temporal transition of the contagion process. One theoretical challenge is
dealingwith the non-Markovian characteristic of the contagion process and its two factors:memory and time-
delays. On the one hand, the social reinforcement induces thememory effect, since for a susceptible to adopt
theymust remember their accumulated information. On the other, time-delays also cause a non-Markovian
effect.

To study the effects of time-delays we use a non-Markovian spreading thresholdmodel inwhich there are
time-delays in the adoption process. The probability that an individual has a time-delay correlates with the
number of its contacts (its degree). The time-delay quantifies the exposure time needed after the individual
receives enough information to adopt the behavior.We develop a generalized edge-based compartmental theory
to study the contagion process. Using extensive numerical simulations and theoretical analyses, we find that a
relatively long time-delay causes amicrotransition in the temporal evolution of the fraction of individuals in the
recovered state inwhich individuals no longer share the behavioral informationwith neighbors. Thismagnitude
exhibitsmultiple phase transitions in the social contagion dynamics, but does not affect the final adoption size.
The transition is sharper when high degree nodes (hubs) have a higher probability of experiencing time-delays.
We alsofind that heterogeneity in the time-delay distribution causes themicrotransition to become obscure.
Our theory accurately predicts these phenomena.

The organization of the paper as follows.We introduce themodel in section 2 and develop the theory in
section 3.We present extensive numerical simulations in section 4 and then present our conclusions.

2.Model description

To realistically describe the dynamics of social contagion, we propose a non-Markovian susceptible-exposed-
adopted-recovered spreading thresholdmodel inspired by [31–33]. At each time step individuals are in either a
susceptible, exposed, adopted, or recovered state. A susceptible individual has not adopted the newbehavior
because the amount of behavioral information fromneighbors is below its adoption threshold. An individual
becomes exposedwhen the received information exceeds its adoption threshold, but because of time-delays it
postpones the adoption of the newbehavior. In the adopted state an individual has adopted the behavior and
shares the behavioral informationwith neighbors. A recovered individual is no longer interested in the behavior
and no longer shares the behavioral informationwith neighbors.

In our proposedmodel each individual xhas an adoption thresholdTx and a time-delay value tx . The
adoption threshold reflects thewillingness of the individual to adopt the newbehavior, i.e., the lower the
adoption threshold the greater its willingness. For simplicity, we set all individuals at the same adoption
thresholdT. The time-delays are caused by the distractions experienced by the individual after they have decided
to adopt the behavior but prior to their actually adopting it. In real-world systems, the probability that
individuals will experience time-delays is correlated with such inherent characteristics as degree.When an
individual is assigned a time-delay value τ it follows a given distribution t( )G within the system, and an
individual with a degree k has a time-delaywith a probability pk. To quantify this probability, we use awell-
known family of functions [34, 35]
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a
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whereN is the number of individuals in the network. The parameterα is adjustable andmeasures the
correlations between time-delay and degree.When a = 0 there are no correlations.When a > 0 (a < 0) a
large (small) degree individual has a higher (lower) probability of having time-delays. Using equation (1)we
assign time-delays to a fraction of f individuals, and no time-delays to the remaining individuals (see figure 1(a)).

At the initial stagewe assign a random fraction r0 of seed individuals to the adopted state and a fraction
r-1 0 individuals to the susceptible state. At each time step, each adopted individual v transmits the behavioral

information to each susceptible neighbor uwith a probabilityλ. If individual u receives the information, their
information levelm increases by one, andwe disallow any further transmission of information between these
two individuals.When .m T , individual u becomes either exposed, if it has being assignedwith a time-delay,
or adopted, if it has experienced no time-delays. If individual u does have time-delays, adoption occurs after τ
waiting time steps (see figure 1(b)). At each time step an individual in the adopted state can enter the recovered
state with a probability γ. The spreading dynamics reaches a steady state when there are no longer any exposed or
adopted individuals. Becausememory and time-delays are present in ourmodel, a non-Markovian
characteristic appears.
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3. Theoretical analysis

Wedevelop an edge-based compartmental theory [36–40] to analyze the proposedmodel. In thismodel,
susceptible and exposed individuals are classified non-adopted, i.e., they cannot transmit behavioral
information to neighbors and they have not yet adopted the behavior.We denote S(t),A(t), andR(t) the densities
of individuals in the non-adopted, adopted, and recovered states, respectively, andR(t) the temporal order
parameter of the phase transition [41]. At each time step each individual can be either non-adopted, adopted, or
recovered, and thus + + =( ) ( ) ( )S t A t R t 1.

Because there are time-delays in behavior adoption, the amount of information possessed by individuals
adopting the behavior is the sumof their current information and the information accumulated in τ prior time
steps. If individual u has no time-delays, the probability that it will accumulate the requiredm pieces of
information and adopt the behavior by time t is

f r q q= - --⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) [ ( )] [ ( )] ( )k m t

k

m
t t, , 1 1 , 2k m m

0

where k is the degree of u, r-1 0 the probability that an individual is initially susceptible, and q ( )t the
probability that a randomly chosen edge of individual vhas not transmitted the behavioral information to a
susceptible neighbor u by time t. Here u is in the cavity state, i.e., within time t it can receive information from
neighbors but cannot transmit information to neighbors [42]. If an individual u has a time-delay τ, the
probability that it accumulatesm pieces of information by time t is

j t r q t q t= - - - --⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) [ ( )] [ ( )] ( )k m t

k
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At time t individual u acquiresm pieces of informationwith a probability

åc f t j t= - +
t

ℓ ℓ( ) ( ) ( ) ( ) ( ) ( )k m t k m t G k m t, , 1 , , , , , , 4k k

where t( )G is the distribution of time-delays, andℓk and - ℓ1 k are the probabilities of uwith andwithout
network time-delays, respectively. For the derivation ofℓk see reference appendix. Individual u remains in the
non-adopted state at time twith a probability c= å =

-( ) ( )s k t k m t, , ,m
T

0
1 . Then the total fraction of individuals

in the non-adopted state is

å=( ) ( ) ( ) ( )S t P k s k t, . 5
k

The expression for q ( )t can bewritten q x x x= + +( ) ( ) ( ) ( )t t t tS A R , where x ( )tS , x ( )tA , and x ( )tR are the
probabilities that a neighbor of u is in the non-adopted, adopted, or recovered states, respectively, and has not
transmitted the information to its neighbors by time t. If neighbor v of individual u is non-adopted, it cannot
transmit the information to u, and individual u also cannot transmit the information to individual v because u is
in the cavity state. Thus individual v can acquire the information only fromneighbors other than u. If the degree
of individual v is ¢k and vhas no time-delay, the probability that vwill at time t acquirem pieces of information is
f ¢ -( )k m t1, , . If individual vhas time-delays, the probability that vwill at time t acquirem pieces of
information is t jå ¢ -t ( ) ( )G k m t1, , . Thus individual v obtainsm pieces of informationwith a probability

Figure 1.An illustration of the spreading thresholdmodel on a social networkwithN=50 individuals. (a)Assigning 5 individuals
with time-delays τ, and the remaining 45 individuals without time-delays. (b)At time step t1, the accumulated pieces of behavior
informationm of a susceptible individual u is greater than its adoption thresholdT. If individual u has time-delays, it becomes exposed
at time t1, and become adopted at time t2 after waiting τ time steps. If uhas no time-delays, it becomes adopted at time step t1.
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As a result, individual v remains in a non-adopted state at time twith a probability eQ ¢ = å ¢=
-( ) ( )k t k m t, , ,m

T
0
1 .

In uncorrelated networks, an edge connects a nodewith degree ¢k with a probability ¢ ¢ á ñ( )k P k k . Thus

åx =
á ñ

¢ ¢ Q ¢
¢

( ) ( ) ( ) ( )t
k

k P k k t
1

, . 7S
k

The evolution of x ( )tR is given by

x
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where l-1 is the probability that the information has not been transmitted through an edge, and gx ( )tA
indicates that the connected adopted individual has recovered. If an adopted individual transmits the
information to susceptible neighbors along an edge, the edge does notmeet the definition of q ( )t . Thus the time
evolution of q ( )t is

q
lx= -

( ) ( ) ( )t

t
t

d

d
. 9A

Combining equations (8) and (9)with the initial condition q =( )0 1and x =( )0 0R , we
have x g l q l= - -( ) ( )[ ( )]t t1 1R .

Note that non-adopted individuals adopt the behavior andmove into the adopted states, and adopted
individuals abandon the behavior and become recovered. The time evolution ofA(t) is thus

g= - -
( ) ( ) ( ) ( )A t
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Combining equation (10)with equation (5), we have
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Finally using equation (10), we get the evolution forR(t),

g=
( ) ( ) ( )R t

t
A t

d

d
. 12

By numerically integrating equations (5), (10), and (12), we get the order parameterR(t) versus t.

4.Numerical simulations

In this sectionwe study social contagions on artificial networks that follow the uncorrelated configuration
model [43].We use a degree distribution that follows a power-law, i.e., ~ g-( )P k k D where g = 3D is the degree
exponent. In our simulations themaximumdegree and average degree are set at ~k Nmax and á ñ =k 10,
respectively.We use two time-delay distributions, theDirac delta function t d= t tá ñ( )G , and theGaussian

distribution t = -
ps

t t
s

- á ñ( )( ) ( )G exp1

2 2

2

2 , where tá ñ is the average time-delay of individuals andσ is the

variance.

4.1. Time-delayswithDirac delta distribution
Herewe use the t( )G given by aDirac delta functionwith tá ñ, and study the case of a = 0 shown infigure 2.
Figure 2(a) shows that time-delays produce temporalmicrotransitions, i.e.,R(t) versus t exhibitsmultiple
transitions, which also exist in percolation [44–46].When no individuals have time-delays i.e., when f=0.0, the
behavior adoptionR(t) versus time t grows continuously. Once afinite fraction of individuals have time-delays,
R(t) exhibitsmicrotransitions versus t. If the behavior can spread, the emergence ofmicrotransitions should
fulfill two conditions. (i)Afinite fraction of individualsmust receive an amount of information that exceeds the
adoption threshold at the same time step. (ii) Individualsmust experience relatively long time-delays relative to
the convergence time of the systemwithout delays. Initially the seeds (adopted individuals) transmit the
information to susceptible neighbors, and this causes the amount of information to exceed their adoption
threshold and changes their status to ‘exposed,’ i.e., condition (i) is fulfilled. If these exposed individuals have
time-delays, however, they cannot immediately adopt the newbehavior andmustwait τ steps. Thus thefirst
microtransition occurs at approximately time tá ñ. In the successivemicrotransitions that follow, as f increases
more individuals experience time-delays andmoremicrotransitions occur. For a given time t,R(t) thus
decreases with f. Note that, as expected, the final behavior adoption size ¥( )R is not affected by the time-delays
because individuals with behavior information levels that exceed their adoption thresholds can adopt the
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behaviorwhen l ¥t . Our edge-based compartmental theory accurately predicts thismicrotransition
phenomenon and time evolution process.

To locate the critical points we use the time evolution of ( )R t td d as a function of t (see figure 2(b)).
Previous studies found that ( )R t td d exhibits peaks at critical points [47].When f=0.0, ( )R t td d has only
one peak. The number of peaks increases as f increases becausewhen there aremore individuals with time-delays
the probability that amicrotransition ofR(t) occurs increases. Thuswe can predict themicrotransition by using

( )R t td d to locate the critical points.
Figure 3(a) shows that peak values of ( )R t td dc

i at peak i versus f exhibit different patterns. In the first peak
( )R t td dc

1 decreases with f. At thefirst critical point, individuals with time-delays adopt the behavior and
transmit the information to susceptible neighbors, which causes the susceptible neighbors to become exposed.
When f is small, these exposed individuals immediately adopt the behavior, which increases the ( )R t td dc

1

value. For other peaks, i.e., when .i 2, ( )R t td dc
i

first increases with f and then decreases. Figure 3(b) shows
( )R t td dc

i as a function of i under different f values and shows that ( )R t td dc
i

fits a Gaussian function, i.e.,
~ +- - - -( ) [( ) ] [( ) ]R t t a ad d e ec

i i b c i b c
1 21 1

2
2 2

2
. Figure 3(c) shows that the number ofmicrotransitions n increases

with f, and that n as a function of f follows a linear function, i.e., ~n f . Figure 3(d) shows the critical points tci

versus i under different values of f.Wefind that critical point i is the same for different f values, and that the
values of tc

i follow a linear function, i.e., ~t ic
i .

Figure 4 shows how tá ñaffects the emergence ofmicrotransitions. Figure 4(a) shows that when the value of
tá ñ = 2 is small there are nomicrotransitions in the system and that, because infigure 4(b) the value of

( )R t td d exhibitsmultiple peaks, increasing tá ñcausesmicrotransitions to emerge. This is the case because
when tá ñ is small individuals who have received a level of information that exceeds the adoption threshold
become adopted after experiencing short time-delays tá ñ, and themicrotransitions disappear. Our theory once
again agrees with numerical simulations.

Figure 5 shows the effect of relatively long tá ñ. Figure 5(a) shows that at critical point i there is a linear
increase of tc

i with τ and that t~t ic
i follows, but the inset offigure 5(a) shows that the number of

microtransitions n does not changewith τ. Figure 5(b) shows that τ does not affect ( )R t td dc
i , the peak value

of i.
Figure 6 shows that when a < 0 it is less probable that high-degree individuals will experience time-delays

and, in contrast towhen a = 0, the number of phase transitions decreases and the growth height decreases.
When a > 0 it ismore probable that high-degree individuals will have time-delays and, in contrast towhen
a = 0, the number of phase transitions increases and the growth is sharp.We know that social contagions on

Figure 2.Dynamic of social contagions on artificial networks. (a) Fraction of individuals in the recovered stateR(t) and (b) the
derivative ofR(t), i.e., ( )R t td d , versus time t. Symbols are the simulation results and lines are the corresponding theoretical
predictions. In (b), the blue arrows represent the critical points, e.g., tc1 denotes the critical point of the firstmicrotransition. Other
parameters are set to be =N 105, r = 0.050 , g = 3.0D , l = 0.5, g = 1.0, tá ñ = 50, a = 0 andT=3, respectively.
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complex networks behave hierarchically, and that high-degree individuals aremore likely to become adopted
early in the behavior contagion. Thuswhen a = -10 the value ofR(t) is higher thanwhen a = 0 orwhen
a = 10 at the early stage.When a = -10 high-degree individuals adopt the behavior, quickly transmit the
information to neighbors, and induce other high-degree individuals and some low-degree individuals to adopt

Figure 3.Dynamic of social contagions on artificial networks. (a) ( )R t td d versus f. (b) ( )R t td dc
i versus i. (c)Number of

microtransitions n as a function of f. (d) tci versus i. Lines in (b)–(d)represent the fitting values. Other parameters are set to be
=N 105, g = 3.0D , r = 0.050 , l = 0.5, g = 1.0, tá ñ = 50, a = 0 andT=3, respectively.

Figure 4.Effects of the average time-delays on social contagions. (a) Fraction of individuals in the recovered stateR(t) and (b) the
derivative ofR(t), i.e., ( )R t td d , versus time t. Symbols are the simulation results and lines are the corresponding theoretical
predictions. Other parameters are set to be =N 105, r = 0.050 , g = 3.0D , l = 0.5, g = 1.0, a = 0, f=0.3 andT=3,
respectively.
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the behavior. After several rounds fewer individuals adopt the behavior, and thus there are fewer phase
transitionswhen a = -10.When a = 10 high-degree individuals adopt the new behavior after a time delay
period and immediately transmit the behavioral information to a large number of neighbors. These neighbors
are likely to quickly adopt the behavior, and there is a sharp increase inR(t). Our theory thus accurately predicts
the numerical simulation results.

4.2. Time-delayswithGaussian distribution
In real-world systems, time-delays for individuals follow are notfixed but follow a distributionwe assume to be

Gaussian, where t = -
ps

t t
s

- á ñ( )( ) ( )G exp1

2 2

2

2 , where tá ñ is the average number of time-delays with tá ñ = 50

(see figure 7).Wefind that themicrotransition becomes obscure asσ increases.When s = 0.0 and all
individuals have the same number of time-delays,R(t) exhibits amicrotransition versus t.When s = 8 (a large

Figure 5.Effects of the average time-delays on social contagions. (a)The ith critical point tci and (b) the ith peak values ( )R t td dc
i

versus time-delays tá ñ. Other parameters are set to be =N 105, g = 3.0D , r = 0.050 , l = 0.5, g = 1.0, a = 0, f=0.3 andT=3,
respectively.

Figure 6.Dynamic of social contagions on artificial networks. The fraction of individuals in the recovered stateR(t) versus time t.
Symbols are the simulation results and lines are the corresponding theoretical predictions. Other parameters are set to be =N 105,
g = 3.0D , r = 0.050 , l = 0.5, g = 1.0, tá ñ = 50, f= 0.3, andT=3, respectively.
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value) themicrotransition becomes obscure because individuals with differing time-delays adopt the behavior
only when their received information exceeds their adoption threshold. Once again our theory accurately
describes the phenomena.

5. Conclusions

Wehave systematically investigated the effect of time-delays on the dynamics of social contagions and have
focused on temporal phase transitions.We propose a non-Markovian spreading thresholdmodel inwhich each
individual is assigned an adoption threshold and a time-delay probability. The adoption threshold takes into
account the social reinforcement effect, and time-delays indicate how individual waits before adopting the
behavior after the adoption threshold has been reached.We then develop a generalized edge-based
compartmental theory with time-delays to describe the non-Markovianmodel. Using numerical simulations
and theoretical analyses we find that relatively long time-delays causemicrotransitions in the dynamics of social
contagions to emerge but do not affect thefinal state of the social contagion.When the probability that hubs
have time-delays is higher, themicrotransition is sharper. Otherwise themicrotransition disappears. Finally we
find that the heterogeneity of the time-delay distribution causes less obviousmicrotransitions. Our results
provide a deeper understanding of the role of time-delays in the spreading dynamics of complex networks and
especially in non-Markovian social contagions. Our results also expand our understanding of phenomena in
phase transitions andmay provide new insights into spreading dynamics and the connections between human
dynamics and social contagions. In our current era of big data there aremany challenging issues associatedwith
social contagions that need addressing. For example, verifying the effectiveness of our proposed social contagion
model using real data.

Acknowledgments

Thisworkwas partially supported by the Program for Innovation TeamBuilding ofMobile Internet, BigData at
Institutions ofHigher Education inChongqing, CXTDX201601021, andNationalNatural Science Foundation
of China (GrantNo. 61673086). LAB thanksUNMDPand FONCyT, Pict 0429/2013 forfinancial support. The
BostonUniversity workwas supported byNSFGrants PHY-1505000, CMMI-1125290, andCHE-1213217, and
byDTRAGrantHDTRA1-14-1-0017 andDOEContract DE-AC07-05Id14517.

Figure 7.Effects of the distribution of time-delays on social contagions. (a), (b)The fraction of individuals in the recovered stateR(t)
versus twith different variances.R(t) versus twith (c) s = 4 and (d) s = 8. In (a), the lines are the simulation results. In (b)–(d),
symbols are simulation results and lines are the corresponding theoretical prediction. Other parameters are set to be =N 105,
g = 3.0D , r = 0.050 , l = 0.5, g = 1.0, tá ñ = 50, f=0.3, a = 10 andT=3, respectively.

8

New J. Phys. 20 (2018) 013034 WWang et al



Appendix. Probability of individuals with time-delays in the network

WedenoteAq(k) the number of individuals that have degree k and no time-delays and gq(k) the degree
distribution in the residual network inwhich all individuals are without time-delays. Here q is the current
fraction of individuals without a time-delay. As in [48, 49], the residual degree distribution can be expressed

=( ) ( ) ( )g k
A k

q N
. A.1q

q

When an additional individual is assigned a time-delay τ on the basis of t( )G , using equation (1) gq(k) becomes

= -
á ñ

a

a- ( ) ( )
( )

( )
( )A k A k

g k k

k q
, A.2q N q

q
1

where á ñ = åa a( ) ( )k q g k kk q . In the thermodynamic limit l ¥N , equation (A.2) can be rewritten

=
á ñ

a

a

( ) ( )
( )

( )A k

q
N

g k k

k q

d

d
. A.3

q q

Differentiating equation (A.1)with respect to q and substituting it into equation (A.3), we obtain

- = -
á ñ

a

a

( )
( )

( )
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( )q
g k

q
g k

g k k

k q

d

d
. A.4

q
q

q

Wefind by direct integration that [49]

b=
a( ) ( ) ( )g k

q
P k

1
, A.5q

k

where b = a
- ( )H q1 and

åb b=a
a( ) ( )H P k ,

k

k

and á ña ( )k q can bewritten

b b
b
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¢a a

a
( ) ( )

( )
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H

H
.

We iterate these equations until = -q f1 . Using equation (A.5), the probabilityℓk that an individual with
degree k has a time-delay is = -ℓ ( )g k1k f .
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