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: le coevolution dynamics on complex networks has attracted much attention in recent years, since dynamic pro

: cesses, ubiquitous in the real world, are always interacting with eact.dthbiological spreading dynamics,

. two strains of the same disease spread in the same population and interact through cross3aamumiiyual

. reinforcement. In social spreading dynamics, individuals are surrounded by multiple items of information sup

. plied by, e.g., Facebook, Twitter, and YouTube. lese sources of information compete with each other for the

- limited attention-span of users, and the outcome is that only a few items of information survive and beeome pop

. ular8, Recently scholars have become aware of the coevolution or interplay between biological and sccial spreac
. ingdynamic&?!! When a new disease enters a population, if individuals who are aware of its potential spread take
: preventive measures to protect themséhléthe disease spreading may be suppressed. Our investigation of the

© intricate interplay between information and disease spreading is a speci'c example of disease-behavibr systems
Studying the micromechanisms of a disease-behavior system can help us understand coevolution dynamic:
: and enable us to develop ways of predicting and controlling the disease spfekdihis e#ort a number of

. excellent modet8®’have demonstrated the existence of non-trivial phenomena that di#er substantially from

. those when there is independent spreading dyndffiiésResearchers have demonstrated that the outbreak of a

. disease has a metacritical p#iihat is associated with information spreading dynamics and multiplex network

: topology and that information propagation is promoted by disease spréadingket al.found that the disease

* threshold is altered once the information and disease evolve simultaf@dasly models make assumptions

. about the coevolution mechanisms of information and disease spreading and do not demonstrate the interacting

. mechanisms in real-world systems. Because we do not understand the microscopic coevolution mechanisms
© between information and disease spreading dynamics from real-world disease-behavior systems, we do not have
. systematic understanding of coevolution dynamics and do not know how to utilize information di#usion to more

. effectively suppress the spread of disease.
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We present here a systematic investigation of the e#ects of interacting mechanisms on the coevelution pro
cesses of information and disease spreading dynamics. We "rst demonstrate the existence of asymmetrical intel
actions between the two dynamics by using real-world data from information and disease systems to analyze the
coevolution. We then propose an asymmetric spreading dynamic model on multiplex networks to mimic the
coupled spreading dynamics, which will allow us to understand the coevolution mechanics. !e results, obtained
from both the theoretical analyses and extensive simulations, suggest some interesting phenomena: the informa
tion outbreak can be triggered by its own spreading dynamics or the disease outbreak, while the disease thresho
is not a#ected by the information spreading. Our most important "nding is that there is an optimal information
transmission rate at which the outbreak size of the disease reaches its minimum value, and the time evolution o
the dynamics in the proposed model qualitatively agrees with the dynamics of real-world spreading.

M%&"./&

B-#$'D,.*,(,.C&'&*2G*$%,.712$.+*D2%E2."/'2(**,/|Aformation about disease can be obtained in many
ways, including face-to-face communication, Facebook, Twitter, and other online tools. Since the growth of the
Internet, search engines have enabled anyone to obtain instantaneous information about disease. Patients seek ¢
and analyze prescriptions using search engines in hopes of obtaining a means of rapid recovery. Healthy individu
als use search engines to identify protective measures against disease to maintain their good health.

To examine the coevolution of real-world data about information and disease, we use weekly synchronously
evolving data on information and disease systems associated with in$uenza-like iliness (ILI) in the US during
an approximate 200-week period from 3 January 2010 to 21 September 2013. !e ILI dataset records weekly
outpatient visits to medical facilities, and Google Flu Trends (GFT) dataset keeps track of week queries in Googls
search engine about ILI symptothde GFT is used to analyse the occurrence probability of a didedsm
simplicity, we assume that the volume of information about the disease is proportional to the GFT volume
because any individual can use the Google search engine to gain information about ILI. For a detailed descriptior
of the data see ref.%26.

Figure%1l(a) shows the real-data time series of informgtipand disease,(t) indicating that macroscopi
cally the two systems exhibit similar trends and con"rming that the GFT e#ectively predicts disease ¥feading
N although some researchers have expressed skepficinidentify the coevolution mechanisms operating
between information and disease spreading, we further investigate the time series from a microscopic point of
view. Speci“cally, we study their relative growth regéy of ng(t) andvp(t) of np(t) (see de"nitions in Method
Section). Figure%1(b) shows the evolutisg(ffandvp(t). Note that the same and opposite growth trends of
Vg(t) andvp(t) coexist. For example, at week 53 (week $§38)> 0 [V5(153)> 0] andv(53)< 0 [vp(153)> 0]
lus the GFT and ILI show the opposite (the same) growth trends.

To conceptualize the correlations of the growth trends between the two dynamics, we analyze the
cross-correlations(t) between the time serieswgft) andvp(t) for a given window siz&?° using the Pearson
correlation coefficientc(t) between the two time serigsg(t), vg(t + 1), -+, vg(t + w))} and
{vp(), vp(t + 1), ---, vp(t + w))}. Whend(t) > 0, the growth rates of information and disease share the same
trend in the time intervaly. Whend(t) < 0, the information and disease have opposite growth trends. Figure%21(c)
shows that the positive and negatift¢ are uncovered for = 3 andw, = 20, respectively. lis may be because
individuals tend to search for disease information when they are infected or when someone they know is infected,
and thus a disease outbreak promotes the spread of information, i.e., the growth trends of GFT and ILI will be the
same. When individuals acquire information about the disease they then take action to protect themselves, anc
this causes the growth trends of GFT and ILI to go in opposite directions. We thus conclude that there are asym
metric interactions between the dynamics of information and disease spreading, i.e., disease spreading promote
information spreading, but information spreading suppresses disease spreading. Figure%21(d) plots the fraction «
negative correlationfs and positive correlatiorfy as a function ofy. e fraction of positive correlationd,

(negative correlationy) increases (decreases) withthesince individuals taking measures are dependent on
the timeliness of the information. Note therefore that asymmetric interactions can only continue over a short
period of time.

<2%E2."/2(*+C(,-'D&*2(*-".I'#.%0*(%/12$3&? We now propose a novel model based on the-coev
olution mechanisms in real-world data, i.e., the asymmetric interactions between information and disease
spreading. Information spreads through communication networks and disease usually spreads through contact
networks. Communication and contact networks usually have di#erent topologies. To describe the distinct trans
mission topologies of the information and disease we use a multiplex n&®itakd construct an arti"cial
communication-contact coupled network without degree-degree correlations in intralayers and interlayers.

We generate uncorrelated two-layer networkandB3 with degree distributionB, (k,) andP; (ks), where
networks4 andB represent the communication and contact networks, respectively. Nodes are individuals and
edges are the interactions among individuals. Each node otdlayeandomly matched one-to-one with a node
of layer3. A schematic of the communication-contact coupled networks is shown in Fig.%2(a).

Using the analysis results from real-world data, we construct an asymmetric coevolution information and
disease spreading model. In the communication network (ldyave use the classic susceptible-infected-
recovered (SIR) epidemiological mc@&t3°to describe the spreading of information about the disease. Each
node can be in one of three states: susceptible, informed, or recovered. A susceptible individual has not acquire
any information about the disease, infected (or informed) individuals are aware of the disease and can transmit
their information to their neighbors on the communication layer, and recovered individuals have the information
but do not transmit it to their neighbors. At each time step, each informed node transmits their information to
each susceptible neighbor on laylewith a probability3,. e informed node recovers with a probability ,. To
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Figure 1. Weekly outpatient visits and Google Flu Trends (GFT) of inluenza-like illness (ILI) from 3
January 2010 to and 21 September 2013 in the United Sté&se relative number of outpatient visits
np(t)/{np(t)) (blue dashed line) and relative search queries aggregated m;EFN(t)) (red solid line)
versud, whergnp (t)) = | jma np()/t; and(ng(t)) = | tma ng(1)/t,,, andiy.,is the number of weeks.
(b) 'e relative growth ratevD(lt) (blue dashed line) an@(t) (red solld line) ohp(t) andnG(t) versusg,
respectively.d) Cross-correlatiom(t) between the two time series/gft) andvy(t) for the given window size
=3 (blue dashed line) amg =20 (red solid line).d) 'e fraction of negative correlationd, (blue squares)
and positive correlatiorfg (red circles) as a functionwf. In (@), ng(t) andnp(t) are divided their average
values respectively. Ib)( the circles and squares denote the relative growth rtateb@ and 153, respectively.

include the interacting mechanism between information and disease revealed in the real-world data analysis, i.e.
that disease spreading promotes the information spreading, we assume that a susceptible node will becom
informed when its counterpart in layBris infected, as shown in Fig.%2(b).

We now introduce a vaccination (V) state into the disease spreading dynamics on the contact network
(layerB) and the model becomes SRR¥. !e SIR component of the spreading dynamics is the same as the
information spreading on layet and di#ers only in the infection and recovery rdtgsand: 4z, respectively. To
introduce the mechanism from our real-world data analysis, i.e., that the spread of information suppresses diseas
spreading, we assume that an intelligent susceptible individual of8lsyeaccinated with probability(i) when
its counterpart node on layet is informed and (ii) when the number of its neighbors in the infected state is equal
to or greater than a static threshblfsee Fig.%?2(c)]. Since immunization is always expensive, condition (i) means
that the individual must use the communication network to determine the perniciousness of the disease and
condition (ii) means that the individual will adopt immunization measures only when the probability of infection
is su&ciently high.

We initiate asymmetrical coupled coevolution dynamics by randomly infecting a tiny fraction of seed nodes
on layer3 and allowing their counterparts on layérto become informed. We set the e#ective information
transmission and disease transmission rates g be 3,/v, and\; = [/, respectively. Without lack of
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Figure 2. Illustration of asymmetrical mechanisms of information and disease on multiplex networks.

(a) A multiplex network is used to represent communication and contact networks, which are denoted as layer
A and layei3, respectively. Each layer has 5 nodgde(promotion of information spreading by disease. If

node 5 on layeB is infected, its counterpart on layéhecomes informedc)!e suppression of disease

spreading by information di#usion. Node 3 in lagebecomes vaccination only when: (1) its counterpart on
layerA is in the informed state and (2) the number of its infected neighbors orBl&eqgual to the threshold

1 —

generality we sét, = | ;= 1. A steady state will be reached when there are no more nodes in the informed or
infected state.

t—t" %o fet'—e 1feanoilhuantiyith® aiymmetrical coevolution dynamics, we develop a
heterogeneous mean-"eld theory. e outbreak threshold and the fraction of infected or informed nodes in the
"nal state are the two quantities that control the outcome. For the information spreading, the densities-of suscep
tible, informed, and recovered nodes with degreat timet are denoted bs(:(t), pkA (t), andr,{;(t), respee
tively. Analogously, for the disease spreading, the densities of the susceptible, in“?ected, recovered, and vaccinat
nodes with degrde; at timet are denoted b&fé(t), pkA (t), rkBB (), andv,gs (t), respectively.

We "rst study the time evolution of information spreading on a communication network, i.e.Aajer
evolution equation of the susceptible node with delgyesn layet4 can be written

ds? (1)
—a—=! so (D[aka " Al Ng(ks)" 5 (D], ®

where(ky) is the average degree of ldyeando , (t)[! z(t)] is the probability that a susceptible node connects
to an informed (infected) neighbor on uncorrelated lag€B) (see details in the Supporting Information). le
increase irpk“:‘l (t) is equal to the decreaseqj‘b(t), and thus the evolution equations ﬁzﬁ(t) andr,;‘i1 (t) are

do o Kt (0 e a1
gt~ S ODuURA O+ Aslks) 5017 27 (O, @
and
il
T*!M(t)’ @
respectively.

We next investigate the evolution of the disease spreading off Jaliercontact network. !e time evolution
equations for the susceptible, infected, recovered, and vaccinated nodesBratayer

dsg (1) 5 e
2 ks (0 s # (ke O, @
"HS%&HH("HS | %&  |Axex{e a wvawvy~ «"f’xex{e 7
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dt Bt
S = ke (0050 1,0, ©
dig(®) 4
o k() ®
and
dve, (t)
—a ke @

respectively, whete(k, t) is the probability that a susceptible node on |Bysith degreé; will be vaccinated.
More details about the Eqs%(1D7) can be found in the Supporting Information.

We describe the asymmetrical coevolution dynamics of information and disease spreading using Eqs%(1D:
and (4b7), which allow us to obtain the density of each distinct state oA lageB at timet, i.e.,

L®=1 Pok) (0,
e ®

whereh ! {A,B}and" €{S I, R V}. Whent — o, in the steady state, the "nal sizes of information and disease
systems arR , andRg, respectively.

Initially only a tiny fraction of nodes on layefsandB are informed or infected, and most are susceptible.
lus we have s:; ! 1,52 ~ 1 Linearizing Eqs%(2) and (5), i.e., neglecting the high orgmaidy , the crit
ical e#ective information transmission probability is 4 ¢

T ©
where! % is the maximal eigenvalue of matrix
L~A
© - g:o CD.;
Cak = [kl ( DR (DI (k).
Cok = lskeks ( DR (k) (Ks),

and

Dy i, = ! (ks — DPs(kg),

from which we obtain

A& = max {Ax, A3}, (10)

wherel }4 andA}3 are the maximal eigenvalues of the adjacent matrix of ldyamnsl3, respectively. More details

can be found in the Supporting Information. !e critical vaIMQA separates information spreading dynamics into
local and global information regions. When! A/, itis in the local information region. When > A\, itis

in the global information region. In Eq.%(9) the global information outbreak condition is correlated only with the
topologies of layetd andB, i.e., the immunization probabilityand threshold do not a#ect the outbreak of
information, but increasing the degree heterogeneity of layeasdB increases the information outbreak
probability.

When) > )\CA, immunization can suppress disease spreading on subnetwanki thus here immunization
process and disease spreading can be treated as competing prdves%esdemonstrates that the two competing
processes can be treated as one a'er the other in the thermodynamic limit. When the immunization process
spreads more quickly than the disease, it "rst spreads onAagmd then the disease spreads on the residual
network (i.e., the network a'er immunization). When the disease spreads more quickly than the immunization,
the opposite occurs. Using refs%3 and 17 we "nd that the immunization progresses more quickly than the diseas
€A g Agy > AgAaw iNWhich! = (kK )/((K3) — (k) andX,, = (kg)/((k3) — (kg)), which are the thresh
olds for the SIR model on a one-layer net¥br@nd|---) are the moments of the degree distribution. Because in
many real-world scenarios information spreads more quickly than disease, we focus on that case. lus immuni
zation and disease spreading on |#/ean be treated successively and separately. Whénthe approximate
disease threshold is

) B Tkg"
© T WH V)UK # ) (1)
I"HS%&HH (" HS | %&  |Exex{e 4 wvawvy~ ¢"f'xex{e 8
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which is the same as in ref.%17. In Eq.%(11gvhe®, , andQ 4 is the "nal density of the informed popula
tion without disease spreading obtained using link percolation tRedfsom Eq.%(11) we can see that, as
expected, the threshold is bigger than in the SIR model without vaccination.

When! >1 we use competing percolation theory to obtain the approximate disease threshold. !e informa
tion "rst spreads on layed, and then the disease spreads on ldyAithough many nodes on laydrreceive the
information for large values bf,, the counterparts of those informed nodes still cannot be immunized!vghen
is small. lis is the case because according to the proposed model the susceptible nodes that are vaccinated mus
have authentication from both layedsand3. lese informed nodes cannot acquire authentication from laier
when! 4 is below the disease threshold. Only for large valligs tifese informed nodes can obtain authentica
tion simultaneously from layes$ and3. Here the immunized nodes arg~ 0 and thus the approximate disease
threshold is

A= Ke)
© (k) (kg) (12)

which is the same as the outbreak threshold of SIR di¥dasethis kind of information-based immunization
strategy does not attect the disease outbreak threshold, and this di#ers from the existitig résudtsease
threshold is dependent only on the topology of I#/and is independent of the topology of layeithe immu
nization probabilityp, and the thresholt. le asymmetrical coevolution mechanisms presented in our model
may explain why the disease threshold is not altered in some real-world sifi&ttons

I'-" 12(*$%&".1&? * We perform extensive stochastic simulations to study the proposed asymmetrically
interacting spreading dynamics on multiplex networks. In the simulations the network sizes and average degrees
are set al, = Ny = 10" and(k, ) = (ks )= 8, respectively. We use the uncorrelated con"guration model to
generate layerd andB according to the given degree distributitr$ For each multiplex network, we perform

the dynamics imes and measure the average "nal fraction of informatiorRsjzeisease si#;, and immu

nization size/; with "ve randomly selected seeds in laBeYWe then average these results over 100 network
realizations.

To understand the coevolution dynamics of information and disease, we use Erd(s-RZnyi (ER) networks to
represent the communication and contact networks. The degree distributions ofdlayet layei3 are
Pu(ky) = € M0 (K Ya/k,l andPy(ks) = € %) (I;)*5/k 5!, respectively.

Figure%3 shows how the immunization thredhaléects the "nal information, disease, and vaccination sizes.
For the information spreading on laydr we "nd thalR, increases with , and! ; [see Fig.%3(a,d)]. In addition,

R, increases with because the individuals in lay&need a large value to guide their immunization decisions
[see Fig.%3(c,f)], which calgeto increase with [see Fig.%3(b,e)]. As a result, the information spreading
increases as disease spreading increases.

Figure%3(b,e) show tRatincreases with, since individuals are increasingly reluctant to be immunizéd as
increases, and this causggo decrease with [see Fig.%3(c,f)]. Note fRaiandV ; as a function df , have a
non-monotonic shape for =2 and 4, thaR; (V) first decreases (increases) withand then increases
(decreases) with,. lus there is an optimal information transmission raté at whichR;; (V) reaches its min
imum (maximum) value. Qualitatively this is because a node onfaye@t be immunized only (i) when its
counterpart on layed is informed, and (ii) when the number of its infected neighbﬁris larger tharh . For a
given! 4, condition (i) is di&cult to ful"ll wherl , is small and the spread of the information is slow. Increasing
I 4 allows more nodes to ful"ll condition (i) and allows(Ry) to increase (decrease) with When the value of
I 4 is very large the information spreads so rapidly that condition (i) can no longer be satis"ag, dexreases
with! ,, which enhances the spread of disease. !e optimal phenomenon is not qualitatively a#ected by the recov
ery rates of information and disease. As shown in Fig.®3ye)ysus\; displays a non-monotonic shape for
! =2 and 4, i.eR, "rst increases with ; and then decreases. Whep = 0.£ the information spreading is rapid.
Increasing ; allows more nodes to fulfill the second immunization condition and to be immunized [see
Fig.%3(f)], and further leads to the decréas@) or saturation!( =4) of R, with! . !e theoretical predictions
of our heterogeneous mean-"eld theory agree with the simulation predictions. !e di#erences between the theo
retical predictions and the simulations are caused by the dynamic correlations among the states of the neighbor:
and by "nite-size network e#eétsle dynamic correlations are produced when the information (disease) frans
mission events to one node in laye(3) coming from two distinct neighbors are correldfeth the case of
coevolution dynamics, the dynamic correlations are also induced by the counterparts of suscepttble nodes

For the disease spreading on lagethe disease threshdlgf for! =0 is clearly larger than the threshold
! f, = 1/(kg), which is the disease threshold without immunization (-2.0) [see the right arrow in Fig.%3(e)].

We can determine the numerical disease threshold by measuring the suscépoibilyiability*® (see details in
Method). Note that the disease thresHoffifor! >1 is the same &g}, which is consistent with the theoretical
prediction [see Eq.%(12) and the le' arrow in Fig.%3(e)]. lis occurs because individuals choose immunization
only when the number of their infected neighbors is equal to or greatef thamsymmetrical coevolution
mechanisms proposed in our model may explain why choosing to be immunized during disease spreading does
not a#ect the disease thresH8R{?

We usé =2 to measure the "nal information and disease sizes (see Fig.%4). According to Eq.%(12), the dise
threshold ig ° = 1/(kz)= 0.12% When! ;= 0z 0.5, and 0.8, any value gf can cause an information eut
break due to an outbreak of disease on l&ysee Fig.%4(a)]. lus the information outbreak threshqfds zero.
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Figure 3. With immunization thresholds! being the parameter of interest, the "nal sizes of information,
disease and vaccination on two layer ER-ER multiplex netwogig e "nal information size R, (b) the

"nal disease si#R;, and €) the "nal vaccination si2g; versus information transmission ratg for di#erent
values of immunization thresholdwith! , = Q E. For di#erent values bf (d) R4, (€) Rz and ) Vz as a

function of! ; at! , = Q & e symbols represent the simulation results and the lines are the theoretical
predictions obtained by numerically solving Eqs%(1D3) and (4#8)7)the fwo arrows respectively indicate the
numerical disease thresholds for 1 and! =0, which are obtained by observihgOther dynamical
parameters are set to bg = 0.£ andp=0.8.

Figure%4(b,c) show the optimal information transmissiomjamewhichRB (V) reaches its minimum (maxi
mum) value. Whet 4 = Q2 0.5, and 0.8 increases with; because of the increase in the disease [see
Fig.%4(d)]. Note th:af is not a#ected hy, [see the arrow in Fig.%4(e)]. As shown in FigRgA(@)sus ; "rst
increases and then decreases for lagge Q £and 0.8. lis phenomenon can be understood in the same way
with Fig.%3(e). lere is again good agreement between the theoretical and numerical results.

Figure%5 shows the e#ects,adind)\; on the "nal steady state f&, Rs, andVg for! =2 and shows the
phase diagrams for the "nal sizes as a functidiy ahd#g. Figure%5(a) shows Ratincreases with , and! 4.
le 14! Iy plane is divided into a local (1) and global (Il) information outbreak regions. In Fig.%5(a) region |
and region Il are separated by thé = 1/(k ;) (horizontal white dashed line) ang* = 1/(kg) (vertical white
dashed line) obtained from Eq.%(10). Figure%5(b) shows how region | and region Il are sbé%limed/bfyti
cal white dashed line). For the minimum valu&gfin region 11! § increases linearly withy, as shown in
Fig.%5(b) [see black lines and symbols in (b,c)]. At the o;ﬁl,rﬁgl(vg) reaches its minimum (maximum) value,
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Figure 4. With disease transmission ratd being the parameter of interest, the asymmetrically
interacting dynamics spreads on ER-ER networka) !e "nal information size R, (b) the "nal disease size
Ry, and €) the vaccination siag; versus the information transmission ratg for the disease transmission rate
Az = 020.5and0.8. For, = 07 0.5 and 0.8d} R,, (€) Rz and €) V3 as a function df ;. In the "gures,
symbols are the simulation results and the lines are the theoretical predicti@hstHe &rrow indicates the
numerical disease threshold. We set other parameterd te-Beandp=0.8.

as shown in Fig.%5(b,c). Notexﬁeis slightly smaller thak, because whether information induces an individ
ual to be vaccinated depends on the infection level of their neighbors. Our heterogeneous mean-"eld theory
describes this phenomenon very well.

lus we know that for a given disease transmission rate there is an optimal information transmission rate at
which the disease spreading is markedly reduced. In order to determine the coevolution characteristics of infor
mation and disease spreading when the information reaches its optimal transmission, we "rst look at the macro
scopic coevolution of the two dynamics under di#erent information transmission rates as shown in Fig.%6. We
denote the fraction of nodes on layginformed by their neighbors or by their counterpart nodes upjf@)
and pf (1), respectively. Heig, (t)[p4(t)] is the fraction of nodes obtaining the information (disease) on.fayer
(B) at timet. For smalh , = 0.13 below! § [see Fig.%6(d)j(t), p5 (1), andp,i(t) reach their peaks simultane
ously. Note that (t) is larger thalp;‘ (t) and very close tgf (t), which means that the spread of information is
primarily induced by the disease outbreak ARt Q 22, we "nd thato:! (1), 1,2 (t), andp .(t) reach their peaks
simultaneously, and that,(t) is closer e (t) than topB(t). lus the information and disease have a similar
spreading velocity. For a large valua/gpé Q 4, the information spreads more quickly than the disease. Our
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Figure 5. Asymmetrically interacting dynamics on ER-ER networkie "nal density in each state relating
the parameters, and! 4: (@) the "nal information siz® , (b) the "nal disease siRg and (c) the vaccination
sizeVz. In (a), the horizontal and vertical dashed lines separatgthe! 5 plane into local and global
information outbreak regions, which are denoted as regions | and H),Ithé vertical dashed line divides the
plane into a local (region I) and a global (region Il) disease outbreak regidnjs tie (lue circles (; = 0.13,

I = 09, greenup trianglg\, = 0 22, Az = 0.7) and gray diamond\(; = 0.4, \z = 0.%) represenh , being
below, at and abové), respectively (see more discussions in Fig.%6). !e black squares (black Imek) in (
represent the optimal information transmission rajbversus - Other parameters are set tolbe 2 and
p=0.8.

results suggest that information and disease spreading have a similar macroscopic coevolution characteristic
when the information transmission rate is at its optimal value.

Figure%7 shows the microscopic coevolution characteristics of the two dynamics at the optimal informa
tion transmission rate. Figure%7(a) shows the time evolution of information and disease in three independen
dynamical realizations that have similar trends in their macroscopic coevolution of information spreading and
disease spreading. Figure%7(b) shows the relative growth rates of infafbtatiod disease,(t). As in the
real-world case in Fig.%1(b), the same and opposite growth trends are observed. Figure%7(c) shows the calcul
cross-correlations between the two time serieg(@®f andyv,(t). Both positive and negative cross-correlations
exist when the window size is small [see Fig.%7(d)]. Note that Fig.%7 agrees well with the real-world situati
shown in Fig.%!1. 'rough extensive simulations, we "nd that heterogeneous networks display a similar phenom
enon. lus the coevolution between information and disease can become optimal in which the macroscopic and
microscopic coevolution characteristics of information and disease exhibit similar trends and the information
di#usion greatly suppresses the spread of disease.

To examine how topology a#ects multiplex systems, we next simulate di#erent possible heterogeneities in the
communication and contact networks (see Fig.%8). We generate scale-free (SF) networks with a power-law degi
distribution P(K) ! k ‘o by using an uncorrelated con"guration motétin which$; is the degree exponent.
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Figure 6. On ER-ER coupled networks, the time evolution of each type of noteime evolution of
P (.12 (1), (yand!  (t)for @! , = 013, ()! ;= 0 2and €)! , = 0.40. Other parameters are set to be
'g=03! = andp:lf) 8.

Irough extensive simulations we "nd that the values®¥ do not qualitatively a#ect the results. Without loss of
generality we séf, = 3.0. Note that there is an optimal information transmission rate at which the disease is
signi“cantly suppressed [see Fig.%8(b,c)], and thus heterogeneity in network topology does not qualitatively a#e:
this optimal phenomenon. We also "nd that the multiplex networks with a homogeneous communication layer
and a heterogeneous contact layer have a greater optimal information transmission rate. As the information (dis
ease) spreads more (less) widely on homogeneous (heterogeneous) networks for a large transnfigsisn rate,
further reduced. Figure%8(e) shows that the disease thveﬁﬁmhﬂetermined only by the topology of laiger
and that the topology of laygr does not a#e¢tcB .

For information spreading on layet as shown in Fig.%8@,) decreases with the degree heterogeneity of
layer3, since a homogeneous contact network facilitates the spread of disease!fgra@€?. In Fig.%8(b,c),
the e#ects of the heterogeneity of lagen R, andv, are negligible whek, is small, buR, increases with the
heterogeneity of layet when! , is large because it is more di&cult to immunize nodes\i,edecreases with
the heterogeneity of laygrin Fig.%8(c)].

Figure%8(dbf) shBw, Rz andVy as a function afg on several networks for largg = Q E. le degree het
erogeneity of layed is a factor. Wheh, ! | CB, R, decreases with the heterogeneity of lay,dout the e#ects
of the heterogeneity of laydronR, andvy; are negligible. Whein, > | CB the heterogeneity of laydrdoes not
increase information di#usion, but promotes disease spreading because nodes are less likely to be immunized. W\
examine the e#ects of the heterogeneity of I8yard "nd thatR , andR; increase (decrease) with the degree
heterogeneity of layét for small (large)) ;. When the degree heterogeneity of |dyés increased, the network
has a large number of individuals with very small degrees and more individuals with large degrekg.is8Vhen
small there are more hubs in heterogeneous networks that facilitate disease spreading because they are more lik
to be infected, and this increases information di#usion. Wheis large, however, there are many small-degree
nodes with a low probability of being infected, and this produces smaller vaRgesvbich causes smaller val
ues oR,.
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Figure 7. Asymmetrically interacting spreading dynamics on coupled ER-ER networks at the optimal
information transmission rate.(a) !e fractions of nodes in the informed state, (t) (red solid line) and

infected staté 5 (blue dashed line) versugpb) !e relative growth ratesvp(t) (blue dashed line) ang(t)

(red solid line) of (t) and! , (t) versug, respectivelyc] Cross-correlations(t) betweery,(t) andvp(t) for the
given window sizey, =3 (blue dashed line) ang=>5 (red solid line).d) !e fractions of negative correlations
fr (blue squares) and positive correlati@p@ed circles) as a functionwf. We set other parameters to be
Ay = 022! 5= 0Zandp=0.8, respectively.

N'&D"&&'2(
We have systematically investigated the coevolution dynamics of information and disease spreading on multi
plex networks. We "rst discover indications of asymmetrical interactions between the two spreading dynamics
by analyzing real data, i.e., the weekly time series of information spreading and disease spreading in the forn
of in$uenza-like illness (ILI) evolving simultaneously in the US during an approximate 200-week period from

3 January 2010 to 10 December 2013. Using these interacting mechanisms observed in real data, we propost
mathematical model for describing the coevolution spreading dynamics of information and disease on multiplex
networks. We investigate the coupled dynamics using heterogeneous mean-"eld theory and stochastic simula
tions. We "nd that information outbreaks can be triggered by the spreading dynamics within a communications
network and also by disease outbreaks in the disease contact network, but we also "nd that the disease thresho
is not a#ected by information spreading, i.e., that the outbreak of disease is solely dependent on the topology o
the contact network. More important, for a given rate of disease transmission we "nd that there is an optimal
information transmission rate that decreases the disease size to a minimum value, and the modeled evolutior
of information and disease spreading is consistent with real-world behavior. We also verify that heterogeneity in
network topology does not invalidate the results. In addition, we "nd that when information di#uses slowly, the
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Figure 8. E#ect of degree heterogeneity on coevolution dynami@.!e "nal information size R, (b) the

"nal disease siR; and €) the vaccination siag; versus the information transmission ratg on ER-ER,

ER-SF, SF-ER and SF-SF coupled networks\withQ £. For ER-ER, ER-SF, SF-ER and SF-SF networks with
A4 = 05 [d)Ry, (€) Rz and €) Vz as a function df ;. Other parameters are set tolbe 2,p=0.8 andk,) =

kB>:8.

degree heterogeneity of the communication network has a trivial impact on disease spreading. !e homogeneity
of the communication network can enhance the vaccination size and thus prevent disease spreading-more e#ec
tively when the spread of information is rapid.

le asymmetrical interacting mechanism we discover by analyzing real-world data provides solid evidence
supporting the basic assumptions of previous resedfédfie®ur data-driven model also reveals some funda
mental coevolution mechanisms in the coevolution dynamics. Using these coevolution dynamics of information
and disease we are able to identify phenomena that di#er qualitatively from those found in previous research on
disease-behavior systems. Our results enable us to quantify the optimal level of information transmission that
suppresses disease spreading. !e coevolution mechanisms also enable us to better understand why the diseas
threshold is unchanged even when information spreading in some real-world situations undergoes coevolution.

Further research on disease-behavior systems promises to discover additional real-world mechanisms thai
can be used to re"ne models of coevolution spreading dynamics. Developing a more accurate theoretical methoc
is full of challenges because it is di&cult to describe the strong dynamic correlations among the states of neigh
boring nodes in a network. If we take dynamical correlations into account, we may be able to use such advance
theoretical methods as dynamic message-pdgsfiog pair approximatiof5°
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1%0/:2+&
M%.,/'E%*)$21/:*$,/%8& e de"ne the relative growth rateg(t) of ng(t) andvy(t) of np(t) to be
Ng(t + 1) — ng(t)
vs(t) =———-—2>-
o) g (1) (13)
and
np(t + 1) — np(t)
np(t) (14)

If vg(t) > 0 [vp(t) > 0], ng(t) [np(t)] shows an increasing trend at timdf not,ng(t) [np(t)] shows a decreasing
trend at timet.

vp(t) =

0,%',F.'/C*-9%,&"$%7? le variability " *2Sis

L {RITRP

(Ra) (15)

whereR, is the "nal information siz®, or disease si&;, and(---) is the ensemble averaging. !e value"of
exhibits a peak at the critical point at which the thresholds can be computed.

M%G%$%(D%&
1. Pastor-Satorras, )., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complexieetMutisPhys87,
925 (2015).
2. Perc, M. & Szolno*i, A. Coevolutionary games+a mini reBie®ystem@9, 1099125 (2010).
3. ,arrer, B. & Newman, M. E. J. Competing epidemics on complex netweinis!ev. E84,036106 (2011).
4. Sanz, J., Xia, C.-Y., Meloni, S. & Moreno, Y. Dynamics of Interacting Dis¢gsésv . X 4,041005 (2014).
5. Marceau, V., No'l, P. A., HZbert-Dufresne, L., Allard, A. & DubZ, L. J. Modeling the dynamical interaction between epidemics on
overlay networ*sPhyslev. E84,026105 (2011).
6. Cai, W,, Chen, L., Ghanbarnejad, F. & Grassberger, P. Avalanche outbrea*s emerging in cooperative ddata@iyssL1,
9360940 (2015).
Gleeson, J. P, Cellai, D., Onnela, J.-P., Porter, M. A. & )eed-Tsochas, F. A simple generative model of collective online behaviout
Proc Nat. Acad Sci USA111,10411 (2014).
8. Feng, Let al. Competing for Attention in Social Media under Information Overload ConditiBheS On&0,e0126090 (2015).
9. Manfredi, P. & DOOnofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious(SizagesVerlag,
Berlin, 2013).
10. Fun*, S., SalathZ, M. & Jansen, V. A. A. Modelling the in$uence of human behaviour on the spread of infectious diseases: a reviev
J!.SoclInterfacer, 1257 (2010).
11. Fun*, S,, Gilad, E. & Jansen, V. A. A. Endemic disease, awareness, and local behavioural fespariiel. 264,501 (2010).
12. Valdez, L. D., Macri, P. A. & Braunstein, L. A. Intermittent social distancing strategy for epidemic bpsiay . E85,036108
(2012).
13. Zuze*, L. A., Stanley, H. E. & Braunstein, L. A. Epidemic model with isolation in multilayer nefedtép.. 5, 12151 (2015).
14. Bauch, C. T. & Galvani, A. P. Social Factors in Epidemi@o@gnc842,47 (2013).
15. Fun*, S., Gilada, E., Wat*insb, C. & Jansen, V. A. A. le spread of awareness and its impact on epidemic dertbcddeth. Acad
SciUSA106,6872 (2009).
16. Granell, C., G—mez, S. & Arenas, A. Dynamical Interplay between Awareness and Epidemic Spreading in MultipleRhystwor*s.
lev.Lett 111,128701 (2013).
17. Wang, Wet al. Asymmetrically interacting spreading dynamics on complex layered netBeoi*tep.4, 5097 (2014).
18. Wang, W.,, Tang, M., Zhang, H.-F. & Lai, Y.-C. Dynamics of social contagions with memory of nonredundant infdPmgsien..
E92,012820 (2015).
19. Watts, D. J. A simple model of global cascades on random netRuaédNatl. Acad Sci USA99,5766 (2002).
20. Pastor-Satorras, ). & Vespignani, A. Epidemic Spreading in Scale-Free Ne®hystev. Lett 86,3200 (2001).
21.Newman, M. E. J. 'e spread of epidemic disease on netw@tigs!ev.E66,016128 (2002).
22. jitsa*, M. et al.ldenti"cation of in$uential spreaders in complex netwoNat. Phys6, 888 (2010).
23. ,uperman, M. & Abramson, G. Small world e#ect in an epidemiological mBtigk!ev. Lett 86,2909 (2001).
24, Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dytamided. Phys81,0034 (2009).
25. Preis, T. & Moat, H. S. Data from: Adaptive nowcasting of inuenza outbrea*s using Google searches. Dryad Digital )epository.
Available at: http://dx.doi.org/10.5061/dryad.rO6h2. (Accessed: 4th May 2015) (2014).
26. Preis, T. & Moat, H. S. Adaptive nowcasting of inSuenza outbrea*s using Google seaBtw3pen Scil, 140095 (2014).
27. Ginsberg, Xt al.Detecting in$uenza epidemics using search engine quer\Naatee457,1012 (2009).
28. Lazer, D., ,ennedy, )., ,ing, G. & Vespignani, A. le Parable of Google Flu: Traps in Big Data AnaBa&nc843,1203 (2014).
29. Podobni*, B. & Stanley, H. E. Detrended Cross-Correlation Analysis: A New Method for Analyzing Two Nonstationary Time Series.
Physlev. Lett 100,084102 (2008).
30. Boccaletti, St al.!e structure and dynamics of multilayer networ*®hys'ep.544,1 (2014).
31. Gao, J., Buldyrev, S. V,, Stanley, H. E. & Havlin, S. Networ*s formed from interdependent neaudttys8, 40048 (2012).
32.Wang, Z., Wang, L., Szolno*i, A. & Perc, M. Evolutionary games on multilayer networ*s: a colldguiupmys J. B 88, 1015
(2015).
33.,ivelS, M. et al.Multilayer Networ*s.] Complex Networ# 203 (2014).
34. Moreno, Y., Pastor-Satorras, ). & Vespignani, A. Epidemic outbrea*s in complex heterogeneous n&woPisys J. B 26,
5219529 (2002).
35. Serrano, M. A. & Bogu—%, M. Percolation and epidemic thresholds in clustered neRhgsiev . Lett 97,088701 (2006).
36.)uan, Z., Tang, M. & Liu, Z. Epidemic spreading with information-driven vaccinafbgs'ev. E86,036117 (2012).
37.Buono, C. & Braunstein, L. A. Immunization strategy for epidemic spreading on multilayer netiwwoishysLett 109,26001
(2015).
38. Fisman, D., ,hoo, E. & Tuite, A. Early epidemic dynamics of the West African 2014 Ebola outbrea*: estimates derived with a simple
two-parameter modePLoS CurrOutbrea#$, 1 (2014).

~N

1"#S%&HH#("H#S | %&

[Axex{e 4 wvawvy~ ¢"f'xex{e 16



HI"HS%& (") *+,-). (#%.1.) (0% %-,

39. Alia, S. T., ,adib, A. S. & Ferguson, N. M. Transmission dynamics of the 2009 in$uenza A (H1N1) pandemic in India: !e impact
of holiday-related school closuEpidemic$, 1579163 (2013).

40. Bermejo, Met al.Ebola outbrea* *illed 5000 gorilléBcienc814,1564 (2006).

41. Catanzaro, M., Bogu—%, M. & Pastor-Satorras, ). Generation of uncorrelated random scale-free rieysehsv. E71,027103
(2005).

42. Newman, M. E. Networ#s An Introductio(Oxford University Press, Oxford, 2010).

43. Altarelli, F., Braunstein, A., Dall®Asta, L., Wa*eling, J. ). & Zecchina, ). Containing Epidemic Outbrea*s by Message-Passing
TechniquesPhyslev. X 4,021024 (2014).

44. Ferreira, S. C., Castellano, C. & Pastor-Satorras, ). Epidemic thresholds of the susceptible-infected-susceptible model on networ*s
A comparison of numerical and theoretical resitsys!ev. E86,041125 (2012).

45. Shu, P., Wang, W.,, Tang, M. & Do, Y. Numerical identi"cation of epidemic thresholds for susceptible-infectedrecovered model on
"nite-size networ*sChao<5,063104 (2015).

46. Yang, Z. & Zhou, T. Epidemic spreading in weighted networ*s: An edge-based mean-"eld sBhyttdeyv . E 85(5), 056106
(2012).

47. ,arrer, B., Newman, M. E. J. & Zdeborov?, L. Percolation on sparse netRbysdev. Lett 113,208702 (2014).

48.)adicchi, F. Percolation in real interdependent netwoNat. Phys11,597 (2015).

49. Eames, ,. & ,eeling, M. J. Modeling Dynamic and Networ* Heterogeneities in the Spread of Sexually Transmitted Piseases.
Natl. Acad Sci USA99, 13330 (2002).

50. Gross, T., DOLima, C. J. D. & Blasius, B. Epidemic dynamics on an adaptiveRisfaient. Lett 96,208701 (2006).

>D3(21.%+)%-%(/&

lis work was partially supported by the National Natural Science Foundation of China under Grants Nos
11575041 and 11105025, and China Scholarship Council. L.A.B. thanks ANCyP, Pict 0429/13 and UNMdP for
"nancial support.

>"2$*<2(I$'F"'2(&
W.W. and M.T. devised the research project. W.W. and Q.-H.L. performed numerical simulations. WW.,, S.-M.C.,
M.T., L.A.B. and H.E.S. analyzed the results. W.W., Q.-H.L., S.-M.C., M.T., L.A.B. and H.E.S. wrote the paper.

>++'1'2(,.*P(G23%-,/'2(

Supplementary informationaccompanies this paper at http://www.nature.com/srep
Competing "nancial interestsle authors declare no competing "nancial interests.

How to cite this article Wang, Wet al. Suppressing disease spreading by using information di#usion on
multiplex networksSci. Ref, 29259; doi: 10.1038/srep29259 (2016).

lis work is licensed under a Creative Commons Attribution 4.0 International License. !e images

s o1 other third party material in this article are included in the articleOs Creative Commons license,
unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

"HS%&HH("HS | %&  |Axex{e a wvawvy~ «"f’xex{e 17



