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We study the current flow paths between two edges in a random resistor netwoik>oh aquare lattice.
Each resistor has resistane®, wherex is a uniformly distributed random variable aactontrols the broad-
ness of the distribution. We find that) The scaled variabla=L/a”, wherev is the percolation connected-
ness exponent, fully determines the distribution of the current path léhfgthall values ofu. Foru>1, the
behavior corresponds to the weak disorder limit &rstales ag ~ L, while foru<1, the behavior corresponds
to the strong disorder limit witlf ~ L%pt, whered,,=1.22+0.01 is the optimal path exponefid) In the weak
disorder regime, there is a length scétea”, below which strong disorder and critical percolation characterize
the current path.
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Transport in disordered media is a classic problem in staenly has been related to critical percolatidn-3,19.
tistical physics which attracts much attention due to its broad Here we show that for exponential disorder, the flow paths
range of applications. Examples include flow through porougor all values ofa are controlled by critical percolation and
material, oil production, and conductivity of semiconductingby the scaling properties of the optimal path in the strong
materials or metal-insulator mixturgs—10]. These problems disorder limit. Indeed, the resistance of each path is equal to
have been studied using a random resistor network modéhe sum of its resistances. Whan- e the resistance of each
with bonds that have a resistance chosen from a probabilitpath is dominated by the largest resistance on this path
distribution mimicking the nature of the physical problem €Xp(@Xmay). Almost all currents must go along the path which
under consideration. Among the different classes of disordeMinimizesxy,, We denote this min-max value of disorder as
distributions used, the most commorpisrcolationdisorder, X1 =MiNy pat&max AMong all the paths which go through
in which the resistance of a bond is either 0f11]. Gauss- the bond withx;, the maximum current goes along the path
ian distributions anchower-lawdistributions have also been which minimizes the second largest value of disordgr,
studied extensively12,13. and so on. Thus the algorithm of selecting the path with the

Here, we study a random resistor network wétkponen- ~maximum current is equivalent to selecting the optimal path
tial disorder[14]. We consider the two opposite edges of ain the strong disorder limitultrametric algorithm{16]). As
L X L square lattice as souréeand sinkB. Each bond con- a— < the maximum-current path coincides with the optimal
necting adjacent nodesand j corresponds to one resistor, path in the strong disorder limit. On the other hand, since all

whose resistance; is given by[1-4,15 valuesx;; on the maximum-current path are below this
path must belong to the percolation backbone with concen-
rj =e¥, (1)  tration p equal to the fraction of bonds whosg<x, [22].

The value ofp at which percolation between two edges of
wherea controls the disorder strength amg is a random  the system does occur has a narrow distribution with a mean
number taken from a uniform distributiof € [0, 1]. Recent  of p=p, and a standard deviation that scales-ds*"” [23],
experiments show that for quenched condensed granular Niherep, is the critical percolation threshold, is the linear
thin films, the conductivity is well described by exponential system size, and’ is the connectedness length exponent.
disorder with largea [2]. Exponential disorder enables us to Thus the value ok; also must have a narrow distribution of
understand the magnetoresistance phenomenon that out wfdth ~L™/".
10° grains, only a few govern the electric conductivisy. Next we estimate the valua at which the maximum-
Optimal paths in networks have also been studied with exeurrent path starts to bifurcate. Consider the paths which do
ponential disorder, where the optimal path is the path benot pass through bond as if this bond has been ci#]. The
tween two sites that minimizes the total weighp,£™i maximum-current will then pass through boxd> x,, which
[16-20, where the sum is over the bondp) along the path. is characterized by the same narrow distribution. Helxge
The length of the optimal path,, has been shown to scale —x,) is of the order oL, These paths become competitive
with the system size asrt for the strong disorder limita  with the true optimal path if its resistance ¢ag,) becomes
—o0) [21], where a single bond dominates the optimal pathof the same order as efgx,) or if a(x,—x;)~alL ~=1.
(and conductance as we see beloVhe strong disorder limit  This condition determines the crossover from weak to strong
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FIG. 2. (a) Plot of P(¢|L,u) vs ¢ for square lattices with fixed
u=L/a"=10 and different values df. (b) Plot of P(¢|L,u)L%??vs

. LL €/L.%22 Three families of curves are shown and each family has the
L | same raticu=L/a": u=10[L=250(0O), L=300(), L=350(<)];
o = ' L u=1.26 [L=30 (A), L=40 (<), L=60 (V)]; u=0.25[L=15 (+),
5:‘:' I |_| |_I L=20 (X), L=27 (x)]. The distribution curves with the same ratio
_I_I_ : : - of u collapse both in weak disorder such as10 and in strong

i E_:I '——L! i disorder such asi=0.25, as well as in the intermediate regime
I g =1.26 fora>10 andL>15. We compute all the data with 1000
Ef'“} o S gy realizations of disorder and 1@racers for each realization.

3 FERCRTRY i

e © - : @ we study the ensemble of current paths on the lattice by

performing tracer dynamics with the particle launching algo-

FIG. 1. Current maps for the same configuration of disorder orfithm [25]. For a given realization, all bond currents are de-
a 15x 15 square lattice, with different values af (a) a=5, (b) a termined by Kirchhoff equations and then tracers are injected
=20, and(c) a=45. Each bond represents one resistor. The dointo nodeA and extracted at nodB. At a given node, the
density of each bond increases when the bond current increasdsacer follows the bond from nodeto j with probability
The source has coordinaf@,7) and the sink14,7). (d) The corre-
sponding optimal path for the same configuration of disorder and W = Jij 2)
for a=45. The similarity betweeric) and (d) suggests a relation ” > J; '

i

between current flow paths for largeand the optimal path.

wherej runs over all the neighbor bonds of node; =1;; if
disorder. IfL <a”, the disorder is strong and the maximum- I;;=0, andJ;=0 if I;; <0, so that only “out” currents are
current path does not bifurcate.lf>a” the disorder is weak taken into account.
and the maximum-current path can bifurcate. Moreover, the To understand the behavior of the current flow in the pres-
value ¢é~a” determines the connectedness length belowence of disorder in all ranges of disorder, we calculate the
which the disorder is strong and the maximum-current pattength distribution of all tracer path®(¢|L,a), from A to B
is determined by the unique optimal path and above whichor a system of linear size and disorder strength. We first
the maximum-current path bifurcates. fix u=L/a” and calculate the distributioR,(¢)=P({|L,a)

To confirm these analytical predictions, we study thefor different system sizek and the corresponding values of
problem numerically. If we define the electric potential ata=(L/u)!*. We obtain weak disorder whar>1 and strong
nodei of the lattice a3/;, and set the potentials at source anddisorder whenu<1, as found for the optimal path in net-
sink asVa=1 andVg=0, we numerically solve the set of works[26] and as shown below for current flow. Moreover,
Kirchhoff equations for alV; [24]. We begin by building an  we find thatu is the only parameter that characterizes the
intuitive understanding of the effect of changing the strengthdisorder and thus determin&g(¢).
of disorder on current flow. Figurega-1(c) show, for dif- In Fig. 2a) we show three normalized distributiofg(€)
ferent values of, the magnitudes of the bond currents rep-ith u=10 (weak disordex; which collapses to a single curve
resented by the density of dots on each bond. We see that thg shown in Fig. @). Figure 2b) also shows two other
set of bonds carrying most of the current decreases. as peaked curves witi=1.26 (close to the crossoveand u
increases, so that only a few current paths dominate. This g 25 (strong disorder Each curve shows the collapse of
confirms earlier findings that for largs, one or very few  three distributions with different system sizedut the same

paths dominate the current flq@—3,8. In Fig. 1(d), we plot  yajue ofu. This collapse implies tha@(¢|L,a) is controlled
the optimal path for the same disorder realization. The Simipy a single parametar,

larity between the path of the current carrying bonds in Fig.

1(c) and the optimal path in Fig.(d) exhibits how these two 1 4

guantities are related in the strong disorder limit and supports P(¢|L,a) ~ Ld_omfu<LTom) ©)
the argument above that the maximum-current path coincides

with the optimal path. We confirmed this scaling numerically for values wfbe-

Figure 1 illustrates that the paths used by the current areveenu=10 (weak disorder and u=0.25 (strong disorder
intimately related to the disorder of the system. Thereforefor a>10 andL > 15 [27].

045101-2



RAPID COMMUNICATIONS

CURRENT FLOW IN RANDOM RESISTOR NETWORKS. PHYSICAL REVIEW E 71, 045101R) (2005
- L - 10 l
Ty (@) Tty - (b)
E dopt i LN B,
- g™
. e } Y ) .,
G, . dopt A N 5 ol 8-
£Te 2 | %, 3 Wi
*2 %. &
| ¢, %,
05 | 4 °
0.1 1.0 10.0 0.1 1.0 10.0
""""" Lia” Lia’

FIG. 4. (a) Log-log plot of ¢*/L122ys L/a" for different values
of a: 10 (O), 15 (O), 20 (©), 25 (A), 30 (<), 34 (V), and L
changes from 20 to 200. The slope of the dashed line is —0.21, in
agreement with Eq$5) and(6). (b) The same a&) but for . The
slope of the dashed line is —0.72, in agreement with Egjsand

3 3

FIG. 3. Schematic illustration of the flow path inside and outside
the critical regimes in the weak disorder cagea”’<L. The pa-
rameteru=L/a” determines the number of such units size §) in

a linear size.. While the total length of the flow path is linear with ullz_dopt' us1
L, for distancey<¢ (inside the critical regime we expect{ gs(u) ~ 1 9
~ yfopr, ) u<l.

To test Eq.(5) we plot £* /L%t as a function ol in Fig.

To understand why and d,, play an important role in  4(@. We find that the best scaling is obtained &=1.22,
determining the length of the current flow path in weak dis-the predicted value. Wheln>a" (u>1), g,(u) is asymptoti-
order as well as in strong disorder, we suggest the followingally a power-law function with an exponent -0.21+0.02,
theoretical argument. In the weak disorder regime, there is which is within the error of the predicted value @g=
characteristic lengtl§~a” below which strong disorder ex- —0.22+0.01[from Eq. (6)]. Similarly, in Fig. 4b), we P|0t
ists and critical percolation plays a crucial r¢28]. We thus ~ o/L%t as a function ofu=L/a” and find thatg, is asymp-
expect that for length scales up tothe tracers travel on totically a power law with an exponent —0.72+0.02 as pre-
strong disorder path segments with a typical lengthtpf dicted in Eq.(9). All these results strongly support our pic-
~ ¢opt, and a tracer length deviation of.~ &opt (jllustrated  ture of critical percolation regimes of size-a”.
in Fig. 3). For a system of linear sizein weak disorder, the Equations(5) and (6) state that tracer path length scales
ratio of the system size to the connectedness length /& ~ With system sizel in the same way as the optimal path
roughly indicates the number of independent strong disorddength for all values ofi. Foru<1, €* ~ L%t and the path is
tracer path segments within a complete tracer path frona fractal with the same exponedy, as for the optimal path
source to sink. The total length is obtained by multiplying length€,. In weak disordefu> 1), we obtain¢” ~L as we
by the length of a segmeng%rt. Defining ¢* as the maxi- do for self-affine structuregll]. This is consistent with the
mum of P(¢|L,a), we thus predict that in the weak disorder interesting possibility that they belong to the same universal-
VAT ity class. Asu< 1, current flows only along the optimal path,

. which explains the existence of the bottleneck at the perco-
€ ~ € ~ ugfopt= | Bopiy Topt, (4) lation thresholdp. [1-3,8.

Our results also explain the simulation results of R2f.
where ¢ is the mean average path length of the tracerdor the scaled plot lo@gR./R) as a function ofa/LY*3
[29,30. Thus for all values ofu, ¢ can be written in a whereR is the equivalent resistance of the two-dimensional
unified form random resistor lattice arfe.; is the equivalent resistance of

. d the system after cutting the bond with the maximal local
€ ~ L%rg(u), (5 current. Before cutting this bond, the equivalent resistance in
the strong disorder limit is dominated by the maximal resis-
tance along the optimal patR~e?/ [1,3,8]. After cutting
utort, u>1 this bond, the current will reorganize to follow a new optimal
ge(w) 1 1 (6)  path on which the dominant resistancdis €**, making the
: u<t. ratio R, /R~ePPJ)=g?® Using the relationdp~ &
The arguments leading to E@¢4) for weak disorder, also ~L™""[23], we find that
imply that the standard deviatian of ¢ scales as

whereg,(u) is a scaling function that satisfigsom Eq. (4)]

o~ \uglopt = | dop12Cop, (7) RCF”‘ ~ et (10)
and for all values ofy,
o ~ L%rg,(U) (8) This result also analytically supports our assumption that the
7 ratio L/a” characterizes the disorder and determines the
with properties of current flow.
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In summary, we find that the tracer path lendgtin flow  the probability distribution oft is determined by the ratio
in the presence of exponential disorder behaves similarly td./a”, which is the number of units of size~a” in a linear
the optimal path lengtf,,, and even has the same scalingsizelL.
exponents(d,, for u<1 and one foru>1). Moreover, we We thank S. Sreenivasan and G. Paul for useful discus-

also find that when the disorder is weak ahel L, there isa  sjons, ONR, ONR-Global, and the Israel Science Foundation
connectedness length-a”, where strong disorder and criti- for financial support.
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