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Asymptotic forms for the expected number of distinct sites visited by an n-step random
walk, being calculable for many random walks, have been used in a number of analyses of
physical models. We describe three recent extensions of the problem, the first replacing the
single random walker by N— o random walkers, the second to the study of a random walik in
the presence of a trapping site, and the third to a random walk in the presence of a trapping
hyperplane.

1. Introduction

The problem of determining properties of the number of distinct sites visited
by an n-step lattice random walk was first suggested in the mathematical
literature by Dvoretzky and Erdos [1]. Indeed, the complete characterization
of such properties presents a formidable mathematical challenge because the
number of distinct sites visited by an n-step random walk, a quantity to be
denoted by R,, is non-Markovian even when the underlying random walk is a
Markov process. In practice, only for the one-dimensional nearest-neighbor
random walk can one find an exact expression for the probability distribution
of R,.

In spite of the mathematical challenge posed by a calculation of properties of
R, it is nevertheless an important variable in a variety of physical problems. A
prime example of this is provided by the trapping problem, in which a trap is
assigned to each site on an infinite lattice with a probability ¢. One then asks
for the probability that an arbitrarily placed random walk in the presence of a
set of traps will survive for at least n steps. Call this quantity S,. A formally
exact representation of this probability is
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S, ={(1-¢)"), (1)

where the brackets indicate an average with respect to the configuration of
traps and to the set of all n-step random walks. Eq. (1) indicates that S, can be
regarded a cumulant-generating function of the R, so that if one knew the form
of §, one would also be able to find the probability distribution of R ,. Even a
calculation of an asymptotic form for this distribution requires extremely
complicated mathematical machinery [2,3], and little is known about the
magnitude of »n required to validate the use of asymptotic results. However, it
1s relatively straightforward to find an asymptotic form of the expected value of
(R, ) with the aid of Tauberian theorems for power series [4,5]. Even this
meager amount of information is sometimes used as a first approximation in
the calculation of physically useful properties. Again we refer to the trapping
problem in which Rosenstock suggested as an approximation to S, in eq. (1)

(61,
S, ~(1—~c)f (2)

It is now well known that this formula is incorrect at large n, but may
nevertheless provide a useful approximation to S, in the range of relatively
small but not physically unrealistic values of n, and at low trap concentration ¢
[7]. Most of the calculations of (R, ) to date presume that one is interested in
properties of R, for a single random walker on a completely infinite lattice. In
this paper we will review three recent calculations of (R, ) which relax one or
both of the assumptions mentioned earlier in the paragraph. The first of these
deals with the expected number of distinct sites visited by N (>1) random
walkers, the second with (R, ) for a single random walker in the presence of a
trapping site, and third to a calculation of (R,) in the presence of a trapping
hyperplane.

2. Expected number of distinct sites visited by N random walkers

We have noted the identification of the problem of the distinct number of
sites visited by a single random walker with the trapping problem. If we now
suppose that there are N independently moving random walkers on a lattice
then a knowledge of R, is equivalent to a knowledge of the survival probability
of all N walkers in the presence of a random configuration of traps. A recent
analysis of this problem considered the case in which the motion of the N
walkers evolves according to symmetric transition probabilities [8]. As is true
in the case N =1 the asymptotic results are determined from the generating
function for the probability for a single random walker, initially at the origin,
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to reach a point r for the first time at step n. Call this probability f,(r). Its
generating function with respect to n is known in terms of a ratio of integrals
|5]- Let the probability that the site r has not been visited by step n denoted by
I (r), which is expressible in terms of the f(r), j=1,2,...,n, by

L2
~
)
~—

Let the expected number of distinct sites visited by N random walkers in n
steps be denoted by (R,(N)). The probability that the site r has been visited
by at least one of the N random walks by step # is equal to 1 — I'Y(r) provided
that the random walks are initially at the origin. This allows us to express
(R, (N) as a sum of this function over all lattice sites,

(R,(N)) =2 [1-T(]. (4)

It is convenient, in considering the dependence on N, to introduce a generating
function with respect to this parameter. The generating function will be
denoted by R(u; n), which is defined by

s . L—~F
R m = (R (' = 72 3 T2 D (5)

which is derived by substituting eq. (4) into the definition of the generating
function. All of the results obtainable for this problem are based on an analysis
of this generating function. The limit N— o can be identified with the limit
u— 1, which validates the replacement of the sum in eq. (5) by the integral

1 f 1-I,(r)

R(u;n)~ 1= g = urn(r) dDr1 (6)

where D is the number of dimensions. Of course, since we have assumed
spherical symmetry in D dimensions, eq. (6) is reducible to a single integral
with respect to the radial coordinate.

The most striking feature that emerges from the calculations is the existence
of a number of different regimes in the dependence of (R, (N)) on n and N.
These regimes are determined by the order in which the limits n, N— « are
taken. We can observe that when a single random walker can visit at most
{) < sites on a single step then when n is held fixed and N is taken to infinity,
it is certain that all possible accessible sites will be visited. That is to say that
for this class of random walks lim,,_,., (R,(N)) = n{l. The corresponding result
when the number of permissible steps is infinite has not been investigated.

Let us outline the analysis and the results that follow from it in the case of
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one-dimensional random walks in which the variance of each individual step is
equal to o°. Then it has been shown that in the continuum limit in space (this is
a reasonable limit to take since we are only interested in the limit of large n)
the first passage time density f,(x) tends towards the form [9]

=L (- 22
" 20V T \ da

and the corresponding value of I (x) is

L ((x)= erf(2 I\'/_) (8)

Hence it follows that after a change of the integration variable in eq. (6),

Zaxfﬁ] 1l—erf(v) 20\/" I( i 9)

Ria; 11} = 1 — u erf(v)

where I(u) is the integral in this equation. As mentioned, we are interested in
the limit N— = or, since Tauberian methods will be used to derive the
behavior in this limit, we need the singular behavior of R(u; n) in the limit
u— 1. One singularity comes from the multiplicative factor (1 — 1)~ and the
second is a result of the singularity of the integral when u« is set equal to 1. The
second of these two contributions to the singular behavior of R(u; n) is due to
the fact that the integrand is equal to 1 when u# =1, hence the singularity
originates in the behavior of the integrand at very large values of v. This
implies that in finding the form of the singularity we need only retain the
asymptotic form for erf(v) in the calculation,

—p2

c
= 53 10
1 —erf(v) = (10)
from which one finds
1w~ | o ____ (11)
s 1+vmuve' (1-w)

An analysis of the behavior of I(u) for u close to 1 has been carried out in ref.
[8], and the final result for R(u; n) in this regime is

R(u; n) ~ \f; ln( L ) (12)

1—u
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This is equivalent to the estimate

{R,(N)) ~ o\/nIn(N) (13)

valid when N is large. This calculation establishes the fact that the functional
form of the large n behavior of (R, (N)) has the square-root dependence that
appears in the corresponding result for n = 1. However, in addition, we can
assert that the overlap effect due to there being N rather than a single random
walker is proportional to In'*(N).

A striking feature that emerges from the one-dimensional model is the
existence of two recimes in the fime- dpnpndpnt hphn\nnr the ﬁ‘l‘Qf ﬂ(‘(‘l__!rfing
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when 7 is fixed and N tends towards o in which case (Rn(N )) is proportional
to n, and the second occurring when N is large but fixed and n— o which in
which (R, (N)) is proportional to n'’% A crossover between these two regimes
occurs at a time n that is of the order of In(N). An additional feature of
interest in one dimension is that it is possible to find an asymptotically exact
representation of the complete distribution of R, (N). Our result indicates that
the distribution tends towards a delta function when the limit N— « is taken.
The analogous problems in higher dimensions are also amenable to analysis
based on the fundamental formula in eq. (6). No details will be given here but
we cite the results for D =2 and 3 [8]. In two dimensions a first regime, in
which (R, (N)) is proportional to n” also occurs according to the same
argument as for D = 1. However, there is a second region in which {R,(N)}) is
also proportional to n. For the completely isotropic two-dimensional walk

{R,(N))~4no’n 1n(ln1(\;)) : (14)

The crossover between these two regimes occurs for n of the order of In(N).
The final regime in two dimensions is characterized by the result

Nn
In(n) ’

the crossover to this behavior occurring at n = @(e”). This third regime gives
essentially the two-dimensional result multiplied by the number of random
walkers unlike the one-dimensional result, which exhibits a more pronounced
screening effect. This behavior reflects the increased space available to the set
of random walkers in two dimensions. Finally, in three dimensions there are
again three regimes; in the first (R, (N)) is proportional to n’, in the second

(R,(N)) ~ (15)

(R,(N)) ~2nwa’(2n)** In* A(NIVF) , (16)
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th . he r of In(N), and in the final regi
transmon occurring at a time proportlonal to N°, {(R,(N)) becomes propor-
tional to Nn as might be expected based on our remarks for the two-
dimensional case. It is furthermore possible to demonstrate a scaling form for

{R_(N)), which is
(R,(N))~ Cn’*A(N/VT), (17)
where the function f(x) has the properties

x<1,

RS (18)

These properties all agree with the results of numerical calculations based on
the method of exact enumeration [8,11].

The analytic arguments used to derive the results just cited are calculated on
the assumption that the random walkers are all initially at the same site. It is
reasonable to expect that these asymptotic results will also be valid for initially
dispersed random walkers provided that the initial sites all lie within a region
whose linear dimension (say the radius of a hypersphere) is approximately of
the order of (¢,.,.)"">, where 7., is the crossover times between the earliest
and the immediately following regimes. Conversely, when the random walkers
are initially very widely dispersed one expects to see only the final regime.

We have seen that there are generally three identifiable regimes in the
behaviour of the parameter (R, (N)) as a function of the step number n» when
the random walk is made on the sites of a translationally invariant lattice. The
analogous problem has been investigated when the random walk is made on a
fractal lattice having a fractal dimension d; (i.e., the “‘mass” of the lattice
scales as m ~ L% where L is a length characterizing the size of the fractal)
using both a heuristic argument and by an exact enumeration calculation for a
random walk on a two-dimensional infinite percolation cluster [10]. The major
finding of that investigation is that when the spectral dimension d; is less than
2, {R,(N)) is characterized by two rather than three regimes. The behavior of
(R,(N)) at short times is derived by reasoning based on the representation of
this quantity in eq. (4). If the limit N — = is taken in that equation the function
I'Y(r) tends to zero provided that r is accessible to the random walker by step
n. Hence when n is fixed the expression for (R,(N)) reduces to the sum of ali
sites accessible to the random walker at that step. If we restrict ourselves to
random walks allowed to make steps to nearest-neighbors only, and on
defining d, to be the chemical distance exponent, we find the asymptotic
relationship
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d
(R,(N)) ~n", (19)

which is independent of the number of random walkers. A simple argument
shows that the crossover time from this to the second regime occurs at a time

of the order of In(N).
The behavior of (R (N)) in the second regime is found through the

assumption that I, (r) has a scaling form
I,(r)~g(rin™), (20)

where d,, is defined by the asymptotic relation {r*) ~ n*'*» Motivated by the
scaling form of the probability density for the location of a random walker at
step n we have assumed that the function g(v) in eq. (20) can be expressed as

g(v)~1—v “exp(-v’) (21)

for large values of v, where 6 =d_/(d, —1). If we let d, be the fracton

dimension, and make use of eq. (6) suitably modified for a fractal structure, we
find

dv .
(22)

x =23
a2 a2 de—1
n' 1-g(v) n’s J v’

R(u; n) ~ v dy ~ .
l—uO 1—ug(v) T—ult 4 p%e’(1- )

0

The behavior of this expression as a function of u is derivable by Tauberian
methods, leading to the asymptotic behavior

(R,(N)) ~ [In(N)]*n > . (23)

Numerical results obtained by the method of exact enumeration on a percola-
tion cluster have been found to agree with this result [10].

The results described in this section suggest a host of further problems that
remain as yet unexplored. These include a generalization to the calculation of
the asymptotic forms of moments of higher order as well as finding the forms of
the actual distribution of the random variable R,(N). Since these basic
problems are extremely difficult to solve even for N = 1 it is to be expected that
the level of difficulty will increase considerably when N exceeds 1. From a
physical point of view our initial motivation for seeking to find properties of
R, (N) was based on a possible extension of the Smoluchowski model to take
many-body effects into account. This suggests that a direct solution of the
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N-random walker extension of the trapping model [12], would be desirable in
the context of the Smoluchowski model. Another problem possibly amenable
to analysis by an extension of present methods is that of the occupancy of a
given set of points [5,13], which is the number of times that set has been visited
by the N n-set random walks. This quantity, too, has found application in a
physical setting [14].

3. (R,) in the presence of a trap

Returning now to the case of a single random walk, we consider a second
problem of recent interest in which one secks an expression for the asymptotic
behavior of (R,) in the presence of either a single trap or a trapping boundary
[15,16]. In this version of the problem the behavior of (R, ) is determined by a
balance between two types of contributions, those due to trapped and un-
trapped random walks, respectively. The initial analysis of this problem, by
Dayan and Havlin, which dealt with a one-dimensional random walk in the
presence of a single trapping point [15], essentially gives an exact solution for
the case of one dimension provided that the variance of a single step, {(r’), is
finite. The solution in that paper is based on the identification of R, with the
span of the random walk [17,18]. In dimensions greater than one this is no
longer a viable approach and it is only possible to calculate the first moment of
this random variable by rather more elementary means.

Consider first the problem of a random walk in the presence of a single
trapping site. Let the initial position of the random walker be at r = @ and the
trap be at r=s. The contribution of untrapped random walkers is equal to
S, (s)(R (s)) where S,(s) is the probability that the random walker remains
untrapped by step n and (R (s)) is the expected number of sites visited by an
n-step random walk forbidden to visit the site s during that time. The expected
number of distinct sites visited by an n-step random walk, averaged over all
walks including both walks that have been trapped before step n, and those
which have not vet been trapped will be denoted by (%, (s)) to distinguish it
from (R, (s)).

Whanm narvalat
YY LICIL VAUJRLICIALIVILL
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the function (R, (s)) can be represented in terms of the f,(r) as
nos A
(R,(5) = 2 (2 (0= £)) (24)
J= r
whose generating function with respect to the parameter n is
R(s: ) L (L psia) 25)
§;2) = — p(s; )
(= 2p0:2) \(1~2) 7
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A glance at the terms in large parentheses shows that the most singular of the
two terms as z— 1 is the first, hence to lowest order in n we can write
(R,(s)) ~ (R,), which is logical since the single excluded point is unlikely to
affect the leading term in the limit of a large number of steps. Thus, the
contribution of the untrapped walkers to {(2,(s)) is, to a good approximation,
equal to the simpler expression §,(s) {(R,). In order to calculate the lowest
order term in the remaining contribution we note that the probability of being
trapped at exactly step k is equal to S, _,(s) — S,(s) so that the contribution of
the trapped random walkers is

n

2 (RSi—1(8) — Si(8)] ~ — f(Rk> = (S) , (26)

where the smallest value of k can be set equal to any number that is G(1). If we
add the two types of contribution and integrate the result by parts we find that

(T, ()} ~ f S,(s) dﬁ") dk . (27)

For example, in D =1 the contribution to (,(s)) due to the untrapped walks
is found to equal 4|s|/a, which is a constant, while the corresponding con-
tribution from the trapped random walkers is asymptotically given by
(20|s| /@) In(n), which is therefore the principal contribution for large n, as
originally given by Dayan and Havlin [15]. We may describe this result by the
statement that trapping is extremely efficient in one dimension because of the
restricted geometry. In two dimensions, in contrast, the asymptotic behavior is
predominantly due to the untrapped random walks and (%, (s)) is asymp-
totically proportional to n/ln’(n), in place of the trap-free asymptotically
proportionality to n/In(n).

The same type of analysis can be applied to calculate (%, (s)) for random
walks on fractal structures. Let d, be the fracton dimension. Then, combining
the results [19]

(R,)~n"" (28)
and

S,(8) ~n~ T (29)
one readily finds

(R ($)y~n®"",  d <2. (30)
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The intermediate steps of the calculation suffice to show that the contributions
from both the trapped and untrapped random walkers have the same depen-
dence on step number.

As a final point in our discussion of the calculation of (%, (s)) in the
presence of a single trap, we mention that if we have a random walk in one
dimension with p( j) of stable-law type, i.e., the probability of a step of j lattice
sites having the asymptotic form p(j)~1/]j]'"%, with 0 < & <2, the balance of
contributions from trapped and untrapped random walks can shift, depending
on the value of a. For sufficiently small « (<1) the untrapped random walks
give the dominant contribution, while for 1<« <2 both trapped and un-
trapped random walks give the same contribution to {2, (s)).

Finally, much more intriguing problems are posed by the case in which single
trapping points are replaced by trapping surfaces. We have been led to
consider such problems by a random walk model of photon migration in a
turbid material which has been quite successfully applied to laser measure-
ments of properties of biological tissues [20]. The original formulation of this
model consisted of a planar surface separating the tissue from the exterior. A
laser beam is generally used to inject photons into the tissue, and measure-
ments of the light retransmitted through the surface are made by a collecting
optode. The path of a single photon is modelled in terms of a lattice random
walk (the corresponding diffusion model, rather surprisingly, does not give
results in as good agreement with experimental data as the far less believable
lattice picture!). There are a number of ways to characterize the path taken by
the photons, which is information that is useful to the biologist. One of these
relates to how much of the tissue has been traversed by photons which
ultimately reach the interface between the tissue and exterior. An obviously
useful parameter than can be used to provide this information is the expected
number of distinct sites visited by such photons in the (model) of the tissue
interior.

We will derive the analytic form of the asymptotic results both in two and
threec dimensions, the two-dimensional version of the problem being phrased in
terms of a trapping line in place of the plane. The basic idea behind the
derivation starts by noting that if a (D — 1)-dimensional hyperplane consisting
only of trapping sites is inserted into a D-dimensional space, the random walk
projected along the coordinate perpendicular to the plane is one-dimensional.
But it is known that in one dimension

S (s)~n1"7, (31)

which is therefore also the survival probability in D dimensions for a random
walk in the presence of a trapping plane. In two dimensions the expected
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number of distinct sites visited in a half-plane has the same functional
dependence on that of a random walker in an unbounded plane, which

nna
means that (R, ) ~ n/ln(n). Eq. (27) then suggests that

f,,d'f . (0 (32)

(%,(5)) ~ 7T Ve I Al
VYV A lll\K,) l\’ )

This is in agreement with results obtained by an essentially exact solution of
the evolution equations that describe the random walk, as indicated in fig. 1.

Similarly, in D =3 the same argument predicts that
(R, (s)) ~Vn. (33)

This prediction is compared to numerically exact results in fig. 2, with good
agreement. A more intriguing set of problems is posed by the situation in
which the trapping surfaces are not necessarily planar. In this formulation it
might well be the case that the results in the last two equations still remain
valid for large classes of the geometric form of the trapping surfaces, but this
extension is so far unexplored. It is obvious that a calculation of properties of
higher order moments of R, would pose much more difficult mathematical
problems.
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Fig. 1. Fig. 2.

Fig. 1. A plot of the expected number of distinct sites visited in the presence of a line of traps in
two dimensions, as a function of »n'%/In(n). These data were obtained using Monte Carlo
simulations based on 10000 random walkers each of which started 2 lattice sites away from the
absorbing line. The straight line plot suggests the validity of eq. (32).

Fig. 2. A plot of the expected number of distinct sites visited in the presence of a line of traps in
three dimensions, as a function of n'’*, showing good agreement with eq. (33). Again, 10000
random walkers were used in the simulation and the starting point was two lattice units from the
absorbing plane.
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