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Abstract. We analyze the S&P 500 index data for the 13-year period, from January 1, 1984 to December
31, 1996, with one data point every 10 min. For this database, we study the distribution and clustering of
volatility return intervals, which are defined as the time intervals between successive volatilities above a
certain threshold q. We find that the long memory in the volatility leads to a clustering of above-median
as well as below-median return intervals. In addition, it turns out that the short return intervals form
larger clusters compared to the long return intervals. When comparing the empirical results to the ARMA-
FIGARCH and fBm models for volatility, we find that the fBm model predicts scaling better than the
ARMA-FIGARCH model, which is consistent with the argument that both ARMA-FIGARCH and fBm
capture the long-term dependence in return intervals to a certain extent, but only fBm accounts for the
scaling. We perform the Student’s t-test to compare the empirical data with the shuffled records, ARMA-
FIGARCH and fBm. We analyze separately the clusters of above-median return intervals and the clusters
of below-median return intervals for different thresholds q. We find that the empirical data are statistically
different from the shuffled data for all thresholds q. Our results also suggest that the ARMA-FIGARCH
model is statistically different from the S&P 500 for intermediate q for both above-median and below-
median clusters, while fBm is statistically different from S&P 500 for small and large q for above-median
clusters and for small q for below-median clusters. Neither model can fully explain the entire regime of q
studied.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 05.45.Tp Time
series analysis – 89.75.Da Systems obeying scaling laws

1 Introduction

Correlations in stock price changes is a topic that has been
an active field of study for many years [1–16]. For example,
Fama [1] studied the behavior of stock prices and found
that price changes are short-term correlated on time scales
up to several minutes. Moreover, Dacorogna et al. [2], Ding
and Granger [3,4], Liu et al. [6,10] and others have found
that the absolute values of price changes, one definition
of volatility, show correlations on time scales up to sev-
eral years. Hence, long-term memory models such as the
autoregressive moving average – fractionally integrated
generalized autoregressive conditional heteroscedasticity
(ARMA-FIGARCH) model have been developed in order
to capture various characteristics of volatility [17–21]. An
alternative approach to analyze long-term memory is the
fractional Brownian motion (fBm) model [22]. Both mod-
els are discussed in the Appendix.

a e-mail: vodenska@bu.edu

The volatility time series is known to be character-
ized by long-term power-law correlations [2–6,23–27]. To
reveal more information about the temporal structure of
the volatility time series, Yamasaki et al. [28] and Wang
et al. [29] analyzed return intervals between events above
a certain threshold q and found long-term power-law cor-
relations in these intervals. Similar studies were done for
climate and earthquake records by Bunde et al. [30,31]
and Livina et al. [32].

Here, we compare the S&P 500 index data with the
ARMA-FIGARCH and fBm models to explore how well
the two models detect scaling and memory properties of
the empirical data. We choose these models since they
are commonly used to represent stock market dynam-
ics [17,20–22,33,34]. Both ARMA-FIGARCH and fBm
models are characterized by long-term memory, which also
exists in the empirical data.

We define a return interval τ(q) as the time between
successive volatilities above a certain threshold q (see
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Fig. 1a) and we examine the scaling and the memory prop-
erties of return intervals τ for both the empirical data and
the two models [28–32]. To study the memory, we analyze
how the conditional probability density function Pq(τ |τ0)
depends on the preceding interval τ0. We find in both the
empirical data and the two models that short (long) return
intervals τ0 are more likely to be followed by short (long)
return intervals, corresponding to clustering in volatility
return intervals [35–37].

In addition, we perform Student’s t-test for clusters of
both above- and below-median return intervals. We com-
pare the empirical data with the shuffled records, ARMA-
FIGARCH and fBm. Our study shows that the empirical
data are statistically different from the shuffled data for
all thresholds q, supporting the finding of strong mem-
ory in return intervals. Furthermore, we observe that the
ARMA-FIGARCH model is statistically different from
S&P 500 for intermediate q for both above- and below-
median return interval clusters, while fBm is statistically
different from S&P 500 data for small and large q for
above-median return interval clusters and for small q for
below-median clusters.

Moreover, we demonstrate that the scaling properties
of return intervals for different q values, which exist in the
empirical data [15,28,29], are described better by the fBm
model compared to the ARMA-FIGARCH model. We fo-
cus on the scaling characteristics of different intermedi-
ate volatility thresholds because the scaling property may
help us estimate the statistical characteristics of extremely
high volatility levels, where we do not have enough data
for reliable analysis.

2 Dataset and definitions

We analyze the S&P 500 database for a 13-year period,
from January 1, 1984 to December 31, 1996, with one data
point every 10 minutes (total of 132 000 data points) [6].
The records are continuous in regular open hours for all
trading days, and the times when the market is closed
have been removed [10].

We define

R(t) ≡ log
p(t)

p(t − 1)
≈ p(t)

p(t − 1)
− 1 (1)

as the change of the S&P 500 index level between t and
t − 1, where p(t) is the value of the index at time t and
p(t − 1) is the value 10 min earlier. The intraday volatil-
ity shows specific patterns [10] due to different behavior
of traders at different times during the day, and different
levels of order flow. For example, the largest number of
trades are executed at opening and closing market hours
in order to capture the opening or the closing price for the
day. These observed trading patterns may induce poten-
tial artifacts in our data analysis. Hence, we remove the
intraday patterns by dividing the absolute value of the
return |R(t)| by its average (over all days in the time se-
ries) for specific times during the day [10,29]. We use this

normalized absolute value of the return, |R̂(t)|, to define
volatility v(t) as |R̂(t)| divided by its standard deviation

v(t) ≡ |R̂(t)|
(〈|R̂(t)|2〉 − 〈|R̂(t)|〉2)1/2

, (2)

where 〈...〉 represents the average over the entire time se-
ries. Consequently, the threshold q is measured in units of
the standard deviation of |R̂(t)|. We select volatilities v(t)
above a threshold q and obtain series of return intervals
τ(q), as shown in Figure 1a. We then analyze these return
interval series for different thresholds q.

3 Memory and scaling in return intervals

A. Memory

In order to illustrate the memory in return intervals, Fig-
ure 1b shows a typical sequence of return intervals for the
S&P 500 index. Figure 1c displays the same sequence after
the original volatility records have been randomly shuffled
so that the memory in the volatility records is lost. We
notice prominent “patches” of return intervals below and
above their median value in Figure 1b, while there are no
such patches in Figure 1c. The patches indicate clustering
of the return intervals [28].

To investigate the effect of memory in the volatility on
the return intervals, we analyze the conditional probabil-
ity density function Pq(τ |τ0) conditioned on the preceding
return interval τ0. To this end, we arrange our return in-
terval series τ(q) in increasing order and divide it into
eight equally sized subsets (“octaves”) [28,29,32]. Then,
we plot Pq(τ |τ0) vs. τ/τ̄ for both cases, where τ0 belongs
to the first and the last octaves, in Figure 2d. The finding
that Pq(τ |τ0) depends on τ0 demonstrates the existence of
memory in return intervals. The probability for the short-
est τ0 to be followed by a short τ is larger than that for the
longest τ0 to be followed by a short τ . On the other end,
the probability for the longest τ0 to be followed by long τ
is higher than that for the shortest τ0 to be followed by a
long τ .

B. Scaling

Recent studies have shown that financial time series ex-
hibit complex behavior, and analysis of the scaling prop-
erties of the data may improve our understanding of the
return interval statistics [38–43]. To better understand
the origin of scaling and memory in the real data, we
compare the S&P 500 Index return intervals with two
models that are widely used for simulating volatility: (i)
the ARMA-FIGARCH model, which is a combination of
ARMA processes [21] and ARCH processes [33,44,45], and
(ii) the fBm model, which has long been used to simulate
different types of time series including financial market
data [22,46]. We then test how well the simulation results
obtained by these two models describe the S&P 500 re-
turn interval data. We perform simulations for different



I. Vodenska-Chitkushev et al.: Comparison between volatility return intervals... 219

0 40 80 120time (min)0

1

2

3

4

V
ol

at
il

it
y

1

10

100

R
et

ur
n 

In
te

rv
al

s

0 100 200 300 400 500

Interval number

1

10

100

τ3

τ2

τ1

(b)

(a)

(c)

S&P 500, q=2

Shuffled, q=2

Fig. 1. (a) Illustration of the return intervals for the volatility time series of the S&P 500 stock index on December 26, 1985.
Return intervals τ1, τ2, and τ3 for three thresholds q = 1, 2, and 3 are displayed. (b) and (c) show a visual demonstration of
return interval clustering using the method of Livina [32]. (b) Sequence of 500 typical return intervals for the S&P 500 index
for q = 2. (c) Same as (b) except that the original volatilities have been shuffled. The median interval for the unshuffled data
is 5 min and for the shuffled data is 7 min (horizontal lines).

parameters for both models and plot the simulation re-
sults choosing the parameters that best correspond to the
data. For the ARMA-FIGARCH model, we perform sim-
ulations for d = 0.2, 0.3, . . ., 0.8 and β = 0.1, 0.2, 0.3,
0.4 [47], where d and β are the parameters of the ARMA-
FIGARCH model described in the Appendix. For the fBm
model, we simulate return intervals for Hurst exponent
H = 0.1, 0.2, . . . , 0.9, and also for H = 0.84, 0.85, . . . ,
0.95 [22].

To test the scaling properties of the return interval
records of the S&P 500 Index, we examine the probabil-
ity density function (pdf) Pq(τ) for different thresholds q.
Figure 2a shows that Pq(τ) scales well with the mean re-
turn interval τ̄ since all three curves collapse onto a single
one when τ is divided by τ̄ and Pq(τ) is multiplied by τ̄ .
This means that after rescaling, the return interval time
series for all studied thresholds are characterized by the
same pdf.

The ARMA-FIGARCH simulation results shown in
Figure 2b reveal that this model does not show good scal-
ing because the curves for different thresholds q = 2, 3,
and 4 do not seem to collapse onto a single curve for small
values of τ/τ̄ . On the other hand, the fBm model shows
good scaling, as illustrated in Figure 2c. In Figure 2d we
can clearly see the scaling of the empirical results as the
three curves – for different q = 2, 3, and 4 – collapse onto
a single curve for τ0 in the first octave as well as for τ0

in the last octave. The lines in Figure 2d represent the

fBm simulation results. We note that the fBm agrees very
well with the empirical data, suggesting that scaling and
memory exist in both the empirical results and the fBm
model.

4 Clustering of return intervals

Next we examine the memory in return intervals by study-
ing the probability P (n) of obtaining above- or below-
median return interval clusters (cluster size probability).
We order the return intervals into two equally sized sub-
sets: long (above-median) and short (below-median), and
define clusters as consecutive above-median (or below-
median) return intervals. We then record the cluster size
n and study the statistics of the above- and below-median
clusters separately. We study the cluster size probabilities
in an attempt to test whether there exists memory in the
return intervals which is longer than the short-term mem-
ory between the neighboring return intervals discussed in
Section 3.

Figure 3 shows the cluster size probabilities P (n)
for clusters of above-median (Fig. 3a) and below-median
(Fig. 3b) return intervals for q = 2. Similar results are ob-
tained for other values of q. The five curves in Figure 3 cor-
respond to S&P 500 Index (filled circles), shuffled S&P 500
(filled squares), ARMA-FIGARCH (open diamonds), fBm
(open triangles), and simulated records with short-term
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Fig. 2. (Color online) (a) Scaled return interval pdf for S&P 500 Index above three different thresholds q = 2, 3, and 4. (b)
Scaled ARMA(1,1)-FIGARCH(1,d,0) simulation for thresholds q = 2, 3, and 4 and parameters d = 0.33 and β = 0.15. (c)
Scaled fBm simulation with H = 0.86. (d) Scaled conditional probability Pq(τ |τ0)τ̄ of shortest τ0 (filled symbols), belonging
to the first octave of the dataset (shortest return intervals), and longest τ0 (open symbols), belonging to the last octave of the
dataset (longest return intervals). The lines represent simulations for the fBm model. For details of the parameters d, β, and
H , see the Appendix.

correlation (open circles). When comparing the S&P 500
records with the shuffled data, we find that the distribu-
tion of shuffled records has shorter tail, which indicates
existence of memory in the empirical data.

In order to test whether the short-term memory dis-
cussed in Section 3 can explain the cluster size distribu-
tion, we generate a time series of return intervals con-
taining only short-term correlations, and compare them
with the empirical data. We obtain this simulated series
by choosing return intervals from the two different dis-
tributions given in Figure 2d. If the observed τ is below
the median, we choose the next τ from the distribution
of return intervals occurring after the below-median re-
turn intervals. If the observed τ is above the median, we
choose the next τ from the distribution of return intervals
occurring after the above-median return intervals. We find
that cluster size probabilities for both above- and below-
median clusters in the S&P 500 Index exhibit longer tails
compared to the simulated records with short-term corre-
lations. This suggests the existence of long-term correla-
tions in the return intervals of the empirical records.

In Figure 3 we also compare the empirical data with
ARMA-FIGARCH and fBm models. We find that in
the case of the above-median clusters, both ARMA-
FIGARCH and fBm generally overestimate the proba-
bility of large clusters in the empirical data. In the case
of the below-median clusters, ARMA-FIGARCH overes-
timates the distribution, while fBm is close to the em-
pirical data. Furthermore, in the empirical data we find

asymmetry in the above- and below-median cluster sizes,
observing larger cluster sizes for below-median return in-
tervals compared to that of the above-median ones. Since
the above-median return interval clusters are comprised of
longer time intervals, we can not say that below-median
return intervals exhibit longer memory than the above-
median return intervals. We observe similar asymmetry in
ARMA-FIGARCH and fBm models as shown in Figure 3.

In addition, to compare the empirical data with the
shuffled records, the ARMA-FIGARCH and fBm mod-
els, we perform the Student’s t-test and obtain p-values
for both clusters of above-median (Tab. 1a) and clus-
ters of below-median (Tab. 1b) return intervals. The p-
value is a measure of probability that a difference between
two distributions is significant. The lower the p-value, the
more likely is that the difference between two distribu-
tions is statistically significant. We observe that in the case
of S&P 500 and shuffled records the difference between
the two distributions is statistically significant, since all
the p-values for different q are smaller than the usually-
accepted statistical significance threshold 0.05. We then
analyze the p-values for S&P 500 and ARMA-FIGARCH
t-test and S&P 500 and fBm t-test, and observe that
ARMA-FIGARCH is statistically different from S&P 500
for intermediate q for both above- and below-median clus-
ters, while fBm is statistically different from S&P 500 for
small and large q for above-median clusters and for small
q for below-median clusters. Neither model can explain
the entire regime of q values studied. When comparing
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Fig. 3. (Color online) Probability P (n) of obtaining (a) above-median and (b) below-median return interval clusters (cluster size
probability) for threshold q = 2. The filled squares represent the shuffled return interval data, and show different behavior than
the original data (filled circles) revealing that there is memory in the return intervals. The open circles represent the simulation
results obtained by generating the return interval sequence with short-term memory. These simulation records have a thinner
tail than the S&P data, showing that the S&P data cluster size records exhibit longer-term memory. The open diamonds show
the ARMA(1,1)-FIGARCH (1,d,0) model for d = 0.33 and β = 0.15, while the open triangles represent the fBm model for
H = 0.86. For details of the parameters d, β, and H , see the Appendix.

ARMA-FIGARCH and fBm, we note that the models are
significantly different from one another for small thresh-
olds q and they do not appear to be different for large
q.

5 Discussion

We have studied the memory and scaling effects in volatil-
ity return intervals for the S&P 500 Index for a 13-year
period, from January 1, 1984 to December 31, 1996, with
one data point every 10 minutes. By comparing the em-
pirical results with the ARMA-FIGARCH and the fBm
models, we have found that fBm predicts scaling better
than ARMA-FIGARCH, which is consistent with the ar-
gument that both ARMA-FIGARCH and fBm capture
the long-term dependence in volatility return intervals to
certain extent, but only fBm accounts for the scaling [48].

The scaling is important because it suggests that large
and small financial market fluctuations are governed by
the same laws, and it enables us to infer the statisti-
cal characteristics of rare events using the more common
events where one has good statistics. In our analysis we
have demonstrated that for different volatility thresholds
q the scaled pdf Pq(τ)τ̄ as a function of the scaled return
intervals τ/τ̄ collapses onto a single curve, showing the

scaling property of the return intervals. Similarly, we have
demonstrated that the scaled conditional pdf Pq(τ |τ0)τ̄ for
cases where τ0 belongs to the subsets of either the short-
est or the longest observed return intervals are different,
but each collapses to a single curve for different q values,
showing the existence of scaling in the conditional pdf.

We analyzed the above- and below-median return in-
terval clusters and their cluster size distribution P (n). We
observe that large clusters of above- and below-median re-
turn intervals appear much more frequently than in non-
correlated sequences. This supports the hypothesis that
return interval sequences are also long-term correlated.

We performed Student’s t-test to compare the empir-
ical data to the shuffled records, ARMA-FIGARCH and
fBm. The shuffled records show significant difference from
the empirical data for all thresholds q. ARMA-FIGARCH
is statistically different from S&P 500 for intermediate q
for both above- and below-median clusters, while fBm is
statistically different from S&P 500 for small and large
q for above-median clusters and for small q for below-
median clusters.

These differences in the empirical data distribution
and the models may be due to volatility being more
complex and not exhibiting pure long-term correlations
while this is the nature of fBm, and on the other hand,
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Table 1. Student’s t-test results for clusters of return intervals. The values in the table represent the p-values obtained by
Student’s t-test, and q in the first row is the volatility threshold for return intervals. (a) Clusters of above-median return
intervals; (b) Clusters of below-median return intervals.

q = 0.25 q = 0.5 q = 1 q = 2 q = 3 q = 4
S&P500 and Shuffled 1.65E-03 1.08E-19 1.45E-28 2.02E-20 6.07E-10 1.13E-08
S&P500 and ARMA-FIGARCH 0.8109 9.19E-03 3.49E-04 0.3310 0.7544 0.5360
S&P500 and fBm 5.96E-15 6.49E-07 0.3401 0.1326 0.0871 0.0225
ARMA-FIGARCH and fBm 3.45E-16 8.78E-03 0.0286 0.0182 0.0611 0.11

(a)

q = 0.25 q = 0.5 q = 1 q = 2 q = 3 q = 4
S&P500 and Shuffled 4.27E-05 1.04E-15 4.70E-21 8.12E-10 1.07E-03 3.06E-03
S&P500 and ARMA-FIGARCH 0.3173 7.63E-04 3.38E-03 0.1409 0.2857 0.5251
S&P500 and fBm 1.63E-12 3.66E-08 0.3635 0.7301 0.7062 0.2213
ARMA-FIGARCH and fBm 4.26E-16 8.49E-03 0.0837 0.0839 0.4812 0.5215

(b)

ARMA-FIGARCH is scale-inconsistent, while the empiri-
cal data are showing good scaling.

We thank X. Gabaix for helpful discussions, and NSF for fi-
nancial support.

Appendix A: models

A.1 ARMA(l, m)-FIGARCH(k, d, e) model

A combination of Autoregressive Moving Average
(ARMA) and Fractional Integrated Autoregressive Condi-
tional Heteroscedasticity (FIGARCH) is a common model
for the simulation of returns. As an univariate time series,
returns rt can be divided into two parts,

rt = E(rt|Ωt−1) + εt, (3)

where E(. | .) denotes the conditional expectation, Ωt−1

is the information set at the previous time t− 1, and εt is
the disturbance term with zero mean, E(εt) = 0 and no
correlation, E(εtεs) = 0, for all t �= s, where E(.) denotes
the expectation.

Equation (3) (the “mean equation”) has been mod-
eled by combining two of the most common specifications–
autoregressive (AR) and moving average (MA)–and ob-
taining the ARMA(l, m) process,

Φ(L)(rt − µ) = Θ(L)εt, (4)

where L is the lag operator, µ is the mean value of rt,

Φ(L) ≡ 1 −
l∑

i=1

φiL
i (5)

and

Θ(L) ≡ 1 +
m∑

j=1

θjL
j (6)

are AR and MA coefficients, which use the future and
previous information respectively.

Following the classic ARCH(k) and GARCH(k, e)
models [33,44], the unpredicted term εt in equation (3)
is defined as

εt = ztσt, (7)

where zt is an i.i.d. process with zero mean, E(zt) = 0,
unit variance, E(zt

2) = 1, and the conditional variance σ2
t

varies with ARCH-type models. In the FIGARCH (k, d, e)
model (here we use BBM method [45]), it follows (“vari-
ance equation”),

σ2
t = σ2 + λ(L)(ε2t − σ2) (8)

where σ2 is the unconditional variance of εt,

λ(L) = 1− [1− β(L)]−1[1−α(L)− β(L)](1−L)d−1, (9)

and

α(L) =
e∑

i=1

αiL
i (10)

are the ARCH parameters,

β(L) =
k∑

j=1

βjL
j (11)

are the GARCH parameters, and d ∈ [0, 1] is the fractional
differencing parameter. From the fractional differencing
item (1 − L)d, λ(L) is an infinite summation which, in
practice, has to be truncated. BBM suggested a truncated
length with 1000 lags.

A key feature of the FIGARCH process is that it can
capture the long-term dependence in volatilities of finan-
cial markets, which is connected to the fractional differenc-
ing parameter d. When d increases, the long-term memory
effect will gradually vanish.

A.2 Fractional Brownian motion model

As a generalization of Brownian motion, fractional Brow-
nian motion (fBm) [22] is a centered Gaussian process
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with stationary increments, and those increments have
long-range dependence which can be characterized by the
Hurst parameter H ∈ (0, 1). When H = 1/2, the fBm pro-
cess BH(t) reduces to a standard Brownian motion which
has no dependence in their increments. When H > 1/2
(H < 1/2), the fBm process has positive (negative) cor-
relations. An important feature of fBm is the scale invari-
ance,

BH(ct) = cHBH(t) (12)

for all c > 0.
As noted above, the stock returns only have short-term

correlations [1] while volatilities have long-term correla-
tions [2–4,6,10]. To capture this feature, we simulate the
returns rt by

rt = ηt exp[BH(t + 1) − BH(t)], (13)

where ηt is a Gaussian noise.
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