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Triple point in correlated interdependent networks
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Many real-world networks depend on other networks, often in nontrivial ways, to maintain their functionality.
These interdependent “networks of networks” are often extremely fragile. When a fraction 1 − p of nodes in
one network randomly fails, the damage propagates to nodes in networks that are interdependent and a dynamic
failure cascade occurs that affects the entire system. We present dynamic equations for two interdependent
networks that allow us to reproduce the failure cascade for an arbitrary pattern of interdependency. We study
the “rich club” effect found in many real interdependent network systems in which the high-degree nodes are
extremely interdependent, correlating a fraction α of the higher-degree nodes on each network. We find a rich
phase diagram in the plane p-α, with a triple point reminiscent of the triple point of liquids that separates a
nonfunctional phase from two functional phases.
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Real-world infrastructures that provide essential services
such as energy supply, transportation, and communications [1]
can be understood as interdependent networks. Although this
interdependency enhances the functionality of each network,
it also increases the vulnerability of the entire system to attack
or random failure [2]. In these interdependent infrastructures,
the disruption of a small fraction of nodes in one network can
generate a failure cascade that disconnects the entire system.

Failure cascades in real-world interdependent systems, such
as the 2003 electrical blackout in Italy caused by failures in the
telecommunications network [3], are physically explainable
as abrupt percolating transitions [4–6]. In Ref. [4], the authors
study the simplest case of two networks A and B of the same
size N with random interdependent nodes. Within each net-
work the nodes are randomly connected through connectivity
links, and pairs of nodes of different networks are randomly
connected via one-to-one bidirectional interdependent links,
enabling the failures to propagate through the links in either
direction. The random failure of a fraction 1 − p of nodes
in one network produces a failure cascade in both networks.
As a consequence, the size of the giant component (GC)
of each network, i.e., the still-functioning network within
each network, dynamically decreases until the system reaches
a steady state. Reference [4] describes the existence of a
critical threshold pc, which is a measure of the robustness
of the entire network, below which the size of the functioning
network within each network abruptly collapses as a first-order
percolating transition and above which these functioning
networks are preserved.

In many real systems, however, this interdependency is
not fully random [7,8]. Instead, nodes of different networks
connect to form a “rich club” in which a portion of high-degree
nodes in one network depends on corresponding high-degree
nodes in other networks. This occurs in trading and finance
networks in which a well-integrated country in the global
trade market is also well integrated in the financial system.
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Another example of the nontrivial patterns of interdepen-
dency can be found in telecommunication networks in which
important nodes often acquire a battery backup system in
order to decrease their dependence on the electrical supply
network. To understand the effect of these realistic features on
failure cascades, some studies have focused separately on the
correlation between the degrees of interdependent nodes [5,7]
and the random or targeted autonomization [9–12]. In these
studies, the original theoretical formalism [4] is reformulated
to take into account these features.

In this Rapid Communication, we present a simple, unified
theoretical framework that allows us to describe the dynamics
of failure cascades in interdependent networks for an arbitrary
interdependency between networks. We apply our framework
to interdependent heterogeneous networks when a fraction α of
the higher-degree nodes is interdependent, and a fraction 1 − α
is randomly dependent. Here α is a parameter that controls the
level of correlation and allows us to explore its effect on system
robustness.

We consider for simplicity, but without loss of generality,
two networks A and B in which the degree distribution of
the connectivity links is given by P [kA] and P [kB], where
kA and kB are the connectivity links of nodes in A and B,
respectively. We define qA[kA,kB] (qB[kA,kB]) as the fraction
of nodes in network A (B) that depends on network B (A).
When qi[kA,kB] = 1 (with i = A,B) the system is one to
one and all the interdependent links are bidirectional, and for
qi[kA,kB] < 1 a node in network A (B) with degree kA (kB)
is independent of the other network with a probability 1 −
qi[kA,kB], i.e., the link cannot transmit the failure to that node.
After a random failure of 1 − p nodes in network A that trig-
gers the process, at each stage n of the failure cascade that goes
from A to B, a node is considered functional if it belongs to the
GC of its own network and the others become dysfunctional
because they lose support. As fAn (fBn) is the probability that,
transversing a link, a node of the giant connected component is
reached in network A (B) at stage n [13–15], a node on network
A with degree kA is functional if it can be reached on its own
network with a probability p[1 − (1 − pfAn)kA]. This node
will not be affected by the failure cascade (a) if it is independent
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of network B with a probability 1 − qA[kA,kB], or (b) if it depends on network B, but its interdependent node in B is
connected to the GC at the previous stage with a probability qA[kA,kB][1 − (1 − fBn−1)kB ]. The relative size "n of the GC of
network A at stage n is then given by

"n = p

(
kmax∑

kA=kmin

kmax∑

kB=kmin

P [kA,kB](1 − qA[kA,kB])[1 − (1 − pfAn)kA] +
kmax∑

kA=kmin

kmax∑

kB=kmin

P [kA,kB]

× qA[kA,kB][1 − (1 − pfAn)kA][1 − (1 − fBn−1)kB ]

)

, (1)

where P [kA,kB] is the joint degree distribution for the interdependent links. The first term in Eq. (1) takes into account the
functional nodes in A with degree kA which do not depend on network B, and the second term corresponds to the case where
functional nodes in network A with degree kA depend on functional nodes of network B with degree kB at step n − 1. Here fAn

fulfills the self-consistent equation

fAn =
kmax∑

kA=kmin

kmax∑

kB=kmin

kAP [kA,kB]
〈kA〉

(1 − qA[kA,kB]) [1 − (1 − pfAn)kA−1]

+
kmax∑

kA=kmin

kmax∑

kB=kmin

kAP [kA,kB]
〈kA〉

qA[kA,kB][1 − (1 − pfAn)kA−1][1 − (1 − fBn−1)kB ]. (2)

Similarly, at stage n the relative size φn of the GC of network B is given by

φn =
kmax∑

kA=kmin

kmax∑

kB=kmin

P [kA,kB](1 − qB[kA,kB])[1 − (1 − fBn)kB ]

+p

kmax∑

kA=kmin

kmax∑

kB=kmin

P [kA,kB]qB[kA,kB][1 − (1 − pfAn)kA][1 − (1 − fBn)kB ], (3)

where fBn satisfies the self-consistent equation

fBn =
kmax∑

kA=kmin

kmax∑

kB=kmin

kBP [kA,kB]
〈kB〉

(1 − qB[kA,kB])[1 − (1 − fBn)kB−1]

+p

kmax∑

kA=kmin

kmax∑

kB=kmin

kBP [kA,kB]
〈kB〉

qB[kA,kB][1 − (1 − pfAn)kA][1 − (1 − fBn)kB−1]. (4)

Note that in the right-hand side of Eq. (4) fBn is not multiplied by p, since we assume that the initial failure of 1 − p nodes
occurs only in network A.

In the steady state, i.e., for n → ∞, "n ≈ "n−1 and φn ≈ φn−1, thus "n and φn converge to "∞ and φ∞, respectively. Our
equations for the steady state were obtained by Son et al. [16] for uncorrelated interdependent networks and used by Baxer
et al. [17] to explain the origin of the avalanche collapse.

We introduce here a correlated interdependency model, in which interdependent links are connected bidirectionally and one
to one (qA[kA,kB] = qB[kA,kB] = 1), and a fraction α of the higher-degree nodes are fully correlated. This extends the “rich
club” concept [18,19] to interdependent networks. Assuming that the degree distribution of both networks is the same, the joint
degree distribution P [kA,kB] is given by

P [kA,kB] =






P [kA]P [kB]/(1 − α), kA < kS, kB < kS,

(1 − w)P [kS]P [kB]/(1 − α), kA = kS, kB < kS,

(1 − w)P [kA]P [kS]/(1 − α), kB = kS, kA < kS,

(1 − w)2P [kS]P [kS]/(1 − α) + w P [kS], kA = kB = kS,

P [kA]δkA,kB
, kS < kA, kS < kB.

(5)

Here kS is the degree above which a fraction α of inter-
dependent nodes are correlated, and w is the fraction of

correlated nodes with degree kS such that wP [ks] +
∑kmax

k=kS+1
P [k] = α.
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FIG. 1. (Color online) Schematic of the degree distribution used
to correlate the interdependent networks. If ks is the minimal degree
for which the nodes are correlated, α represents the fraction of
correlated interdependent nodes denoted by red, and w is the fraction
of interdependent correlated nodes with degree ks . The light blue
region represents the fraction 1 − α of uncorrelated nodes. In the
inset we show with red color the pairs of interdependent nodes with
degree kA − kB present in this model.

In Eq. (5), the factor 1 − α takes into account that a fraction
of nodes in two different networks with degrees at and below kS

are randomly connected. In Fig. 1 we show schematically the
model used to correlate the degrees between interdependent
nodes and in the inset we show the pairs of interdependent
nodes with degree kA − kB .

As P [kA,kB] = P [kB,kA] and by the symmetry of Eqs. (2)
and (4) in the steady state (n → ∞), pfA∞ = fB∞ ≡ f∞, and
the self-consistent equations reduce to

f∞ = p

kmax∑

kA=kmin

kmax∑

kB=kmin

kBP [kA,kB]
〈k〉

[1 − (1 − f∞)kA]

×[1 − (1 − f∞)kB−1]. (6)

We apply this model to pure scale-free (SF) networks with
λ = 2.5, kmin = 2, and maximal degree cutoff kmax = N1/2,
with N = 106 [20]. Here the finite cutoff mimics real networks
in which resources and energy are limited and nodes cannot
have an unbounded number of links [21].

In Fig. 2 we show the solution of the theoretical equations
(1)–(4) and the simulation results for the size of the GC of
network A, "n, as a function of the stage number n [Fig. 2(a)]
and "∞ as a function of the p for different values of α
[Fig. 2(b)] [22].

The figures show an excellent agreement between the the-
oretical results and the simulations. In the temporal evolution,
Fig. 2(a) shows that a small variation in p (&p ≈ 0.02) can
dramatically change the final size of the GC. The inset of
Fig. 2(a) shows that the approach of "n to "∞ is exponential.
This behavior is due to the fact that the number of iterations
of fn in Eqs. (2) and (4) needed to reach the steady state is
the same as the number of iterations needed to find the fixed
point of Eq. (6), in which the approach of "n to fixed point
"∞ is exponential [4] and, as a consequence, the temporal
percolating dilution slows down. We can also see that at
p ≈ 0.63 the dilution rate decreases more quickly than for
other values of p, i.e., the size of the functional networks
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FIG. 2. (Color online) Cascade of failure on network A for
different values of α and q = 1 on SF networks with λ = 2.5 and
2 ! k ! 1000. (a) "n for α = 0.01% and p = 0.640 (green, )),
p = 0.630 (black, "), and p = 0.622 (red, ©) obtained from three
single realizations of the simulations (symbols) and from Eqs. (1)–(4)
(solid line). In the inset we show a log-linear figure of the exponential
decay of "n to "∞. The dashed lines correspond to the exponential
fit of the theoretical results with a characteristic time τ = 2.70,
4.5, and 1.35 for p = 0.640, 0.630, and 0.622, from top to bottom.
(b) "∞ as a function of p obtained from simulations (symbols) and
from Eqs. (1)–(4) (solid lines) for α = 0.001% (black, "), α = 0.01%
(green, )), α = 0.1%(red, ©). In the inset we plot the main figure in
log-linear scale in order to capture the abrupt collapse of the GC as
explained in the text. The symbols are the average over 100 network
realizations.

decays slowly, indicating that there is time to intervene and
prevent the collapse of the GC. This slow behavior around
critical points are shown as peaks in the number of iteration
(NOI) steps needed to reach the steady state, as we will show
below. Figure 2(b) shows that, as α increases, the system is still
functional for high initial failure values. The critical threshold
pc at which the system is completely destroyed decreases and
thus the networks are more robust.

Note that, because we are using a finite degree cutoff when
α → 1, the threshold does not go to zero, but when kmax → ∞
in SF networks with λ ! 3 and α = 1, pc → 0 in this limit [5].

In order to demonstrate how correlation improves the
robustness of the networks, in Fig. 3(a) we show the NOI
of these systems. For very low values of α there is only
one peak at the critical threshold pc that is related to a
first-order percolating transition. Surprisingly, for increasing
α (see the case of α = 0.01% in the figure) there is another
peak around the threshold p+

c > pc ≡ p−
c at which the sizes

of the GCs decrease abruptly but, because the hubs support
each other, the functional networks are not destroyed, and the
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FIG. 3. (Color online) (a) The NOI as a function of p, obtained
from the iterations of Eqs. (1)–(4). The network parameters and the
color are the same as in Fig. 2. The labels denote the position of
the peaks for α = 0.001% (label 1), α = 0.01% (label 2), α = 0.1%
(label 3). (b) Phase diagram in the plane α-p: (i) The light yellow
area corresponds to the nonfunctional phase, i.e., "∞ = φ∞ = 0,
(ii) the green area corresponds to a partial functional phase in which
the size of the GC of both networks is #10−3, and (iii) the white
area corresponds to a functional phase where "∞ = φ∞ $ 10−2. The
black point on the left corresponds to the triple point. The solid lines
represent the abrupt change on the network’s sizes and the dotted
line, which it is defined for α > αc, represents a fast and continuous
variation of "∞ at p+

c .

robustness of the system against failure cascades is enhanced.
For higher values of α we also find that there is a sharp peak
that corresponds to a first-order phase transition at p = p−

c

and a rounded peak at p = p+
c around which the size of the

GC decreases continuously with an increasing value of its

derivative with respect to p, d"∞/dp close to p+
c . These

findings suggest that finite correlations generate a crossover
between an abrupt and a continuous, sharp decrease in the
sizes of the GCs.

Figure 3(b) shows the rich phase diagram in the p-α plane.
Note that as α increases, the line of the first-order transition that
separates a functional GC phase from a nonfunctional phase
forks into two branches, generating a new phase characterized
by a small GC (#10−3). Around this point small fluctuations
in the temporal evolution—or in the steady state—can induce
an abrupt change in the size of the GC, which is reminiscent
of the instability of the triple point of liquids where three
phases coexist [23]. The lower branch that emerges from
the triple point corresponds to the first-order transition that
separates functional from nonfunctional phases. The upper
one corresponds to the second threshold where the dynamics
slows down and, at α = αc = 0.0218% [24], the transition
changes from an abrupt variation to a rapid but continuous
variation of "∞(p). The small value of αc indicates that a small
correlation of the highest-degree nodes can avoid the abrupt
change in the size of the GC. We found the same qualitative
behavior for other SF networks with 2 < λ ! 3 [25], indicating
that the triple point is characteristic of nontrivial patterns of
interdependency.

In summary, we have used a general framework to describe
the temporal behavior of failure cascades with any pattern
of interdependency links, and we have found a rich phase
diagram for degree-degree correlated interdependency with a
triple point at which a first-order transition line splits into
two first-order lines with an abrupt collapse of the sizes of
the functional networks. The agreement between theory and
simulations is excellent. Our framework can be extended to
study the dynamics of failure cascades and the robustness of
networks with degree-degree correlation in their connectivity
links and in their multiple interdependent links, where we
expect to find a rich phase diagram [26].
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