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Quantification of DNA Patchiness Using Long-Range
Correlation Measures
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ABSTRACT We introduce and develop new techniques to quantify DNA patchiness, and to quantify characteristics of its
mosaic structure. These techniques, which involve calculating two functions, a(f) and f3(f), measure correlations at length
scale e and detect distinct characteristic patch sizes embedded in scale-invariant patch size distributions. Using these new
methods, we address a number of issues relating to the mosaic structure of genomic DNA. We find several distinct
characteristic patch sizes in certain genomic sequences, and compare, contrast, and quantify the correlation properties of
different sequences, including a number of yeast, human, and prokaryotic sequences. We exclude the possibility that the
correlation properties and the known mosaic structure of DNA can be explained either by simple Markov processes or by
tandem repeats of dinucleotides. We find that the distinct patch sizes in all 16 yeast chromosomes are similar. Furthermore,
we test the hypothesis that, for yeast, patchiness is caused by the alternation of coding and noncoding regions, and the
hypothesis that in human sequences patchiness is related to repetitive sequences. We find that, by themselves, neither the
alternation of coding and noncoding regions, nor repetitive sequences, can fully explain the long-range correlation properties
of DNA.

INTRODUCTION

It is well known that DNA polymer sequences have a
mosaic structure, which is characterized by "patches" with
an excess of one type of nucleotide (Bemardi et al., 1985;
Churchill, 1989; Fickett et al., 1992). Patchiness is usually
associated in the biological literature with the phenomenon
of isochores, which are DNA regions having homogeneous
base compositions and typical scales of about 1 Mbp (Ber-
nardi, 1989). Here we extend the concept of patchiness to
include nonuniformities on scales smaller than 1 Mbp. Spe-
cifically, we define a DNA sequence to be patchy if there
are fluctuations in the local nucleotide concentrations that
significantly depart from Gaussian statistics, i.e., if the
fluctuations grow faster than VI for a subsequence of size
1. In contrast, a single patch is a subsequence in which the
fluctuations stay within the limits predicted by Gaussian
statistics.

Consider the following illustrative example. Let a long
DNA sequence consisting of bases A (adenine), C (cyto-
sine), T (thymine), and G (guanine) have overall probabil-
ities for finding the nucleotides PA, PC PT, and PG We now
take a smaller subsequence of length t and define NA(f) as
the number of occurrences of nucleotide A in the subse-
quence. If the nucleotides are uncorrelated, the probability
distribution of each nucleotide is given by Gaussian statis-
tics, so for A we expect NA() = PA ± (, where the
fluctuation is o - \/PA(1 - PA)i (Azbel et al., 1982).
Similar conditions hold for the other three nucleotides.
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DNA sequences that can be described in this way are not
patchy. On the other hand, if NA consistently differs from
the expected value by more than one standard deviation,
then the sequence is considered patchy, i.e., the nucleotides
are not uniformly distributed throughout the sequence, but
rather are organized into patches or domains of significantly
higher relative concentrations.

It is found that for many DNA sequences the fluctuation
ar grows not with the square root of E, but as another power
law: o-c a, where a 0 1/2 is a scaling exponent that
describes the "roughness" (Baraba'si and Stanley, 1995) of
the fluctuations (Arneodo et al., 1995; Li and Kaneko, 1992;
Peng et al., 1992; Voss, 1992). In such cases the DNA
sequences are not only patchy, but have patches of all length
scales, i.e., there exists no characteristic patch size, because
power law behavior is the signature of scale invariance
(Stanley, 1971, 1995). The basic premise behind our newly
developed methods is that deviations from power-law be-
havior can be related to characteristic scales. For example,
if oa for a given sequence is characterized by two different
exponents in two distinct regimes, f < to and f > fo, with
a cross-over occurring at e -t, then for such a sequence
to is the only characteristic scale for the system apart from
factors close to unity. There may be patches on all scales,
but if the sequence is scale-free in each of the two distinct
regimes, f < fo and e > to, then the only meaningful scale
is related to to.
The degree to which the mosaic structure of DNA is

related to such long-range correlation properties of DNA
sequences has been discussed (Nee, 1992; Karlin and Bren-
del, 1993; Munson et al., 1992; Buldyrev et al., 1993a; Peng
et al., 1994). Recently attempts have been made to identify
patches using segmentation algorithms based on entropy
measures (Bernaola-Galvan et al., 1996) and to study their
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size distributions. However, long-range correlation mea-
sures have never been used to quantify patchiness or to
identify characteristic patch sizes in DNA sequences. Fou-
rier transform methods and random-walk analysis are two
major approaches to studying fluctuation phenomena and
long-range power-law correlations in statistical physics, and
are well suited to the study of fluctuation phenomena in
biological systems (Pickover, 1984; Peng et al., 1992; Os-
sadnik et al., 1994; Buldyrev et al., 1995; Viswanathan et
al., 1996). We therefore adapt and extend these concepts for
studying patchiness in DNA by developing techniques to
quantify departures from power-law behavior and to esti-
mate distinct characteristic DNA patch sizes embedded in
power-law distributions of patch sizes. The detrended fluc-
tuation random walk analysis that we employ here is a step
forward compared to previous studies (Azbel et al., 1982;
Peng et al., 1992), which are sometimes prone to producing
spurious results for highly nonstationary data.
The goals of this work are:
1. To develop techniques to quantify patchiness and the

correlation properties of genomic DNA. These techniques
involve the calculation of two functions, a(f) and ,8(f),
which measure correlations at length scale C and detect
distinct characteristic patch sizes embedded in scale-invari-
ant domain size distributions. For ideal power law correla-
tions, the two functions are related by a(f) = [1 + f3(f)]/
2 = constant (Voss, 1992; Buldyrev et al., 1995).

2. To investigate the existence of a hierarchy of charac-
teristic patch sizes in long genomic sequences, and to com-
pare, contrast, and quantify the correlation properties of
different sequences, including the yeast genome, and sev-
eral long human and prokaryotic sequences.

3. To examine possible explanations for our findings, and
to test a number of hypotheses concerning the origin of the
known long-range correlation properties and mosaic struc-
ture of DNA.

METHODS AND CONTROLS

To apply numerical methods to a DNA sequence {ni} con-
sisting of the four nucleotides A, C, T, and G, we generate
a binary sequence {ui} for each DNA sequence (Gates,
1986; Buldyrev et al., 1995). We use the following three
binary mapping rules:

1. Purine-pyrimidine (RY) rule. If ni is a purine (A or G),
then ui = 1; if ni is a pyrimidine (C or T), then ui = -1.

2. Hydrogen bond energy (SW) rule (Azbel, 1973; Azbel
et al., 1982). For strongly bonded pairs (G or C), ui = 1,
whereas for weakly bonded pairs (A or T), ui = -1.

3. Hybrid (KM) rule. For A and C ui = 1, whereas for T
and G ui = -1.
Each of these rules probes a different aspect of the mosaic

structure of DNA, e.g., the SW rule is related to the energy
balance of strand separation, and the RY rule is related to
strand chemical bias. Similar rules can be applied for single
nucleotides (A, C, G, and T) as well as to dinucleotides such

as CG or even longer nucleotide patterns (Karlin et al.,
1993). We choose the above three mapping rules because
they are the only three ways to map four nucleotides onto
equal-sized binary bins.

First we develop techniques for detecting and examining
characteristic scales of patchiness by studying a "control
sequence" of +1 and -1 with patches of three different
characteristic scales. The control sequence is constructed by
concatenating uncorrelated patches of fixed sizes of 200 bp,
2000 bp, and 20,000 bp. For each patch j of length Lj, we
randomly assign Pj(1), the concentration of "+ 1", to be
either Pj(l) = 0.3 or Pj(l) = 0.7 with equal probability, i.e.,
each patch has randomly assigned biases b Pj(1) -

Pj(- 1) = ±0.40. Then we concatenate these patches to
make a sequence of length N = 106 bp or more. We
generate distinct characteristic patch sizes embedded in a
scale-invariant distribution of patch sizes by choosing the
smallest patch size with the highest probability and the
largest patch size with the smallest probability. Specifically,
we use the following rule for generating long-range corre-
lations (Shlesinger and Klafter, 1986). For the patch j,

1. A random number xj is chosen in the interval [0, 1].
2. A preliminary length quantity tj is computed as f =

200/xj.
3. If tj is less than 2000, then a patch of size L. = 200 bp

is chosen. Otherwise, if tj is less than 20,000 then a patch
of size Lj = 2000 bp is chosen. Otherwise, a patch of size
Lj = 20,000 is chosen.
The power spectrum S(f) for this control sequence is

defined as the modulus squared of the discrete Fourier
transform Uf of ui:

SOf) = Ufl2. (1)

We find that S(f) resembles a "1/f-type" spectrum, as
shown in Fig. 1 a. The spectrum scales approximately as
S(f) f-, where 13 1 for this sequence. However, there
are important deviations from pure power-law behavior,
which indicate the presence of characteristic scales. We
define the correlation exponent f3(t) as

_ d log S(f)
W3e) =- dlogf f=1I/i' (2)

where e = 1/f has dimensions of length, i.e., 13(f) represent
successive slopes of the double-log plot of S(f). We find
that after additional smoothing, f3(f) displays three local
maxima, which correspond to the three scales of patchiness
of the control sequence (Fig. 1 b).

At the lowest frequencies, the spectrum is distorted by
artifacts of the fast Fourier transform (FFT) method. Spe-
cifically, at small frequencies approaching 1/N, where N is
the FFT window size, there is a spurious contribution aris-
ing from the treatment of the data as periodic with period N
(Buldyrev et al., 1995). This finite size effect shifts the
peaks in 1(f), casting doubt on this method for estimating
patch sizes that approach N. The estimation of 13(() also
requires an arbitrary amount of smoothing by visual inspec-
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where the + 3 term is a correction that is important for small
f (Buldyrev et al., 1995). As we mention above, for an ideal
power law a(f) = [1 + (3(f)]/2 = constant. Indeed, the
power spectrum S(f) of the net displacement y(n) is equal to
S(f)/f2 of the original sequence ui. The integral of S(f) for
all frequencies higher thanf = 1/t measures the error of the
approximation of y(n) by a smooth function with resolution
of length scale e, which is analogous to F2(f). Thus

FD(f) - L Sf df,
/te

(4)

FIGURE 1 (a) Double log plot of the power spectrum S(f ) of an
artificial control DNA sequence of length 2'9 bp. The spectrum is an
average over a moving window of size 218 bp with shifts of 216 bp. We
applied logarithmic binning to smooth the spectrum by averaging over
windows that grow in size as 2"14. The solid line shows the spectrum after
further smoothing using a subjective smoothing criterion. We note that the
spectrum scales approximately. as a power law over 3 decades. The char-
acteristic scales are not readily discernible in the spectrum. (b) Log-linear
plot of the power spectrum correlation exponent f3(f) for the same se-
quence, where ( l/f. The exponent f3(4) is estimated by taking the
negative of the local slope of the solid line in a. The solid line is ,3(f) after
further smoothing, showing three clear maxima. We smooth S(f) and f3(f)
by averaging over a moving window of fixed size, and the degree of
smoothing is to some extent arbitrary. (c) DFA correlation exponent a(f)
for the same sequence. The exponent a(t) is found by calculating the local
slope of the double-log plot of the DFA function. No smoothing or filtering
is required. The exponents a(e) and 13(i) peak at three locations corre-
sponding to the three characteristic patch sizes. The peaks occur at approx-
imately 300 bp, 3000 bp, and 30,000 bp, showing that the location of the
peaks is always about 1.5 multiplied by the patch sizes. Also shown is a(f)
found from the "DNA walk" rms fluctuation method (dashed line) (Peng et
al., 1992), which is unable to detect the three characteristic patch sizes.

tion, making it susceptible to human judgment. Other ap-
proaches, based on simple "DNA walk" fluctuation analysis
(Azbel et al., 1982; Peng et al., 1992), are unable to detect
distinct characteristic patch sizes (Fig. 1 c). However, de-
trended fluctuation analysis (DFA) (Peng et al., 1994) does

which proves the above relation for the ideal power law
behavior of S(f) f .

To present both a(f) and 13(f) on approximately the same
scale, we can plot [1 + f3(f)]/2 instead of 3(fe). Fig. 1 c
shows a(f) for the artificial control model described above.
(A fast DFA computer algorithm is available at http://
polymer.bu.edu/dfa.)
The functions a(f) and 13(f) are measures of how corre-

lated a sequence is on different length scales. Because peaks
in a(f) and f3(f) correspond to higher correlations, there-
fore, by studying peaks in a(fe) and ,3(f), we can estimate
distinct characteristic DNA patch sizes embedded in a se-
quence with an apparent 1/fpower spectrum. We emphasize
that such peaks corresponding to a given size do not imply
the existence or absence of domains of that size, but rather
imply an abundance of patches with that size relative to a
power-law distribution of patch sizes.
We show here that the peaks should occur at scales of the

patch size multiplied by a factor a, where a = 1/ln 2 1.44.
This is numerically close to the measured value a = 1.5
obtained from simulations. For sequences composed of
patches of fixed size L and bias b P(+ 1) - P(- 1) that
strictly alternate in sign, the average patch size is L. The
power spectrum S(f) for such a sequence has a large neg-
ative slope nearf = I/L; therefore ,3(t) -d log S(f)/d log
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not suffer from these disadvantages, and for these reasons
we place greater emphasis on DFA in our studies.

(a) We use the variant of the DFA method described by
Buldyrev et al. (1995). The net displacement y(n) of the
sequence u is defined by y(n) - I=Ui, which can be
thought of graphically as a one-dimensional random walk.
The sequence y(n) is then divided into a number of over-
lapping subsequences of length (, each of which is shifted
with respect to the previous subsequence by a single nucle-
otide. For each subsequence, linear regression is used to
calculate an interpolated "detrended" walk y'(n) -a +
b(n - no). Then we define the "DFA fluctuation" by FD(f)=

-2.0 -1.0 0.0 V(,(8y)2 where Sy y(n) - y'(n), and the angle brackets
denote averaging over all points y(n). We use a moving
window to obtain better statistics. The DFA exponent a(f)

A n xrn r_A is defined by
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f, where f = I/f has a maximum near ,max = L. We define
a -fmaxiL, and thus obtain a = 1. However, we assume
that in real sequences the biases are not strictly alternating
in sign, but can take on positive and negative values with
equal probability. We find for such a sequence that the mean
patch size is no longer L, but is L/ln 2. We must take into
account this extra factor of l/ln 2 1.44, because several
patches with the same bias can become joined to form larger
patches. So we expect

a-= I/n2 1.44, (5)

which is numerically close to the measured value of a
1.5.

RESULTS FOR KNOWN DNA SEQUENCES

We next apply these methods for detecting and examining
characteristic scales of patchiness to the 16 chromosomes of
Saccharomyces cerevisiae. Fig. 2 shows the DFA exponent
a(f) using the RY rule and the SW rule. For comparison,
power spectrum results are also shown. Note that the two
results have common features. The greater sensitivity of the
power spectrum method is offset by noise, especially for
shorter sequences. For ( > 104 there is a noticeable differ-
ence between a(f) and :(f), and this is possibly due to
differences in the finite size effects for the two functions.
Note, however, that the extrema of the two functions occur
in approximately the same positions, even for relatively
large (.

Fig. 3 a shows the DFA exponent for each of the 16 yeast
chromosomes for the RY rule and Fig. 3 b the correspond-
ing information for the SW rule. Note the similarity of ca(f)
for different chromosomes. We find that for f < 103 bp, the
different chromosomes have almost identical a(f). This
similarity indicates that the correlation properties of the
different chromosomes are very similar for f < 103 bp. We
find also that the first few maxima in a(f) roughly coincide
for the different chromosomes in Fig. 3 b. This indicates
that the 16 chromosomes have similar patch sizes, because
peaks in a(f) correspond to characteristic patch sizes, al-
though visual inspection of the concentration profiles of the
chromosomes (Feldmann et al., 1995; Dujon et al., 1994)
reveals no striking similarity.

Next we estimate characteristic patch sizes for several
eukaryotic sequences longer than 105 bp, as well as for
some E. coli bacterial sequences, as shown in Fig. 4. We
used the peaks in a(f) divided by the factor a = 1.5 to
evaluate the actual patch sizes. We find that similar patch
sizes appear in several sequences, and some even appear on
sequences from different species.
We now examine a number of possible explanations for

these findings. To test the hypothesis that the correlation
properties and patchiness in yeast chromosomes may simply
be due to the alternation of coding and noncoding DNA
(Nee, 1992), we study the effects of shuffling the nucleo-
tides in each coding and noncoding region separately while

log10 1
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FIGURE 2 DFA exponent a(f) for the yeast chromosomes using (a) the
RY rule and (b) the SW rule. The approximate relation a(() =(1 ±+ 3(f))/2
is used to plot the power spectrum correlation results on the same scale for
comparison. The procedure used to calculate the power spectrum exponent
,B(4) is described in Fig. 1. Note that the DFA and the power spectrum
results have features in common.

preserving their respective lengths and nucleotide concen-
trations. If the known long-range correlation properties of
DNA were due merely to the alternation of genes and
intergenic sequences, then shuffling each coding and non-
coding region separately would not significantly decrease or
alter the presence of correlations, because the ordering of
the introns and exons is not changed. We test this idea by
comparing the DFA exponent a(f) for yeast chromosome
III before and after the partial shuffling described above
(Fig. 5). The values of a(() thus obtained for yeast chro-
mosome III and for the same partially shuffled sequence
show that the alternation of coding and noncoding DNA
may contribute to the long-range correlation properties of
yeast chromosome III and explain the major patch size near
and above 1000 bp. But the hypothesis cannot explain all of
the correlation properties of the chromosome below 1000
bp. Specifically, as seen in Fig. 5, both for the SW rule and
for the RY rule, the shuffled chromosome shows little or no
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FIGURE 3 DFA exponent a(6') for yeast chromosomes using (a) the RY
rule and (b) the SW rule. We note that the general shape of a(f) is similar
for all 16 chromosomes. In particular, a(f) is almost identical for all 16
chromosomes for e < 103 bp, and the peaks and valleys (i.e., extrema) are
close to each other for the SW rule, suggesting that there are similar
characteristic patch sizes present in all chromosomes.

correlation on length scales t < 100 bp, whereas the un-
shuffled chromosome has significant levels of correlation
on the same scales. Moreover, this hypothesis is not relevant
for higher eukaryotes, whose genes are separated by long
intergenic sequences and split by introns. Using the same
method of partial shuffling of only genes or only intergenic
sequences, we also find that the main contribution to the
correlations on length scales below 1000 bp is made by
intergenic sequences, although they constitute only about
one-third of each yeast chromosome.
We next test the hypothesis that patchiness could arise

from the abundance of repetitive sequences in genomic
DNA (Buldyrev et al., 1993a). If this were true, a control
sequence constructed from repetitive sequences would be
able to reproduce the patchiness and the correlation prop-
erties of genomic DNA sequences. We use the measured
concentrations of two highly repetitive sequences (Bell,
1992, 1993) found in humans to construct a control se-

10 10 103 104 105

FIGURE 4 Characteristic patch sizes for the 16 yeast chromosomes
estimated using the SW rule. Also shown for comparison are results for six
E. coli sequences, one C. elegans sequence, and six human sequences.
Only sequences larger than 105 bp were used. The patch sizes were
estimated by locating the peaks in a(f) and dividing the position of the
peaks by 1.5. Patch sizes that could only be estimated by visual inspection
of the peaks are indicated by error bars without circles. The bacterial
sequences have a patch size that is absent in the other sequences. The loci
names of the human and E. coli sequences are as they appear in the figure.
Except for some yeast sequences, all sequences are found in the GenBank
database.

quence. Specifically, we study the DFA exponent a(f) of a
control sequence composed of 7.5% of Alu repeats and 15%
of Line-Ic repeats interspersed with uncorrelated sequences
with average nucleotide concentrations estimated from all
available human sequences larger than 50 kbp. Each uncor-
related spacer sequence has a bias of b = P(AT) - P(CG) =
0.15, and has an exponential length distribution. These
parameters are typical for human DNA sequences. The
results in Fig. 6 show that although repetitive sequences are
able to explain some features of the patchiness found in real
data, there are qualitative differences between the model
and the real data. These differences are unlikely to disappear
by increasing the number of types of repetitive elements
because other repetitive sequences, which we found using
the PYTHIA server (Jurka et al., 1992), occur in much
smaller numbers than the Alu or Line-I repeats.
We next plot a(f) for several species to examine how the

correlation properties of DNA vary from species to species
(Fig. 7). We find that human sequences, along with other
vertebrate sequences, are anticorrelated for the SW rule and
correlated for the RY rule on scales E < 10 bp. It is
generally thought that in vertebrates, the methylation of C
and its subsequent mutation into a T in the dinucleotide
sequence CG leads to a reduced probability of finding CG
and an increased probability of finding TG over evolution-
ary time, because the product of accidental deamination of
5-methyl C is T, which is indistinguishable from the other,
nonmutant T residues in the DNA (Alberts et al., 1994). To
examine the hypothesis that DNA methylation is the cause
of the correlations (RY rule) and anticorrelations (SW rule)
in the DNA of these organisms, we study the following
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FIGURE 5 Comparison of a(f) for yeast chromosome III and the model
described in the text of alternating "coding" and "noncoding" patches of
uncorrelated DNA for (a) the RY rule and (b) the SW rule. The shuffling
of the nucleotides in each coding and noncoding region preserves both the
lengths and the ordering of the regions, as well as their nucleotide con-
centrations. For both rules the partial shuffling destroys correlations for
t < 100 bp, showing that the alternation of coding and noncoding regions
alone cannot explain the known long-range correlation properties of DNA.

Markov model (see discussion below). We measure the
frequencies of occurrence of n-nucleotide "n-tuples" in real
human sequences; then we generate a Markov chain {ni } in
which the probability of finding ni = +1 depends only on
the previous m nucleotides ni-I . . ni-m (see also Lewis et
al., 1995). We find that m = 1 gives rise to correlations for
the RY rule and anticorrelations for the SW rule. The m =

1 transition matrix has 16 dinucleotide concentrations
whose characteristic feature is the abundance of TG relative
to the scarcity of CG. To cancel the effects of DNA meth-
ylation without affecting the other dinucleotide concentra-
tions, we alter the transition matrix by halving the TG
concentration, increasing the CG concentration by the same
amount, and changing other transition coefficients involv-
ing T or C accordingly. We find that the control Markov
chain thus obtained lacks short-range anticorrelations for
the SW rule, although the correlations for the RY rule

1.5

1.0 L

0.5

o-o human sequences
a-- model

0.0
0.0 1.0 2.0 3.0 4.0

log10 1
5.0 6.0

FIGURE 6 Comparison of DFA exponent c(f) for human sequences and
an artificial control for (a) the RY rule, and (b) the SW rule, and (c) the KM
rule. The artificial control sequence is composed of interspersed LINE- 1 c
repeats, ALU repeats, and uncorrelated sequences. The maxima for the KM
rule occur at the same scale for human sequences and the model, suggest-
ing that long-range correlations may be partially due to repetitive se-
quences. However, we note that this artificial control sequence gives rise at
most to two characteristic patch sizes, and cannot reproduce the plateau in
a(f) for the SW rule. For the RY rule the model strongly disagrees with the
data. We conclude that this model cannot explain the correlation properties
and the patchiness found in DNA. We used the LINE-lc region in HUM-
HBB starting at 23137 and ending at 29515, and the ALU region starting
at 66776 and ending at 67042.

0.40

Im
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FIGURE 7 DFA exponent a(f) for several categories ofDNA sequences
for (a) the RY rule and (b) the SW rule. The vertebrate category excludes
rodents and humans and comprises mainly chickens. Note that human and
other vertebrate sequences are anticorrelated for e < 30 bp for the SW rule.

remain unchanged, indicating that DNA methylation is
likely the cause of short-range anticorrelations in the SW
rule, but not of short-range correlations in the RY rule. We
also find that a((f) of the m = 1 model sequence and the real
sequence bear little resemblance, suggesting that larger m is
needed to reproduce the correlation properties of DNA. Fig.
8 shows the results for m = 3. We find that this three-step
Markov model is able to reproduce the behavior of the real
sequence on length scales f < 5 bp, as expected. But for
f > 5 bp, the model does not correctly describe the real
sequence, and in fact, a simple Markov model of order m
cannot reproduce correlations on scales much longer than m
(see discussion below). Indeed, for the SW rule the three-
step Markov model sequence generates anticorrelations on
scales e < 9 bp as expected, but gives rise to correlations on
scales 9 bp < f < 30 bp, which bear no resemblance to the
human sequence they model (Fig. 8). To understand why
the three-step Markov model generates correlations for the
SW rule for 9 bp < t < 30 bp, we study the frequency of

0.8

0.6
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FIGURE 8 Comparison of the DFA exponent a(f) for a real human
sequence (HUMTCRB) and the three-step Markov model described in the
text. We find that the model is unable to account for the anticorrelations for
9 bp < e < 30 bp.

3-tuples and 6-tuples (Fig. 9) (Mantegna et al., 1995).
Whereas the 3-step Markov model and the human sequence
have virtually identical frequencies for the occurrence of
3-tuples, they differ considerably for 6-tuples, as might be
expected.

Finally, we examine whether tandem repeats of dinucle-
otide can explain the correlation properties of DNA. We
calculate the distribution of lengths of the tandem repeats in
human sequences. We then generate a random sequence that
has the same length distributions of tandem repeats as those
found from the human sequences. Fig. 10 compares a(fe)
computed from human sequences with a(f) computed from
the tandem repeat model. We find that the model differs
significantly from the real data.

DISCUSSION

The known mosaic structure of DNA (Bernardi et al., 1985;
Churchill, 1989; Fickett et al., 1992) allows for the possi-
bility that fluctuations in the nucleotide concentrations may
lead to the existence of long-range correlations, and re-
cently, such long-range power-law correlations (Arneodo et
al., 1995; Munson et al., 1992; Li and Kaneko, 1992; Peng
et al., 1992; Voss, 1992) were shown to exist in some
genomic DNA sequences.

Possible explanations for these long-range correlations
have been put forward, including 3D structure (Grosberg et
al., 1993), insertion-deletion (Buldyrev et al., 1993b), a
generalized Levy walk model of repetitive elements (Bul-
dyrev et al., 1993a), and point mutation and duplication (Li,
1991; Li and Kaneko, 1992). There have also been several
attempts to explain long-range correlations by the presence
of patches of fixed size (Azbel, 1973, 1995; Karlin and
Brendel, 1993), or alternation of coding and noncoding
sequences of certain characteristic sizes (Nee, 1992). It has
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FIGURE 9 Ten most frequent 3-tuples (a) and 6-tuples (b) in a three-
step Markov model of human sequence HUMTCRB. Each of the 64
3-tuples and the 4096 6-tuples has been assigned a numerical code to
distinguish it from the others. We find that whereas the model reproduces
n-tuple rankings almost exactly for 3-tuples, it is unable to do so for
6-tuples. The differences are even more noticeable for higher ranking
6-tuples.

even been claimed that special quasiergodic Markov pro-
cesses can account for correlations on very large length
scales (Kanter and Kessler, 1995). Although significant
progress has been made in better understanding the origin of
long-range correlations in terms of expansion-modification
models (Li et al., 1994), deviations from precise power-law
behavior and their relation to patchiness remain open ques-
tions. Our results give insight into how a variety of biolog-
ical phenomena contribute to long-range correlations, but
they also suggest that none of these phenomena can provide
a full explanation.
As was argued by Kanter and Kessler (1995), simple

Markov processes that are quasiergodic can generate corre-
lations on long, but finite, length scales. They construct an
artificial Markov process with 210 states that correspond to
segments of five nucleotides, or 5-tuples. The transition
probabilities from one 5-tuple to the next are defined by a
transition matrix such that only two different 5-tuples can
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FIGURE 10 Comparison of the DFA exponent a(f) computed from all
real human sequences larger than 105 bp and from the model of tandem
dinucleotide repeats. The model does not adequately reproduce the corre-
lation properties of the human sequences.

follow any given 5-tuple. However, in long enough real
DNA sequences, one can find almost any 5-tuple following
any other 5-tuple. It is thus doubtful whether the model
proposed by Kanter and Kessler is applicable to real DNA
sequences. In contrast to the quasiergodic model of Kanter
and Kessler, hidden Markov models can generate long-
range (but finite-scale) correlations (Pevzner, 1992;
Churchill, 1992), because they involve switching between
states, as in the three-patch model discussed above, which
switches between states of different bias.
We comment on the finding that the yeast chromosomes

have similar a(f). We find that for t < 103 bp, the yeast
chromosomes have almost identical mosaic structure and
correlation properties. This suggests that unique mecha-
nisms organize all yeast chromosomes and that these mech-
anisms may be significantly different in higher eukaryotes
and prokaryotes.
Our finding of distinct characteristic patch sizes in

genomic DNA sequences may shed some light on this
observation. As seen in Fig. 4, similar patch sizes appear in
several sequences, and some even appear in sequences from
different species. The patchiness in eukaryotic DNA could
be due partially to the elaborate organization and folding of
DNA by proteins into nucleosomes and higher-order struc-
tures of chromatin. Nucleosome structure may be responsi-
ble for strong correlations near ( 200 bp, whereas the
packaging of DNA into higher order structures like looped
domains might lead to correlations on larger length scales.
Note that the yeast sequences do not show patchiness on
scales from 50 bp to 200 bp. Perhaps this is due to the
absence in yeast of the normal HI histones, which help pack
nucleosomes together (Thoma et al., 1993).

Although we find that the long-range correlation proper-
ties ofDNA cannot be fully explained by the most abundant
repetitive sequences (the Alu and the Line-Ic), this does not
mean that a power-law distribution of lengths of insertions
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and deletions cannot in general generate long-range corre-
lations (Buldyrev et al., 1993a). The hypothesis that the
distribution of DNA patch lengths may be described by a
generalized Levy walk model has very recently received
support from both biologists and physicists. Specifically,
Gu and Li have studied the size distribution of insertions
and deletions in human and rodent pseudogenes (Gu and Li,
1995) and found it to be consistent with a power-law dis-
tribution. Independently, Bernaola-Galvan et al. have
shown that there exists a multi-length-scaled structure for
many DNA sequences that is well described by a power
distribution of patch lengths (Bernaola-Galvan et al., 1996).
We also comment on our finding that tandem repeats of

dinucleotide sequences are unable to explain the correlation
properties of human DNA. It is known that a power-law
distribution P(C) --'- of repeat lengths f can only gen-
erate long-range correlations if ,u ' 3, i.e., if the power-law
tail decays relatively slowly (Buldyrev et al., 1993a). Be-
cause we find that the length distributions of the tandem
repeats of the 16 dinucleotides consistently decay with u >
3, it comes as no surprise that these tandem repeats are
unable to produce correlations on scales e > 100 bp.

In summary, we find distinct characteristic DNA patch
sizes embedded in scale-invariant patch size distributions.
Moreover, we find that, by themselves, repetitive se-
quences, the alternation of coding and noncoding regions,
simple Markov processes, and tandem repeats are unable to
explain fully the known long-range correlation properties
and patchiness of genomic DNA sequences. Tests of expan-
sion-modification models of DNA evolution that can gen-
erate long-range correlations (Li, 1991) and hidden Markov
processes (Churchill, 1992) are among the problems that
may be suitably addressed in future studies using the new
techniques developed here.
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