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Abstract

Real networks, like the international airport network and the Internet, are composed of
interconnected layers (or communities) through a small fraction of nodes that we call here ‘bridge
nodes’. These nodes are crucial in the spreading of epidemics because they enable the spread the
disease to the entire system. In this work we study the effect of the bridge nodes on the susceptible-
infected-recovered model in a two layer network with a small fraction r of these nodes. In the
dynamical process, we theoretically determine that at criticality and for the limit r — 0, the time , at
which the first bridge node is infected diverges as a power-law with r, while above criticality, it appears
acrossover between a logarithmic and a power-law behavior. Additionally, in the steady state at
criticality, the fraction of recovered nodes scales with r as a power-law whose exponent can be
understood from the finite size cluster distribution at criticality. We also test our model on the real
international airline network and show that ‘high-degree bridge nodes’ reduce the time ¢,.

1. Introduction

One of the main aspects of the spread of contagious diseases in society, such as the Influenza [1], Ebola [2], and
syphilis [3] is that these processes rely not only on the pathogen-specific characteristics but also on the structure
of the network of interactions among individuals. Consequently, in the last two decades, many researchers have
studied the effect of the structure of complex networks on the spread of epidemics, in order to improve the
epidemic forecast and to propose efficient strategies to mitigate their effects on the population [4, 5]. Initially,
most researches have focused on isolated networks, but in the recent years, in particular, since 2010 [6]
multilayer networks or network-of-networks (NON) attracted much interest, since they are more general and
suitable to model more realistic interactions between people. In a NON, the nodes in a network which interact
with nodes in other networks are called here ‘bridge nodes’ [7] and the links that connect bridge nodes of
different networks are called ‘external links’. On the other hand, within each layer, all the nodes (including the
bridge ones) are connected by internal links. One of the most fundamental microscopic measures that
characterize the topology or internal structure of a network is the degree distribution P(k), which is the fraction
of nodes with k internal contacts within the same network [8]. A particular class of NON is the multilayer
networks [9, 10] in which a fraction r < 1 of nodes are bridge nodes in each network or layer, and each of these
nodes are connected or ‘interacts’ with only one bridge node in the other layers [11]. This structure that we call a
simple multilayer network, is suitable for example, for modeling the propagation of a rumor in which an
individual can transmit the rumor both in a virtual layer (for example Facebook) and in a physical network or
layer of face-to-face contact [12]. The individual who participates in both layers is represented by a bridge node
in each layer, which is connected to each other through an external link. Several studies showed that simple
multilayer networks boost the propagation of information [12], accelerate diffusion processes [13], delay
reactions [14] and increase the virulence of diseases with respect to an isolated network [15].
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In the last two decades, several mathematical models have been developed using complex networks as a
substrate to describe the spread of diseases [4, 16, 17]. One of the most studied models is the Susceptible-
Infected-Recovered (SIR) which is suitable for diseases that confer permanent immunity [18]. In this model,
initially each node is in the susceptible state (S), that is, it is healthy but not immunized to the disease, except for
an infected individual (I), which is called the index case. Each individual in state I can transmit the disease to his/
her contacts in state S with probability 3 during a time ¢, since he/she became infected. After that period, the
individual I goes to the recovered state (R) and stops transmitting the disease. The epidemics continues
spreading until it reaches the steady state in which there are no more infected individuals. Depending on the
context, we also refer to S, Iand R as the fraction of susceptible, infected and recovered individuals, respectively.
One of the main features of this model in the steady state, is that it undergoes a second order phase transition
between two regimes that are governed by the transmissibility T'[19]. This quantity represents the effective
probability of contagion, givenby T = 1 — (1 — )" and itis the control parameter of the transition. This
transition occurs ata critical value T = T, which depends on the topology of the system. On the other hand, the
order parameter of the system is the fraction of recovered individuals R in the steady state. It is known that in
isolated networks as well as in simple multilayer networks, the SIR model in the steady state can be exactly
mapped onto link percolation [15, 19, 20]. In this framework, the fraction of recovered nodes R is analogous to
the fraction of nodes in the giant component (GC), and T plays the role of the probability p of link occupation. In
isolated single networks, there is only one single component or cluster of recovered nodes in the steady state.
Similarly, in simple multilayer networks, there is only one cluster of recovered nodes, formed by both internal
and external links that are used to transmit the disease [15].

Although the spread of diseases in simple multilayer networks has been extensively investigated in recent
years, the effect of bridge nodes with multiple external links has received little attention. On the other hand, in
some real multilayer networks, there are usually few bridge nodes in each layer and in turn they have many
external connections compared to the average degree in their layer. This kind of structure appears when only few
nodes in one layer have sufficient infrastructure, and the necessary economic and human resources to connect
with nodes in other layers. For example, in some social networks, only a few individuals of one community or
layer may have the necessary skills to establish commercial and cultural relationships with individuals from
otherlayers [21]. In another example, in a national and international airport network, most of the airportsina
country (layer) only serve national flights, while a small set of airports serve international flights from and to
other countries (layers) [22]. One additional feature of these international airports (bridge nodes) is that they
may have many external links, i.e. flights to many nodes in other layers since they have the necessary
infrastructure to support the air traffic to and from many countries. These bridge nodes with a large number of
external links are called ‘central bridge nodes’, which could be considered as influential spreaders or
superspreaders [23—25]. Hereafter, for simplicity, we will refer to the ‘central bridge nodes’ as ‘bridge nodes’.
This type of structure is more general than the simple multilayer model’. Very recently, Dong et al [11] studied a
node percolation process on this structure and obtained that the fraction of nodes in the GC behaves as a power
law with the fraction of bridge nodes r, which is analogous to the relation between the magnetization and the
external field in the Ising model.

In this work, we study the SIR model in a two-layered network with a fraction r of central bridge nodes
during the dynamic process and in the steady state. In section 2 we present our model and the dynamic
equations. In sections 3 and 4 we show the scaling properties of the time #, at which the disease reaches the first
bridge node. In section 5 we focus on the steady state of the epidemic process at criticality, i.e. at the critical point
and explain how the structure of the recovered clusters explains the scaling relation between the fraction of
recovered nodes and the fraction of bridge nodes. In section 6 we apply our model to real flight networks. Finally
in section 7 we present our conclusions.

2.Model and dynamic equations

In this paper we study the SIR model in a system of two layers or networks with the same number of nodes N, in
which a fraction r of nodes in each layer are ‘bridge nodes’, that is, they have external links which connect to
bridge nodes in the other layer. Additionally, we consider that the external connectivity follows a Poisson or
Erds Rényi (ER) distribution with a mean external connectivity equal to (key) = ¢/r, where cisa constant.
This implies that r (key) = ¢, so the total number of external links M;is constant and equal to ¢cN. The Poisson
distribution in the external connectivity will allow us to study the effect of an increasing mean external

> Note that the structure of our model with two layers can be interpreted as a network with two communities. Heuristically, a community isa
subnetwork in which the density of its internal links is greater than its external links. However, since in our model the number of external
links could be comparable to the number of internal links, we prefer to use the term of layers and multilayer networks, instead of network
with communities.
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connectivity while the number of external links is constant. Unless otherwise indicated, the bridge nodes are
chosen randomly and the external links only connect bridge nodes from different layers. The nodes that do not
have external links are called ‘internal nodes’. In the main text of this work, we present our results for M; = N,
but in the appendix the reader can find our results for M; < N. For the stochastic simulations of the SIR model,
we randomly choose the index case in one layer, which can be also a bridge node.

In order to study the evolution of the states of the individuals in the SIR with fixed recovery time, we use the
edge-based compartmental model (EBCM) [26-28]. In single networks, this approach is based on using two
generating functions. The first one is the generating function of the node degree distribution P(k) which is given
by Go(x) = 324 P(k)xk, with kinin < k < Kax. Here, kinin and ki are the minimum and maximum values of
the degree distribution. The second one is the generating function of the degree distribution of the first
neighbors of anode, P;(k) = kP (k) /(k), givenby G, (x) = > kP (k) / (k) x*=1, where (k) is the first moment of
P(k). Here, P, (k) is the probability to reach a neighbor of a node with degree k, following a random chosen link.
For simplicity, we will assume in this work that both networks have the same degree distribution in order to
reduce the number of equations.

The EBCM approach describes the evolution of the fraction of susceptible (S(¢)), infected (I(¢)) and recovered
(R(?)) individuals at time ¢t by computing an auxiliary probability 6(¢). Note that this approach is only valid in the
deterministic regime of the epidemic spreading, that is, when the fluctuations of the number of infected nodes at
time f are negligible with respect to the mean number of infected nodes. In a single network, 6(f) = 6, stands for
the probability that a randomly chosen node through a link has not transmitted the disease towards this link.
This could be due to the following cases:

(i) the node is susceptible with probability @¢(#), so it cannot transmit the disease,
(i) the nodeis infected, but it has not transmitted the disease yet, with probability ®(¢).

(iii) thenode is recovered and it did not transmit the disease while it was infected, with probability ®x(?).

Therefore, 0,is given by, 8, = ®4(t) + P(t) + Pr(¥).

Then, given a node with degree k, the probability that none of its neighbors has transmitted the disease to
him/her at time tis 9’;. If this node is not the index case, i.e. it is not an infected node at the initial condition, then
itisin the susceptible state at the beginning of the dynamic process. Since, the fraction of index cases is negligible,
then the fraction of susceptible nodesis S(t) = >_, P (k) Gf = Gy(6,) forall t.

Similarly, in a two layer networks with the same degree distribution, the following relations hold:

9; = g(t) + <I>§(t) + ‘I’jlq(t) and 6”,’ = @’;(t) + @ij(t) + @%(t), where the magnitudes with a supra-index i
and b correspond to the internal and external links or internal and bridge nodes, respectively. Note that the
equations do not have an index that indicates the number of the layer because we assume, as mentioned earlier,
that both layers have the same degree distribution. Using the EBCM adapted to SIR with fixed ¢,, the evolution of
0, 6%, di(t), DL(t), @ (t) and ®}(t) are given by the deterministic equations

011 = 0; — BP}(1), ¢)

071 = 07 — BL), @)

APy = (1 — NGB, — Gi(O)] + r[Gi(B1,)GL O ) — Gi(OHGLOD)], 3)
ADS = Gj(0;, )G (07,1) — Go(0D G (), )

ADL = — 3, (1) — ADL + (1 — T)ADL(t — t,), 5)

ABY = =B (1) — AD} + (1 — T)ADY(t — 1), (6)

where A is the discrete change of the variables between times fand t + 1. Equation (1) computes the change in
0! when an infected internal node transmits the disease with probability 5. Equation (3) represents the change
in <I>fg when an internal node is infected (first term) and a bridge node is infected (second term). Note that
A®g(t)" < 0. Finally, equation (5) computes the variation of <I>§ due to: (i) an infected node transmits the disease
which decreases <I>§ (first term), (ii) there are new links that lead to the new infected nodes (second term), and
(iii) the infected nodes which have not transmitted the disease with probability 1 — T'duringa period ¢,, are
recovered. Equations (2), (4), and (6) have similar interpretations for the bridge nodes.

Using the equations given above, we can compute the fraction of susceptible and infected nodes as,

ASH = (1 — NGB, ) — GiOD], @)
AS" = r[G(0}, G (0L, ) — GIOHGL(OD, @)
Al = —AS' + ASi(t — t,), ©)]
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Figure 1. Time evolution of the total fraction of infected nodes I = I' + I”, infected internal nodes I' and infected bridge nodes I for
two layers with a ER distribution with (k) = 4, T = T(r = 0) = 0.25 (this s the critical transmissibility for an isolated network with
the same degree distribution), t, = 10and: (a) r = 0.20, (b) r = 0.05,and (c) r = 0.01. The colored lines correspond to 100 stochastic
realizations with N = 10° for: I (pink), I’ (lightblue)and I b (orange), and the black lines correspond to the theoretical solutions
obtained from equations (1)—(10). In the main plot we shifted the time to t = 0 when the fraction of total nodes in the infected state

is equal to 0.01, in order to compare the theoretical solution with the simulations [26, 28]. In the insets we show 100 stochastic
realizations of I (pink) in log-linear scale. In the insets we shifted for each realization, the time to t = 0 (indicated by a dashed vertical
line) when the first bridge node is infected at time t;, in the simulations.

AI" = —AS? + ASU(t — t,), (10)

where §*(I') and S? (I?) are the fractions of susceptible (infected) internal and bridges nodes, respectively.

In order to understand the effect of the bridge nodes on the epidemic spreading, in figure 1 we plot the
evolution of the fraction of infected internal nodes I, infected bridge nodes I, and the total fraction of infected
nodesI = I' + I° for different values of r,at T = T.(r = 0) = (k) /((k?) — (k)),1.e. at the critical
transmissibility value for a single network. Here (k?) is the second moment of the degree distribution.

From figure 1 we can see that as the fraction of bridge nodes r decreases, a second sharp peak appears in I.
This sharp peak is caused by the fast spreading of the infection between the bridge nodes because they have a
large connectivity ((kexy) = 1/r)and they are connected to each other, so when one bridge node is infected the
disease spreads very fast among them. This represents the high vulnerability for disease spreading of
international airports during an epidemic spreading. After these nodes are infected, the disease continues
spreading to the rest of the network. That is, for very small r, bridge nodes and internal nodes are infected at two
different characteristic times, as seen clearly in figure 1(c), since the curve I(¢) has two peaks. The first one
corresponds to the bridge nodes while the second one to the internal nodes.

From the insets of the figures, we also can see that as r decreases, the disease or epidemics ‘explodes’ only after
the first bridge node is infected at time #,. This magnitude is also related to the ‘arrival time’ which is the moment
at which the first infected node appears in the other community, metapopulation or layer [7, 29]. Since in such
networks, the ‘explosion’ of the epidemics is governed by the bridge nodes, it is of interest to compute the
average time f;, at which the first bridge node is infected, because after that, the fraction of infected nodes will rise
very quickly. Unlike our dynamical equations (1)—(10) for the deterministic evolution of the fraction infected
nodes which assume that both layers are of the same size, the computation of #,, can be applied to layers of
different sizes, because #, depends only on the topology of the layer in which the disease originates. In the
following sections, we will study the dependency of f,onrfor T = T.and T 2 T.(note again that T.isfora
single network with r = 0).

3. Time to reach the first bridgenode t, at T = T.(r = 0)

In this section we study the relation between #, and the fraction of bridge nodes, r, when the disease has started in
one layer before reaching the other layer. It is important to remark that #;, only depends on the network topology

4
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Figure 2. (a): Time #,, as a function of rat T = T, inlog-logscale, for . = 1 in simulations on ER network with (k) = 4 and N = 10°.
(b): Time #, as a function of rat T = T.inlog—logscale, for t, = 1 in simulations on a Scale-Free (SF) network with A = 3.5, kyin = 2,
and N = 10°. The symbols represent the averaging over of 10° stochastic realizations and, the solid lines represent the theoretical
solutions from the appendix C. In the insets we plot the theoretical solution shown in the main plot (black solid line). The dashed red
lines represent a power-law fit of the theoretical solution. Comparing the main plots with the insets, the exponent of the power law fit
approaches to the theoretical value 1/d; (see equation (13)) as r decreases. Here, t, does not have any shift as in figure 1.
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Figure 3. (a) Schematic of a cluster in a link percolation process with three bridge nodes (squares). The cluster can be partitioned in
three subclusters. A node vin the cluster belongs to the subcluster of the bridge node # when the node u is the nearest bridge node of v
among all the bridge nodes in the cluster. (b) Subcluster mass as a function of £ypcluster (se€ equation (11)) in log—log scale for a ER
network with (k) = 4 and N = 10°at T = T. = 0.25. The symbols represent the simulation results obtained from 5000 stochastic
realizations and the dashed line a power-law fit. The theoretical value of the exponent d;is d; = 2.

and the fraction of bridge nodes of the layer in which the disease originates, because when t < #, the disease has
not reached the other layer.

Using the branching formalism (see appendix C) we obtain thatat T = T, the average time at which the first
bridge node is infected, is a decreasing function with the fraction r, as expected. Moreover, we obtain
theoretically that the relation is a power law: t;, ~ r~!/2 for homogeneous networks and t;, ~ r~(**=3/(A=2 for
SF networks with degree distribution P(k) ~ k~ Aand3 < A\ < 4 (see appendix C). In figure 2 we show the
simulations and the theoretical solutions of f, versus rat T = T.(r = 0) for these networks, and we obtain that
the exponent is consistent with our theoretical predictions.

This relation between #, and r can also be obtained using scaling theory [30]. Considering a Leath [31] or link
percolation processat T = T, a finite cluster of occupied links leads to the set of recovered nodes in an outbreak
which is originated from an index case. The size of this cluster is R = R N, where R is the fraction of recovered
nodes and N is the size of the network. The average shortest path between all the nodes in that cluster is denoted
by ¢, which it is expected to be proportional to the duration of the outbreak. It is known that at criticality (i.e. at
the critical point), R ~ ¢ 4 where d, is the chemical dimension [32, 33]. We are interested in the time #, that
takes the disease to reach the first bridge node as a function of r (assuming that the cluster has at least one bridge
node). Let us consider a finite cluster of size R with n bridge nodes, then we expect that if a node of the cluster is
the index patient or the source of the epidemic, then the time #, will be proportional to the distance between this
index case and the nearest bridge node. The minimum chemical distance to the nearest bridge node can be found
by partitioning the cluster into # subclusters, one for each bridge node (see figure 3(a)). Thus anode vin the
cluster belongs to the subcluster of the bridge node u when the node u is the nearest bridge node of v amongall
the bridge nodes in the cluster. The average minimum chemical distance in each subcluster £ pcjuster behaves as
¢ since the cluster of infected nodes is a fractal at criticality [33]. Additionally, the average mass of each subcluster
isR/nandatT = T.we expect that (see also, figure 3(b))
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Figure 4. Time #, as a function of r obtained from the equations of the appendix C. (a): for an ER network with (k) = 4 for

T = 0.250 625 (black), T = 0.250 78 (red), T = 0.250 976 (green) and T = 0.251 220 7 (blue). (b): SF network with k,,;;, = 2and

A = 3.5for T = 0.269 325 (black), T = 0.269 481 (red), T = 0.269 92 (green), and T = 0.270 226 (blue). The main figures in panels
(a) and (b) are in log-linear scale. The insets shows in log—log scale for identifying the slope of the logarithmic term in equation (14).
The symbols are obtained from a logarithmic fit of the curves in the main plot for small values of 1, and the dashed line is a power law
fit. Panels (c) and (d) show the same curves as in (a) and (b), respectively, in log—log scale. The dashed lines are a power law fit with
exponent —0.53 for the ER network and —0.35 for the SF network, which are consistent with the exponent —1/d, predicted in

section 3.

R d
7 ~ fsu.:bcluster’ amn

where &upcuster 1S the average shortest path from a node to the bridge node of this subcluster. Since the
probability that a node is a bridge is uniform, the density of bridge nodes in the network is equal to the density of
bridge nodes in the cluster of size R, i.e. n/R ~ r, whichleadsto

=L~ (12)

subcluster*

On the other hand, we expect that £ ,pcjuster ~ t [34], so finally

s (13)

For ER networks d; = 2 and for SFnetworkswith3 < A < 4,d; = (A — 2)/(\ — 3)[35].

4. Crossover regimes of t, for T > T.(r = 0)

Integrating the equations of time evolution for the stochastic regime for T 2 T.(r = 0) (see appendix C) we
obtain that #, as a function of r has two regimes, which are separated by a crossover at r = r* (see figures 4(a) and
(b)). For r > r*we obtain that t;, ~ r—!/% as in the previous section. On the other hand, for r < %, the time

t, is a logarithmic function with r. This behavior is expected since for large r, the distance between the bridge
nodes is small and the system is like at criticality. While for small values of 1, the disease needs to cross longer
distances to reach a bridge node and it behaves like above the criticality, i.e. the distance between two nodes

is alogarithmic function of N [36]. Therefore, using similar arguments to the previous section, we can obtain
the behavior f, ~ —In(r) for r < r*. Indeed, from the numerical results we obtain that above criticality

ty ~ A(T, T.) — BlIn(r) for ER networks and SF networks with 3 < A < 4, i.e. the expected r dependence. In
addition, we get that A(T, T,) is a function of the distance to the criticality T — T.,and B = (T — T.)"! for both
topologies. Therefore, #;, behaves as
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Figure 5. Collapse of the curves d#,,/dras a function of r. (a) ER network with (k) = 4 for T = 0.250 625 (black), T = 0.250 78 (red),
T = 0.250 976 (green)and T' = 0.251 2207 (blue). (b) SF network with k,;, = 2and A = 3.5for T = 0.269 325 (black),

T = 0.269 481 (red), T = 0.269 92 (green), and T = 0.270 226 (blue). The dotted line indicates the position of the crossover. The
figures are in log—log scale.

AT, T.) — (T — T) 'In(r) ifr<r*
LI IRY¥ i * (14
r ! ifr>r

The scaling results of equation (14) are supported by the numerical solution of the theory in the appendix C

as seen in figure 4.

In the following, we study in more detail the transition between the logarithmic regime and the power-law
regime.

In order to avoid to work with the y-intercept (i.e. the function A(T, T,)) and the logarithmic function,
instead of using the equation (14), we will work with the derivative of , with respect to r.

Based on equation (14) we propose the following scaling Anzat for d#,/dr,

—(AT)‘ll; ifr<r*
r

o~ 1 (15)
dr ——r WD if s
d;
The crossover is defined by the point r = r* at which both regimes intersects, and is given by
7%~ (AT)™, (16)
In addition, we have thatatr = r*,
% ~ ATf(dI‘Fl)‘ (17)
dr =¥

Applying to the function d#,/dr the transformations: r — r/r*and dt, /dr — dt, /dr AT%+! (where
AT = T — T.)we obtain that the curves d#,/dr collapse (see figure 5). Therefore, equation (15) can be written
as

dg, r
—2 = AT-@+DF (—) 18
dr r* (18)
where F(x) is given by
x~ L ifx <1
Feo~ {x(df+1>/dl ifx>>1 1)

withx = r/r".

Besides the rich behavior of #, which corresponds to the beginning of the epidemic, in the next section we
will show that in the steady state, the bridge nodes also generates a power-law behavior in the fraction of
recovered nodes as a function of , similar to Dong et al [11]. However, unlike [11] which interpreted that power-
law as an external field, we will explain this behavior from a geometrical point of view.

5. The steady state

51.T < T,
In our model with two layers, increasing fraction of bridge nodes generates a large number of infected nodes
since bridge nodes have a high external degree. However, an increase in r decreases the external connectivity

7



10P Publishing

NewJ. Phys. 20 (2018) 125003 LD Valdezetal

0.5 T T T T

0.8

0.6
27
0.4

0.2

0.05 02 04 06 03 1

Figure 6. (a) Fraction of recovered nodes in the steady state as a function of T for an ER network with (k) = 4andr = 107! (black),
r = 10" (red),r = 10> (green)and r = 10~* (blue). (b) Fraction of recovered nodes as a function of rfor T = T.(r) = 0.25 (black)
and T = 0.20 (red). The inset is the main plot in log—log scale. The dashed lines represent a power-law fit.
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Figure 7. (a) Schematic of the structure of the recovered nodes in the steady state for T = T(r = 0). The gray nodes correspond to
susceptible nodes, the black node is the index case, and the green ones are the recovered nodes. The square nodes represent bridge
nodes and the green areas represent the internal clusters of recovered nodes. (b) Probability of finite clusters sizes in each layer in the
steady state for T = T(r = 0) inan ER network with (k) = 4 (circles) and a SF network with A = 3.5 and kyin = 2 (squares),
r=0.001 and N = 10° obtained from 50 000 stochastic realizations. The dashed lines represent the power law fits.

which reduces the disease propagation. Therefore, there exist a nonlinear relation between R and r, as can be seen
in figure 6. In the appendix A we show that this behavior does not depend on the value of (k) r. In addition, for
r — 0, we observe (see inset of figure 6(b)) that R as a function of r is a power-law with exponent 1/6 = 1/2 for
T=TJ(r=0)and1/6 = 1forT < T(r = 0).

The origin of the exponentat T' = T.(r = 0) is due to the particular structure of the cluster of recovered
nodes since the infection tree is composed by finite clusters of recovered nodes in each layer, that are connected
through bridge nodes (see figure 7(a)). In figure 7(b) we show the probability of recovered clusters P(s) of size s
in each layer (obtained from stochastic simulations in a ER network and SF network with A = 3.5at
T = T.(r = 0)) which follows a power-law distribution with exponent 7 — 1, where 7 = 5/2 for ER networks
and7 = 2 + 1/(\ — 2) = 2.66 for SF networks with A = 3.5[37].

In the following, we present a geometric interpretation of our model and show theoretically that the
structure of the infection tree explains the exponent of the power-law between R and r, using the probability P(s).

In our model itis expected thatasr — 0at T = T(r = 0), almost every bridge nodes will be infected since
they have a large external connectivity. Each of these nodes will be the seed of the finite outbreak or cluster in
each layer. In this case, the infection tree is composed by these finite clusters and hence the fraction of recovered
nodes is proportional to the sum of the sizes of these finite clusters in which one node of each cluster is a bridge
node. This can be written as

R=P(s=1)(0—-1—-r)x+ Pis=2)1 — (1 — r)?)x?
+Pis=3)(1—-(1—-r)x>+ .., (20)

where P(s) is the probability that a randomly chosen node belongs to a cluster of size sand (1 — (1 — r)°) is the
probability that this cluster has a bridge node (with x = 1). We can approximate R as
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R=1- ip(s) (1 —r) (21)
i=1
~1 — Afl P(s) (1 — r)sds 22)
~1 — A f " P(syexp sIn(1 — r)ds. (23)
1

Ifr < 1thenexp(sln(l1 — r)) = (1 — r)* = 1 — rs,andwhen T < T itholds that
P(s) ~ s T exp(—5/smax) [38], where spay ~ |T — Te|~'/?. Thus,

[o¢]
R~1-— Af (1 — rs)s™ ™ lexp(—s/smax)ds, (24)
1
where
A=— ! . (25)
fl sTTH exp(—5/Smax) ds
Sincefor T < T, 11‘ T2 exp(—S/Smax)ds does not diverge when r — 0, then we obtain that, R ~ r,i.e.
1/6 =1, (26)
forT < T..
Ontheother hand, for T = T, sy — o0;andifr < 1thenIn(l — r) &~ —r.Inthis case R canbe
approximated by®
o0
~1 — Af s lexp(—rs)ds, (27)
1
with
1
A= ———=—7+2. (28)
f sTTHds
1
Denoting u = rs, and integrating by part
~ —T+2 [ —7+1
-7+ 2 1 o0
~1— rTH2 f u~ " 2exp(—u)du
rTH2 (T + 2 r p( ) )
— o0
~ sz w2 exp(—u)du ~ 1772, (29)
T2 ’
sofinally,R ~ 77 % i.e.
1/6 =1 — 2. (30)

Thus, for T = T, the exponent of the scaling relation between R and r is related to the Fisher exponent of the
finite size cluster distribution. Therefore at criticality, alternatively to the interpretation of the exponent 1/ as
the result of an ‘external field’ [11], here we show theoretically that this exponent can be understood from the
distribution of finite cluster sizes in one layer. This exponent was also studied in the context of semiconductors
and percolation in the presence of a ‘ghost field’ [30, 39, 40].

52.T> T
While above criticality, R does not go to zero when r — 0, we obtain theoretically that i—fIHo ~ (AT) for

ER and SF networks. Here, i—}: |r— o is related to the divergence of the average size of the finite clusters (see
appendix B).

On the other hand, above criticality the contribution of finite clusters to the GC is dependent on two factors.
First, note that in equation (27) the contribution of the finite size cluster distribution P(s) that compose the GCis
constrained by an exponential function exp(—s/s,) = exp(—rs), wheres, = 1/ris the cutoff imposed by the
fraction of bridge nodes. This is due to the fact that during the dynamic process, the finite clusters cannot grow
without any constrain because these clusters interfere with each other. Second, for single networks, it is known
that above criticality, P(s) ~ s~ exp(—5/Smax) Where spox ~ |T — T.|'/7, i.e. there is another cutoff imposed
by the transmissibility. Therefore in a bilayer network for T > T, the cutoff of the finite size distribution in one
layer can be imposed either by the fraction of bridge nodes or by the transmissibility. When the transmissibility is

6 . . . . .
Note that we do not use the approximation (1 — r)* & 1 — rs because it would lead to a divergent integral.
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very close to T, or ris not small, then s, < sy, 1.€. the cutoff imposed by the bridge nodes dominates the finite
cluster distribution, and the system behaves as at criticality, since it does not ‘see’ the cutoff imposed by the
transmissibility. The opposite occurs when T'is well above T, or r < 1. Denoting ' as the value of the fraction of
bridge nodes at which both cutoffs are comparable, then

P |T = T, (31)
and using that o = 1/(dj;) [35], we obtain that
i~ (IT = T%, (32)
Finally, since for uncorrelated homogeneous networks and SF networks v, = 1[35],
o~ T — T, (33)

which is the same relation as in equation (16), i.e. the crossover * of the time #,, between the logarithmic regime
and the power law regime. Thus, the crossover of the time #, scales with T — T.as the crossover r between the
cutoffimposed by the transmissibility and the cutoff imposed by the bridge nodes. Therefore r' ~ r*. Moreover,
since the correlation length behaves as £ ~ |T — T~ (where v, = 1 for ER and SF networks, as mentioned
above), this result suggests that the coefficient of the logarithmic term in equation (14) is related to the
correlation length.

6. Real networks

We next examine how the topology and the selection of bridge nodes (targeted or random) affects #,.

Flight transportation data are widely available through different online sources. In this work, we considered
the Flightradar24 flight tracker [41] as the main source of data in order to demonstrate our results on a real world
example of a two layer complex network. In this work, we consider our flight networks as being the networks
where the airports are represented by nodes and the routes among them by links. According to its own website
description, Flightradar24 is a flight tracker that shows live air traffic from around the world. Flightradar24
combines data from several data sources including automatic dependent surveillance-broadcast (ADS-B),
Multilateration (MLAT) and radar data. The ADS-B, MLAT and radar data is aggregated together with schedule
and flight status data from airlines and airports to create their flight tracker datasets with live online access. For
security and privacy reasons information about some aircraft is limited or blocked. This includes most military
aircraft and certain high profile aircraft. The site provides information of current and historical flights, such as
the destination and origin airports, the flight status (flight codes, arrival and departures times, etc), airlines and
aircraft models. For the purpose of this work, we build two different networks. One considering only those
flights within the United States, another within Europe, both connected by links represented by the flights
among them (between bridge nodes). It was shown that these flights networks typically have a highly connected
set of core airports (mainly hubs) and a few connections to and among periphery airports, in a so called core-
periphery structure, typical for real-world airline networks [42]. In figure 8 we show both networks and their
actual degree distribution P(k).

Since these networks have a finite size, we use the effective critical transmissibility which is obtained by
measuring the position of the peak of the second largest cluster size in a link percolation process as a function of
the link occupation probability. In figure 9 we plot #;, as a function of r for T = T of each network in the main
figureand for T > T, in the insets obtained from the simulations. In these subfigures we find that when T' > T
the time #, behaves as alogarithmic function with r. However, for T = T we cannot observe a power law
behavior as predicted by our theory in section 4 due to finite size effects (N ~ 10°). On the other hand, from the
main figures, we can see that the real network with the real bridge nodes has a smaller #, than expected for
randomly chosen bridge nodes. This is due to the fact that the actual bridge nodes have an average degree well
above (k). Specifically, (k) = 26.5 for Europe and (k) = 17.9 for USA, while the average connectivities of the
actual bridge nodes are: 77.3 and 90.2, respectively. Since these bridges airports have a higher degree than the
average (k), then they can be infected more quickly than other airports. To test this effect of the degree of the
bridge nodes on #,, we analyze in figure 9 the time #, as a function r, in which the fraction r corresponds to the
nodes with the highest degree, called ‘targeted bridge nodes’. Indeed, we obtain that the disease reaches a bridge
node earlier that in the case of randomly chosen bridge nodes. Furthermore, the time #, for the targeted case is in
agreement with the case for the actual fraction of bridge nodes (see the green cross in figure 9).

On the other hand, to study the effect of the topology on #, in real finite networks, we also compute #, versus r
for an infinite synthetic uncorrelated network with the actual degree distribution as a ‘null model’ (i.e. asa
baseline to compare with the real network), using the equations of the appendix C. For randomly chosen bridge
nodes, we obtain that for small values of r a finite network has a smaller time #, than an infinite network, which is
expected since the loops or cycles in a finite network would tend to decrease the distance between nodes and
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o 100"
k

Figure 8. Real airline networks and their degree distribution for Europe (a) and USA (b), obtained from the Flightradar24 data [41].
The sizes are: N = 425 for Europe and N = 973 for USA, and the number of links are: 5636 and 8724, respectively. The degree—degree
(rp) correlation and clustering coefficients (C) are: r, = —0.14and C = 0.59 for Europe, and r, = 0.09and C = 0.30 for USA.

0

Figure9. (a) t,, versus r for Europe with T. = 0.019 and (b) USA with T, = 0.021. The solid black line is obtained from the equations
derived in appendix C using the real degree distribution, and choosing randomly the bridge nodes. The red and blue symbols
correspond to the real networks with random and targeted bridge nodes, respectively. Finally the green symbol is obtained from the
real network and the real bridge nodes (fixed r value). In the insets we show #, versus r for the real networks with randomly chosen
bridge nodes, in linear-log scale for (from up todown): T = T,, T = 0.05,T = 0.10, T = 0.15and T' = 0.20. We average our
simulation results over 10* stochastic realizations.

hence the time to reach a bridge node. Notably, for larger values of , ;, versus ris almost the same for an infinite
uncorrelated network and a finite real networks. This result indicates that in this regime the topology
magnitudes like the degree—degree correlation and clustering are less important to predict #,,. Indeed, as r — 1,
the probability that the first infected node is a bridge, increases. Therefore, the effect of the core-periphery
structure, clustering and degree—degree correlation on #, should not affect the value of .

7. Conclusions

Since in real networks, like in the flight network, the bridge nodes are vulnerable and are able to boost the
spreading of a disease, it is important to understand their role in the spreading. In this paper, we study the effect
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of the bridge nodes on the dynamic spreading in a two layer network. We obtain that at criticality, these nodes
are crucial for spreading the disease to the entire global system and their presence induces a double peak on the
number of infected individuals during the dynamic which corresponds to the infection of the bridge and non-
bridge nodes. Moreover, the fraction of infected nodes increases rapidly after the disease reaches the first bridge
node, so the time #, at which the epidemic reaches this node is of great importance to predict the ‘explosion’ of
the epidemic. We showed that at criticality in the stochastic regime of the spreading process the time #,, behaves
as a power law with the fraction of bridge nodes r, with an exponent related to the chemical dimension.
Additionally, above criticality, #, follows a scaling function with two regimes separated by a crossover r = r*. For
r < r* t, behaves alogarithmic function while for r > r*, it follows a power-law function. We showed that this
behavior emerges as the result of the ‘competition’ between two scales: one imposed by the transmissibility
through the correlation length and the other imposed by the fraction of bridge nodes which constrain the size of
afinite infected cluster. On the other hand, in the steady state, we showed that at criticality the fraction of
recovered nodes obeys a power law function with r. We find that the origin of the exponent is related to the finite
cluster size distribution since the structure of the epidemic cluster is composed by a distribution of finite clusters
in each layer which are connected by the bridge nodes. Finally, we applied our model on real flight networks and
obtained that a targeted fraction of bridge nodes reduces the time #,, and as r increases, the structure of the
network becomes less relevant to predict the value of #,.

The model and results presented in this paper could be generalized. For example, our model could be
extended to more layers and other epidemic models like the susceptible-infected-susceptible model, in order to
evaluate the role of the bridge nodes in more complex structures and different dynamic processes. In addition,
different effective control methods could be studied with the goal of increasing the time t, in real-world
networks.
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Appendix A. R versus r

In figure A1 we show the relation between R and r for different number of external links, i.e (kex) r = ¢ (see
section 2).

Appendix B. Scaling of dR/dr for T 2> T

In this section we will obtain the scaling relation between dR/dr and the distance to criticality T — T in the limit
ofr — 0,i.e. dR/dr ~ (T — T.)~7 where yis the critical exponent of the mean size of finite clusters. We apply
our equations for homogeneous networks and SF networks with 3 < A < 4. Note thatin our calculation the
external connectivity distribution always follows a Poisson distribution with (key) ~ 1/7.

For any value of r, the fraction of nodes that belong to the GC R is given by

R=1-[(1- NGl — Tf) + rGi(1 — Tf)HGL (1 — TfY)), (B.1)

where f;o and fobO satisfy the following equations,
flo=1-10-nGA - Tf) +rG/( — TfHG — Tf)), (B.2)
f,=1- G/ = TGl — T, (B.3)

Inthelimitofr — 0, (key;) — oo and since Gé’ x) = Gix) = exp({kex) (x — 1)), then for any value of
x < 1,itisstraightforward that Gg x) = Gf (x) — 0.Therefore in this limit the fraction of nodes in the GC can
be approximated by,
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Figure Al. Fraction of recovered nodes, R, as a function of rfor T = T, and different values of (key): 1 (black), 0.5 (red) and 0.25
(blue) for ER networks with (k) = 4 (panels (a) and (c)) and for SF networks with A = 3.5 (panel (b) and (d)). The solid lines are
obtained from the theoretical equations and the symbols are obtained from the simulations in networks with N = 10° and 100
realizations. Panels (c) and (d) are in log-log scale, and the dashed lines is a power-law function with an exponent equal to 1/6.

R=1-[1-nG1 - Tf)l, (B4)
with
flo=1-10-nGa - Tl (B.5)

Note that equation (B.5) is the same as in a single network with a perturbation . Additionally in this limit,

equation (B.3) reduces to fobC = 1,1.e. the probability that an external link leads to a bridge node that belong to

the GC is equal to one because these nodes have an increasing number of external links ((kex) — 00). Since

these equations depend only in variables related to the internal links, for simplicity we will omit the index i.
Taking the derivative of the equations (B.4) and (B.5) with respect to 7, we obtain for r — 0:

R G - 1) + TG - Tfoo)£ , (B.6)
dr | dr |._,
Yo __GO-T) (B.7)
dr |, 1-TG/(a—Tf)

In the following, we will apply these equations for homogeneous and SF networks with 3 < A < 4.

B.1. Homogeneous networks
For the case of homogeneous networks, i.e. with finite third-order moment, we can expand the self-consistent
equation (B.5) around f,_ = 0 up to the quadratic term for T'near T, obtaining
2G/(1)
=——(T-T). (B.8)
fo= gy T

Similarly, expanding G, (1 — Tf. ) and G,(1 — Tf ) in equation (B.7), we obtain

d 1 - TG/(1
G TG 9)
dr |_, 1-T(G/Q) - TG'(Df,)
Then, using equation (B.8), the derivative of f,, with respect to rwhen r — 0 behaves as
d
& ~ ,; (B.10)
dr =0 G1(1)(T - Tc)
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Finally, expanding G;(1 — T, ) in equation (B.6) around f,_ = 0 up to the linear term and using that
T. = Gy(1)/Gy" (1), leads to

dR T d
= =Go(l = Tf,) + Gy(D |1 — —f Té , (B.11)
dr =0 ’I;‘ dr r=0
and replacing equation (B.10) in the last expression, we obtain
dR T. Gy
—| =G -Tf)+ ———"-2. B.12
& | o( ) T TG (B.12)

Sincein thelast equation, as T — T, the first term is finite while the second one diverges, we disregard the first
term and the derivative of R with r, is given by,

dR

dr T Gyl
dr

N (T — T, (B.13)
—  T—T.G/1) ‘

i.e.¥ = 1for homogeneous networks.

B.2.SFnetworkswith 3 < \ < 4
For the case of SF networks with 3 < A < 4 and using Tauberian theorems [43], the expansion of equation (B.5)
around f_ = 0Ois

fo=1-0—=GOTf +afl™?, (B.14)
where ¢, is a constant. This expression leads to
fio ~ (T = THV A3, (B.15)

Similarly, expanding G,(1 — Tf )and G,(1 — Tf )inequation (B.7), we obtain

d | 1o GI(DTf, +af)? B.16)
dr |y  1-T(G/QD) - oIf2 7’ '
where ¢, and ¢, are constants. Using that T. = 1/G/ (1), and the equation (B.15), the last equation can be
approximated by,
df | 1= GlOTe (T = TV 4 o (T — ToN-2/0-9 ) e
dr |_, cs(T — Tc)

where c3, 4, ¢5 are constants.
Since A > 3thenfor T — T, inthe numerator of the last equation only the first term remains, and hence

df,
dr

1

~N— ~(T-T). .
g T (B.18)

On the other hand, applying Tauberian theorems [43], and inserting equations (B.15) and (B.18) into
equation (B.6), leads to the following relation

dR
o ~ Go(1 — Tf,) + (Go(1) — Gf () Tf,,
r=0
T
oo (T — THA-2/0=3n_T B.19
6 ( ) )T T (B.19)

Inthelimit T — T, the first term is finite while the second one diverges, hence the first term can be disregarded.
In turn, the numerator of the second term is also finite, which finally leads to

dR

S| o~a-m (B.20)

r=0

Le.y=1.
In figure B1 we show dR/dras a function of [T — T¢| for an ER network and a SF network with A = 3.5,in
which we can observe that the exponent obtained is consistent with the predicted value.

Appendix C. Mean time t;, to reach a bridge node

In order to compute the time it takes the disease to reach a bridge node, we describe the disease spreading with
t., = lasabranching process.
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dR/dr
dR/dr

0 0
|T-Tc| |T-Tc]

Figure B1. dR/drata function of |T — T| for an ER network with (k) = 4 (panel (a)) and SF network with A = 3.5 and ki, = 2
(panel (b)). The solid lines are obtained from equations (B.6) and (B.7) and the dashed line is a power law fit.

Let us consider an infected individual in generation #, then the generating function of the probability to not
reach a bridge node in the following generation through alink is given by

Gpx)=1—-T+ T — rG(x), (C.1)

where T'is the transmissibility and G, (x) is the generating function of the excess degree distribution. Similarly the gen-
erating function of the probability to not reach a bridge node in the following n-generations through a link is given by

8, (%) = Gup(Gip(---Grp(x))), (C2)
()
forn > 1,and go(x) = xfor n = 0. On the other hand, the generating function of the probability to not reach a
bridge node in the following n-generations from the index case is Gy(g,,(x)), where Gy(x) is the generating
function of the degree distribution. Therefore, the probability that in generation n + 1 the disease reachesa
bridge node s,

P(t=n+1)=1 - n[Go(g,1)) — Golg,(1 — Tr)]
= (1 = N[Go(g,(1) = Go(g, (1], (C3)

where Gy(g,,(1)) is the probability that the disease reaches the generation n + 1, i.e. is the probability that there is
aninfected nodein generation n + 1, and Gy(g,(1 — Tr))is the probability to not reach a bridge node in
generationn + 1.Forn = OwesetP(t = 0) = r.

Since, we only consider those realizations in which one of the infected node is a bridge, we normalize the
probability P(t = n):

Qi=m=—lt=" (C4)
Zi:OP(t =1)
Finally, the average time #, to reach a bridge node is given by
= nQ(t = n). (C.5)
n=0

C.1.Scaling relation between t, and rat T = T;
In the following we will study the asymptotic behavior of P(t = n) for large valuesof nandr < 1atT = T..
Since g, is the recursive iteration of the function G ,(x), the value of g,, tends to the solution of
x = Gp(x), (C.6)

asin a fixed pointiteration process. We denote as g, the solution of this equation. Therefore, for large values of n
we can approximate equation (C.3) to

P(t=n+ 1= Gg)E, — & (C.7)
Sinceg, = G1p(€n—1)&n+1 = Gup(@n)and g, ~ g, ., ~ g wecanapproximate the last equation to
P(t=n+1) =~ Gyg.)GhE)E,  — &) (C8)
If we use the approximation g, | — g, ~ G{,(g,.)(g, , — &, ;) then equation (C.8), can be rewritten as
P(t=n+1) ~ G2 G180 Giv (&)@, 2 = & 1) (C9)
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and using equation (C.8)att = n — 1 we obtain that
Pt=n+1~= G{b(goo)P(t = n). (C.10)

This relation shows that for large values of n, the distribution P(f) corresponds to an exponential distribution
with amean time value of fy, = 1 / (In(G},, (g..)- Sinceforr — Oand T'= T, wehave that g — land

th(gm) — 1,then ln(Gllb(goo)) ~1— Gfb(goo), e
o
1 - Glg)

In the following we will explore the relation between G}y (g, ) and r for homogeneous networks, i.e. with
finite third order moment in the degree distribution, and SF networks with3 < A\ < 4.

ty (C.11)

C.1.1. Homogeneous networks. ~Asr — 0, the solution g, tends to the value g = 1. Therefore, expanding
equation (C.6) around this value we have that

go=1-T+ T~ (1 + GG, — D+ %G{’(l) @ — 1)2),
“1-T+ T -nN+0-n@ —1D

LT r)%G{’(l) (g — 1 (C.12)

in which the physical solution of this equation is

r—r2r 4201 - DTG/ (1)
T.(1 — nG/'(1) '

In thelimit of r — 0 we have g, behaves as

2
goo =1- mrl/z. (C14)

Since g ~ 1, we can approximate G/, (g..) by
G/ (g.) = T(1 = N(G/() + G (D(g,, — D + -,
~1 — T.\2G]" (1) r'/2, (C.15)
Therefore, according to equation (C.11) the mean time ¢, scales with ras,
ty ~ 712, (C.16)

for homogeneous networks, i.e. with a finite third order moment of the degree distribution.

C.1.2. SFnetworkswith 3 < A < 4. Similarly, for SF networks with 3 < A < 4 and using Tauberian theorems
[43], the expansion of equation (C.11) is given by

Gu=1-"T+TA-11-G6GMDA-g)+coll—g)?), (C.17)

where ¢y is a constant. In thelimitr — 0, g — 1,andhence (1 — g ) < T;. Therefore, the solution of
equation (C.17)1is

g~ 1 —qgrig, (C.18)

where c; is a constant.
In order to find the value of f;,, we have to insert this solution in equation (C.11). Note that for SF networks
with3 < A < 4 the following relation holds,

G/ (x) =~ G/(1) — ¢ (1 — x)*3. (C.19)

Therefore, the expansion of G,(x) around x = 11is
Gip(x) = Te(1 = 1) (G{(1) — & (1 — )7, (C.20)
~(l—1)— (1 —x)M3, (C.21)

where ¢; and c; are constants. For x = g__,r < 1 and using the equation (C.18) we obtain,

Gly(g) ~ 1 — caria, (C.22)
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Thus, the mean time #, for SF networkswith 3 < A < 41is

A=3

fy ~ Ao, (C.23)
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