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a b s t r a c t

We study stochastic resonance (SR) in an oscillator with nonlinear noise, fractional-order
external damping, and fractional-order intrinsic damping. Using a moment equation, we
derive the exact analytical expression of the output amplitude and find that fluctuations
in the output amplitude are non-monotonic. Using numerical simulations we verify the
accuracy of this analytical result. We find (i) that nonlinear noise plays a key role in
system behavior and that the resonance of the output amplitude is diverse when there
is nonlinear noise, (ii) that the order of the fractional-order damping strongly impacts
resonant intensity and that the impact on resonant intensity of fractional-order external
damping is opposite that of fractional-order intrinsic damping, and (iii) that the evolution
of the output amplitude versus the frequency of the external periodic force exhibits three
behaviors: a resonance with one peak, a resonance with one peak and one valley, and a
resonance with one valley.
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1. Introduction

The harmonic oscillator is a simple model for different phenomena in nature, and it is the most widely used in physics. A
forced harmonic oscillator can be defined as

mẍ(t) + γ ẋ(t) + ω2x(t) = f (t), (1)

where x(t) is the displacement of the oscillator at time t ,m the mass of the oscillator, γ the friction constant,ω2 the intrinsic
frequency of the system, and f (t) the external periodic force. The damping term γ ẋ(t) is caused by such external influences
as friction and is thus designated external damping. This external damping is solely dependent on the current speed and
thus can describe such pure viscous media as water.

Because the damping generated by such complex systems as viscoelastic media, magneto-rheological fluids, and
amorphous semiconductors is connected to the historical speed, we replace the usual damping term γ ẋ(t) with a power-law
damping term γDβx(t), (0 < β ≤ 1) [1] and obtain an oscillator with power-law external damping,

mẍ(t) + γDβx(t) + ω2x(t) = f (t), (0 < β ≤ 1), (2)

whereDβx(t) =
1

Γ (1−β)

∫ t
0 (t−τ )−β ẋ(τ )dτ , (0 < β ≤ 1) is the Caputo’s fractional derivative of x(t), γDβx(t) is the fractional-

order external damping, and β is the order of the fractional-order external damping.
An oscillator of viscoelastic materials consumes energy as it oscillates and becomes attenuated. Unlike the external

damping generated by external friction, the damping generated by the oscillator itself is intrinsic [2]. To describe intrinsic
damping, we replacemẍ(t) in Eq. (2) withmDαx(t), (1 < α ≤ 2) [2–4] and obtain an oscillator with double fractional-order
damping,

mDαx(t) + γDβx(t) + ω2x(t) = f (t), (0 < β ≤ 1, 1 < α ≤ 2), (3)

where Dρx(t) =
1

Γ (n−ρ)

∫ t
0 (t − τ )n−ρ−1x(n)(τ )dτ , (n − 1 < ρ ≤ n), mDαx(t) is the fractional-order intrinsic damping and

γDβx(t) is the fractional-order external damping.
Systems often experience external fluctuation. Einstein used a noisy oscillator 100 years ago to study Brownian motion.

Although noise is often destructive in nature, the SR phenomenon indicates that under certain conditions noise can make a
systemmore coherent [5]. The concept of SRwas originally proposed by R. Benzi et al. [6] to explain the periodicity of ice ages
on Earth in early 1980s. The conventional SR refers to the phenomenon that the signal to noise ratio (SNR) is non-monotonic
with the change of characteristic parameters of noise (such as noise intensity and correlation rate). The SR in a broad sense
was introduced by Gitterman [7], whichmeans that the non-monotonic behavior of certain function of output signal (such as
moment, autocorrelation function, power spectrum and SNR, etc.) depends on the change of characteristic parameters (such
as the frequency and the amplitude of input signal, noise intensity and correlation rate, etc.). There is much literature on the
investigation of resonant behavior in oscillators with random frequency, random damping, random phase, and a random
mass [8–18]. These models have been applied to many topics, e.g., wave propagation in a random medium [19], turbulent
flow on the ocean surface [20], waves inwater subjected to turbulent wind [21], open liquid flow [22], dendritic growth [23],
and Brownianmotionwith adhesion [24]. Most of the studies of resonant behavior are usually restricted to the systemswith
single fractional-order damping, the study of resonant behavior in the oscillators with double fractional-order damping is
still at an initial stage. Recently Zhong et al. [17] investigated the resonant behavior in a noisy oscillator,

mDαx(t) + γDβx(t) + [ω2
+ ξ (t)]x(t) = A sin(Ωt), (0 < β ≤ 1, 1 < α ≤ 2). (4)

Research indicates that the SR phenomenon occurs in oscillators with double fractional-order damping driven by linear
noise.

Often chemical and biological solutions are viscoelastic media with molecules that can both collide with Brownian
particles and adhere to them. Because the collision of viscoelastic media with Brownian particles is connected to their speed
history andmolecules’ adhesion to them during oscillation causes them to consume energy, we use Eq. (4) to describe Brow-
nian particle movement in viscoelastic media. Note that nonlinear noise is more extensive in real-world systems than linear
noise, and that our current understanding of nonlinear noise is too partial for any useful practical application. For example,
the fluctuations of external sources affecting pump lasers causes nonlinear fluctuations in their net gain [25]. In Ref. [26]
Zhang describes the response of a single-mode laser system to an amplitude modulation signal in the presence of quadratic
colored pump noise. Because of the fluctuation of the electronic field intensity and various low-scale thermal noise produced
by the quantum effect, the fluctuation noise is usually nonlinear in physical and electronic systems [27]. Thus because the
potential U(x, t) = ω2x2(t)/2 is usually affected by nonlinear noise in Brownian motion, we reformulate Eq. (4) to be

mDαx(t) + γDβx(t) + {ω2
+ g[ξ (t)]}x(t) = f (t), (0 < β ≤ 1, 1 < α ≤ 2), (5)

where g[ξ (t)] is the nonlinear function of ξ (t). The SR phenomenon is a nonlinear cooperative effect that is jointly induced by
external driving, noise and system and is closely related to the noise. Thus the non-linearity of the noise impacts the dynamic
behavior of system. Because quadratic noise is the most basic nonlinear noise, we focus our attention on it. There have been
prior research. Sagués [28] examined the non-Markovian dynamics of stochastic differential equations with quadratic noise.
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Hector [29] found the SR phenomenon in a single stable system driven by quadratic noise. Yu et al. [12] studied resonant
behavior in fractional-order Langevin equations with quadratic multiplicative noise.

Using this prior research we examine the resonant behavior in an oscillator with double fractional-order damping driven
by quadratic noise. Our goal is to investigate the influence of nonlinear noise and the order of the fractional-order damping
on system behavior. Using the fractional Shapiro–Loginov formula [17] and the Laplace transform technique, we obtain
the first moment and the amplitude of the output response. We use these results to study resonant behaviors when they
are impacted by nonlinear noise, fractional-order external damping, and fractional-order intrinsic damping. To verify the
analytical results, we carry out numerical simulations.

2. Systemmodel

We consider an oscillator with fractional-order external damping and fractional-order intrinsic damping driven by
quadratic multiplicative noise and described by the stochastic differential equation

Dαx(t) + γDβx(t)+ [ω2
+ a1ξ (t) + a2ξ 2(t)]x(t) = A cos(Ωt)η(t),

(0 < β ≤ 1, 1 < α ≤ 2), (6)

where external periodic force A cos(Ωt)η(t) is a periodicallymodulated noise, a1ξ (t)+a2ξ 2(t) is the quadraticmultiplicative
noise, and a1 and a2 are the linear coefficient and quadratic coefficient of the noise, respectively. Note that a1ξ (t) + a2ξ 2(t)
is the linear noise for a1 ̸= 0, a2 = 0 and a1ξ (t) + a2ξ 2(t) is the nonlinear noise for a2 ̸= 0. Here ξ (t) and η(t) are
correlated as

⟨ξ (t)⟩ = 0, ⟨ξ (t)ξ (s)⟩ = σξ exp(−λξ |t − s|);
⟨η(t)⟩ = 0, ⟨η(t)η(s)⟩ = ση exp(−λη|t − s|);
⟨ξ (t)η(s)⟩ = σξη exp(−λξη|t − s|).

where σξ and λξ are the noise intensity and correlation rate of ξ (t), ση and λη are the noise intensity and correlation rate of
η(t), and σξη and λξη are the correlation intensity and correlation rate between ξ (t) and η(t).

We here assume that ξ (t) and η(t) are both an asymmetric dichotomous noise (DN). ξ (t) takes two values A1 and −B1
(A1, B1 > 0), the transition rate of ξ (t) from A1 to −B1 is p1, and the inverse transition rate is q1. η(t) takes two values A2
and −B2 (A2, B2 > 0), the transition rate of η(t) from A2 to −B2 is p2, and the inverse transition rate is q2. Letting Λξ and Λη

denote the asymmetry of ξ (t) and η(t), respectively, we have

λξ = p1 + q1, σξ = A1B1, Λξ = A1 − B1;

λη = p2 + q2, ση = A2B2, Λη = A2 − B2.

We model both ξ (t) and η(t) as DN. It is both basic noise and a common colored noise that exists in such materials and
devices as metal, transistors, superconducting thin films, and nano-devices. DN also follows the pattern of a Poisson process
and is the limiting case (with a correlation rateλ → +∞) ofwhiteGaussian noise. In addition, the linear differential equation
with DN is solvable and thus applicable to a variety of problems [30,31].

In Eq. (6) the external periodic force is a periodically modulated noise. Periodically modulated noise is common in such
real-world networks as optical systems and communication systems [12,32,33] in which the external noise η(t) and the
periodic input signal A cos(Ωt) interact multiplicatively. Fig. 1 shows a plot of the curves of cos(0.3t)η(t) in time and
frequency domains, and we see that periodically modulated noise A cos(Ωt)η(t) varies periodically with time and that the
frequency of the periodic input signal A cos(Ωt) characterizes the frequency of the periodically modulated noise.

3. The first moment and the amplitude of the output signal

Taking the average of Eq. (6), we obtain

Dα
⟨x(t)⟩ + γDβ

⟨x(t)⟩ + ω2
⟨x(t)⟩ + a1⟨ξ (t)x(t)⟩ + a2⟨ξ 2(t)x(t)⟩ = 0. (7)

Applying the property of the DN yields

⟨ξ 2(t)x(t)⟩ = Λξ ⟨ξ (t)x(t)⟩ + σξ ⟨x(t)⟩. (8)

Inserting Eq. (8) into Eq. (7) we have

Dα
⟨x(t)⟩ + γDβ

⟨x(t)⟩ + (ω2
+ a2σξ )⟨x(t)⟩ + (a1 + a2Λξ )⟨ξ (t)x(t)⟩ = 0. (9)

Multiplying Eq. (6) by ξ (t) and averaging we have

⟨ξ (t)Dαx(t)⟩ + γ ⟨ξ (t)Dβx(t)⟩ + ω2
⟨ξ (t)x(t)⟩ + a1⟨ξ 2(t)x(t)⟩ + a2⟨ξ 3(t)x(t)⟩ = A cos(Ωt)⟨ξ (t)η(t)⟩. (10)

Applying the fractional Shapiro–Loginov formula and the property of the DN yields

⟨ξ (t)Dρx(t)⟩ = e−λξ tDρ(⟨ξ (t)x(t)⟩eλξ t ), (0 < ρ ≤ 2);
⟨ξ 3(t)x(t)⟩ = (σξ + Λ2

ξ )⟨ξ (t)x(t)⟩ + σξΛξ ⟨x(t)⟩.
(11)
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Inserting Eqs. (8) and (11) into Eq. (10) we have

e−λξ tDα(⟨ξ (t)x(t)⟩eλξ t ) + γ e−λξ tDβ (⟨ξ (t)x(t)⟩eλξ t )
+ (ω2

+ a1Λξ + a2σξ + a2Λ2
ξ )⟨ξ (t)x(t)⟩ + (a1σξ + a2σξΛξ )⟨x(t)⟩

= σξηA cos(Ωt).
(12)

Letting ⟨x(t)⟩ = x1, ⟨ξ (t)x(t)⟩ = x2, Eqs. (9) and (12) can be written⎧⎪⎨⎪⎩
Dαx1 + γDβx1 + (ω2

+ a2σξ )x1 + (a1 + a2Λξ )x2 = 0,

e−λξ tDα(x2eλξ t ) + γ e−λξ tDβ (x2eλξ t ) + (ω2
+ a1Λξ + a2σξ + a2Λ2

ξ )x2
+ (a1σξ + a2σξΛξ )x1 = σξηA cos(Ωt).

(13)

To solve Eq. (13) we use the Laplace transform and obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(sα + γ sβ + ω2
+ a2σξ )X1(s) + (a1 + a2Λξ )X2(s)

= (sα−1
+ γ sβ−1)x1(0) + sα−2ẋ1(0),

(a1σξ + a2σξΛξ )X1(s)
+ [(s + λξ )α + γ (s + λξ )β + ω2

+ a1Λξ + a2σξ + a2Λ2
ξ ]X2(s)

= σξη

As
s2 + Ω2 + [(s + λξ )α−1

+ γ (s + λξ )β−1
]x2(0) + (s + λξ )α−2ẋ2(0).

(14)

where Xi(s) =
∫

+∞

0 xi(t)e−stdt, i = 1, 2 and x1(0), x2(0), ẋ1(0), ẋ2(0) are the initial conditions.
Letting x3(0) = ẋ1(0), x4(0) = ẋ2(0) solve Eq. (14), X1(s) is

X1(s) = H(s)
s

s2 + Ω2 + H1(s)x1(0) + H2(s)x2(0) + H3(s)x3(0) + H4(s)x4(0), (15)

with

H(s) =
−σξηAd12

d11d22 − d12d21
,

H1(s) =
d22(sα−1

+ γ sβ−1)
d11d22 − d12d21

,

H2(s) = −
d12[(s + λξ )α−1

+ γ (s + λξ )β−1
]

d11d22 − d12d21
,

H3(s) =
d22sα−2

d11d22 − d12d21
,

H4(s) = −
d12(s + λξ )α−2

d11d22 − d12d21
,

d11 = sα + γ sβ + ω2
+ a2σξ ,

d12 = a1 + a2Λξ ,

d13 = (sα−1
+ γ sβ−1)x1(0) + sα−2ẋ1(0),

d21 = a1σξ + a2σξΛξ ,

d22 = (s + λξ )α + γ (s + λξ )β + ω2
+ a1Λξ + a2σξ + a2Λ2

ξ ,

d23 = [(s + λξ )α−1
+ γ (s + λξ )β−1

]x2(0) + (s + λξ )α−2ẋ2(0).

Using the inverse Laplace transform on Eq. (15) we obtain the solution of the first moment

⟨x(t)⟩ = x1(t) =

∫ t

0
h(t − τ ) cos(Ωτ )dτ +

4∑
k=1

hk(t)xk(0), (16)

where the Laplace transform of h(t) and hk(t), (k = 1, 2, 3, 4) are H(s) and Hk(s), (k = 1, 2, 3, 4) respectively.
In the long time limit t → +∞ the influence of the initial conditions disappears and the long time behavior of the first

moment from Eq. (16) is

⟨x(t)⟩as = ⟨x(t)⟩t→+∞ =

∫ t

0
h(t − τ ) cos(Ωτ )dτ = Ast cos(Ωt + ϕ), (17)

where Ast and ϕ are the amplitude and the phase shift of ⟨x(t)⟩as, respectively.
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(a) (b)

Fig. 1. (color online) The periodically modulated noise cos(0.3t)η(t): (a) time domain; (b) frequency domain. Other parameter values: λη = 0.5, ση = 1,
Λη = 1.

Using Eq. (15) we obtain the amplitude and the phase shift,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ast =

Aσξη|d12|√
f 21 + f 22

,

ϕ = − arctan
(
f2
f1

)
,

(18)

where

f1 = Ωαkα cos
(

π

2
α + θα

)
+ γΩαkβ cos

(
π

2
α + θβ

)
+ (ω2

+ a1Λξ + a2σξ + a2Λ2
ξ )Ω

α cos
(

π

2
α

)
+ γΩβkα cos

(
π

2
β + θα

)
+ γ 2Ωβkβ cos

(
π

2
β + θβ

)
+ (ω2

+ a1Λξ + a2σξ + a2Λ2
ξ )γΩβ cos

(
π

2
β

)
+ kα(ω2

+ a2σξ ) cos(θα) + γ kβ (ω2
+ a2σξ ) cos(θβ)

+ (ω2
+ a2σξ )(ω2

+ a1Λξ + a2σξ + a2Λ2
ξ ) − d12d21,

f2 = Ωαkα sin
(

π

2
α + θα

)
+ γΩαkβ sin

(
π

2
α + θβ

)
+ (ω2

+ a1Λξ + a2σξ + a2Λ2
ξ )Ω

α sin
(

π

2
α

)
+ γΩβkα sin

(
π

2
β + θα

)
+ γ 2Ωβkβ sin

(
π

2
β + θβ

)
+ (ω2

+ a1Λξ + a2σξ + a2Λ2
ξ )γΩβ sin

(
π

2
β

)
+ kα(ω2

+ a2σξ ) sin(θα) + γ kβ (ω2
+ a2σξ ) sin(θβ),

k =

√
λ2

ξ + Ω2,

θ = arctan
(

Ω

λξ

)
.

4. The resonant behavior of the output amplitude

Note that from Eq. (18) the behavior of the output amplitude Ast is fully determined by the combined system parameters
α, β , ω, γ , a1, a2, σξ , λξ , σξη , and Ω . We next examine the effect of nonlinear noise and fractional-order damping on the
output amplitude.
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(a) (b)

Fig. 2. (color online) The output amplitude Ast versus noise intensity σξ with various λξ : (a) a2 = 0; (b) a2 = 2. Other parameter values: γ = 1, α = 1.5,
β = 0.1, ω = 1, a1 = 4, Λξ = 1, σξη = 1, Ω = 0.3, A = 1.

(a) (b)

Fig. 3. (color online) The output amplitude Ast versus noise intensity σξ with various ω: (a) a2 = 0; (b) a2 = 2. Other parameter values: γ = 1, α = 1.5,
β = 0.1, a1 = 4, Λξ = 1, λξ = 1, σξη = 1, Ω = 0.3, A = 1.

4.1. The effect of nonlinear noise on the output amplitude Ast

Figs. 2–6 plot the curves of Ast as a function of σξ with different parameter values, including a1, λξ , Ω , ω, and β . To study
the effect of nonlinear noise on the output amplitude, we consider two situations, (i) a2 = 0 in which the system is driven
by linear noise, and (ii) a2 = 2 in which the system is driven by quadratic noise. Figs. 2a–6a show that when the system is
driven by linear noise (i.e., a2 = 0) all the curves of Ast (σξ ) show a resonance with one peak, and the position and height of
the resonance peaks are dependent on the parameters a1, λξ , Ω , ω, and β . Figs. 2b–6b show that when the system is driven
by a quadratic noise (i.e., a2 = 2) the evolution of Ast versus σξ shows two resonant behaviors: resonance with one peak and
multiresonance with two peaks. This resonant behavior is determined by a combination of a2, a1, λξ , Ω , ω, and β .

Thus the effect of nonlinear noise on the output amplitude differs from that of linear noise. When the system is driven
by nonlinear noise, the evolution of Ast versus σξ exhibits a more resonant behavior. This is because when the intrinsic
frequency of the system is affected by nonlinear noise a1ξ (t) + a2ξ 2(t) the potential

U(x, t) = [ω2
+ a1ξ (t) + a2ξ 2(t)]x2(t)/2

is strongly dependent on the nature of ξ (t) and the way in which nonlinear noise is generated, thus the fluctuation of
potential is more complex. The SR phenomenon is a nonlinear cooperative effect jointly induced by external driving, noise
and the system. The resonant behavior of Ast (σξ ) is changed under the combined action of complex fluctuating potential,
systemic, and external periodic forces.
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(a) (b)

Fig. 4. (color online) The output amplitude Ast versus noise intensity σξ with various Ω: (a) a2 = 0; (b) a2 = 2. Other parameter values: γ = 1, ω = 1,
α = 1.5, β = 0.1, a1 = 4, Λξ = 1, λξ = 0.3, σξη = 1, A = 1.

(a) (b)

Fig. 5. (color online) The output amplitude Ast versus noise intensity σξ with various β: (a) a2 = 0; (b) a2 = 2. Other parameter values: γ = 1, ω = 1,
α = 1.5, a1 = 4, Λξ = 1, λξ = 1, σξη = 1, Ω = 0.1, A = 1.

(a) (b)

Fig. 6. (color online) The output amplitude Ast versus noise intensity σξ with various a1: (a) a2 = 0; (b) a2 = 2. Other parameter values: γ = 1, ω = 1,
α = 1.5, β = 0.1, Λξ = 1, λξ = 1, σξη = 1, Ω = 0.1, A = 1.
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(a) (b) (c)

Fig. 7. (color online) The output amplitude Ast versus noise correlation rate λξ with various β: (a) Ω = 0.005; (b) Ω = 0.05; (c) Ω = 0.5. Other parameter
values: γ = 1, ω = 1, α = 1.5, a1 = 4, a2 = 1, Λξ = 1, σξη = 1, σξ = 1, A = 1.

(a) (b) (c)

Fig. 8. (color online) The output amplitude Ast versus noise correlation rate λξ with various α: (a) Ω = 0.005; (b) Ω = 0.05; (c) Ω = 0.5. Other parameter
values: γ = 1, ω = 1, β = 0.2, a1 = 4, a2 = 1, Λξ = 1, σξη = 1, σξ = 1, A = 1.

4.2. The effect of the fractional-order damping on output amplitude Ast

Herewe study the effect of fractional-order external damping and fractional-order intrinsic damping on the system. Fig. 7
shows curves of Ast as a function of λξ with different β andΩ values. Fig. 7a shows that the frequency of the external periodic
force is Ω = 0.005. The partial enlarged drawing shows the curves of Ast (λξ ) for β = 0.2 and β = 0.4. We see that the
curves of Ast (λξ ) have a resonance with one peak, and that as the value of β increases the resonance peak increases, with
its position first moving toward the right and then toward the left. This means that increasing β enhances the resonance for
Ω = 0.005. Fig. 7b shows that the frequency of the external periodic force is Ω = 0.05, that the curves of Ast (λξ ) have a
resonance with one peak, that as the value of β increases the resonance peak first becomes lower and then higher, and that
the position of the peak first moves toward the right and then toward the left. Increasing of β thus first suppresses and then
enhances the resonance for Ω = 0.05. Fig. 7c shows that the frequency of the external periodic force is Ω = 0.5, that the
curves of Ast (λξ ) display a resonance with one peak, and that as the value of β increases the resonance peak becomes lower.
This means increasing β suppresses the resonance for Ω = 0.5.

Fig. 8 shows the curves of Ast (λξ ) for different α and Ω values. Figs. 8a and 8b show that the frequencies of the external
periodic force are Ω = 0.005 and Ω = 0.05, respectively, that the curves of Ast (λξ ) have a resonance with one peak, that as
the value of α increases the resonance peak first becomes higher and then becomes lower, and that the position of the peak
moves toward the left. This means the increasing of α first enhances and then suppresses the resonance for Ω = 0.005 and
Ω = 0.05. Fig. 8c shows that the frequency of the external periodic force is Ω = 0.5, that the curves of Ast (λξ ) display a
resonance with one peak, and that as the value of α increases the resonance peak becomes higher. This means increasing α
enhances the resonance for Ω = 0.5.

Figs. 7 and 8 show that the order of the fractional-order damping strongly affects resonant intensity. When the external
periodic force is high-frequency, the higher the order of fractional-order intrinsic damping, the higher will be the resonant
intensity, and the higher the order of fractional-order external damping, the smaller will be the resonant intensity. This
can be due to the amplitude frequency characteristic of the fractional calculus. The fractional-order damping term Dρx(t)
is the Caputo’s fractional derivative of x(t). The integral and derivative are inverse operations to each other, and an acting



Y. Tian et al. / Physica A 490 (2018) 845–856 853

Fig. 9. (color online) Amplitude frequency characteristics of fractional integral.

(a) (b)

Fig. 10. (color online) The output amplitude Ast versus the frequency Ω of the external periodic force with various α, β: (a) a2 = 0.5; (b) a2 = 5. Other
parameter values: γ = 1, ω = 1, a1 = 4.2, Λξ = 1, λξ = 1, σξη = 1, σξ = 1, A = 1.

fractional derivative on the output signal x(t) implies an acting fractional integral on the input signal f (t). The Caputo’s
fractional integral of f (t) is defined [34]

J ρ f (t) =

∫ t

0

(t − τ )ρ−1

Γ (p)
f (τ )dτ =

tρ−1

Γ (ρ)
∗ f (t), (ρ > 0),

where∗ is the convolution. The amplitude frequency characteristic of fractional integral is |HJ (jΩ)| = Ω−ρ and the variation
curves of |HJ (jΩ)| is shown in Fig. 9. This figure shows that the gain of the fractional integral has a power-law decrease as
the frequency increases, and that when Ω < Ω0 the larger the order of ρ, the larger will be the gain. When Ω > Ω0,
the larger the order ρ, the smaller will be the gain. This confirms that the resonant intensity is related to the orders α, β
of fractional-order damping and the frequency Ω of the external periodic force. These results can be also explained from a
physical point of view.When the Brownian particle is driven by external periodic force in the viscoelastic media, its periodic
motion is closely related with the external damping force and itself energy consumption. Therefore the resonant intensity is
connected to the ordersα, β of fractional-order damping. In addition, the behavior of the systemwith double fractional-order
derivatives differs from the system with a single fractional-order derivative.

Because the resonant intensity is associated with α, β , and Ω , the evolution of output amplitude Ast versus Ω exhibits
various resonant behaviors shown in Fig. 10.

Fig. 10 shows the curves of Ast (Ω) for different a2, α, and β values. Fig. 10a shows that the quadratic coefficient of noise
is a2 = 0.5, that the curves of Ast (Ω) display resonance with one peak, and that the resonant behavior does not change with
α and β . Fig. 10b shows that the quadratic coefficient of noise is a2 = 5, that the curves of Ast (Ω) display resonance with
one peak and one valley and with one valley, and that the resonant behavior is closely related to α and β .

Fig. 10 shows that the output amplitude Ast (Ω) exhibits three resonant behaviors: resonance with one peak, resonance
with one peak and one valley, and resonance with one valley. The resonant behavior is closely linked to the nonlinear term
of nonlinear noise and to the orders α, β of the fractional-order damping.
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(a) (b)

Fig. 11. (color online) The output signal 1 for Eq. (6): (a) time domain; (b) frequency domain.

(a) (b)

Fig. 12. (color online) The output signal 2 for Eq. (6): (a) time domain; (b) frequency domain.

Themechanism for the SR phenomena in Fig. 10 can be explained as follows. The characteristic of the fluctuating potential

U(x, t) = [ω2
+ a1ξ (t) + a2ξ 2(t)]x2(t)/2

is closely related to nonlinear noise a1ξ (t) + a2ξ 2(t). At the same time the impact of α and β on the resonant behavior
strongly depends on Ω (see Figs. 7–9). Thus there are various SR phenomena under the combined action of nonlinear noise,
fractional-order external damping, and fractional-order intrinsic damping. Note that the SR phenomena in Fig. 10 agreewith
those in Figs. 7–8.

5. Numerical simulations

Wenowuse numerical simulations to verify the accuracy of the analytic results.We use the predictor–corrector approach
[35,36] to obtain a numerical solution for Eq. (6). Figs. 11 and 12 show two different output signals for Eq. (6) under the
same simulation conditions. The simulation time and time step affect the speed and accuracy of computation in numerical
simulation. In general, the larger time step should be selected without decreasing computational accuracy. In this paper, the
simulation time is T = 3000 s, the time step Ts = 0.1 s, the multiplicative noise intensity σξ = 1, the multiplicative noise
correlation rate λξ = 0.5, and the values of other parameters the same as those in Fig. 2b.

When the oscillator is driven by nonlinear noise 4ξ (t) + 2ξ 2(t) and the external periodic force cos(0.3t)η(t). Figs. 11b
and 12b show that output signal 1 and output signal 2 present a spike at Ω1 = 0.3 in the frequency domain, respectively.
Thus the system output signal is a simple harmonic vibration that has the same frequency as the external periodic force.
We also find that the value of output amplitude in Fig. 11b is A1(Ω1 = 0.3) = 1.3055, and the value of output amplitude
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Fig. 13. (color online) The mean squared error σ versus the simulation times N .

in Fig. 12b is A1(Ω1 = 0.3) = 1.2703. Within the allowable error, the numerical simulation results A1 = 1.3055 and
A1 = 1.2703 agree with the analytical result Ast = 1.2748 given by Eq. (18).

Under the same simulation conditions, the discrepancy in the simulation results occurs because the output amplitude is a
random variable in the presence of noise. To take the influence of noise into consideration, we use the Monte-Carlo method
to obtain themean squared error (MSE) σ versus simulation timesN , where σ =

√
1
N

∑N
n=1(A1n − Ast )2, A1n, n = 1, 2, . . . ,N

is the simulation n result given by the numerical simulation, and Ast is the analytical result obtained by Eq. (18). Fig. 13 shows
the behavior of the mean squared error σ as a function of simulation times N , where the values of parameters are the same
as those in Figs. 11 and 12. Fig. 13 shows that the mean squared error gradually stabilizes (σ → 5.55 × 10−2) when the
simulation time N is large enough (N > 500). Thus the numerical simulation result agrees with the analytical result given
by Eq. (18).

6. Conclusions

Wehave considered anoscillatorwith fractional-order external damping and fractional-order intrinsic dampingdrivenby
the quadratic noise, which is themost basic nonlinear noise. In our proposedmodel, we obtain an analytical expression of the
output amplitude and find various non-monotonic behaviors in the output amplitude. In particular, we focus on the impact
of nonlinear noise, fractional-order external damping, and fractional-order intrinsic damping on the resonant behavior. We
also present numerical simulations to verify the accuracy of the analytic results and demonstrate reliability of our findings
and their value in practical applications. Our conclusions are as follows:

(1) The system output response is a simple harmonic vibration that has the same frequency as the external periodic
force. The nonlinear noise plays a key role in system behavior. In quadratic noise the evolution of output amplitude
versus multiplicative noise intensity exhibits a more resonant behavior. There is resonance with one peak and
multiresonance with two peaks. The resonant behavior is determined by the combination of a2, a1, λξ , Ω , ω, and
β values.

(2) The order of the fractional-order damping strongly impacts resonant intensity. The impact of the order of fractional-
order external damping on the resonant intensity is opposite to the impact of the order of fractional-order intrinsic
damping. When the external periodic force is high-frequency, the higher the order of fractional-order intrinsic
damping, the bigger will be the resonant intensity, and the higher the order of fractional-order external damping,
the smaller will be the resonant intensity.

(3) The evolution of the output amplitude versus the frequency of the external periodic force exhibits three behaviors: a
resonance with one peak, a resonance with one peak and one valley, and a resonance with one valley.

In conclusion, the research shows that the nonlinearity of nonlinear noise plays a key role in resonant behavior, and
that a system with double fractional-order derivatives generates a more complex resonance effect than a system with a
single fractional-order derivative. Under the combined action of nonlinear noise, fractional-order external damping, and
fractional-order intrinsic damping the system presents an abundance of resonant behaviors. The results we present here
provide a theoretical foundation for further research on the effect of nonlinear noise on dynamic behaviors, and will be
valuable to those developing practical applications.
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