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Optimization of network robustness to waves of targeted and random attacks
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We study the robustness of complex networks to multiple waves of simultarigotasgeted attacks in
which the highest degree nodes are removed(ahdandom attacksor failures in which fractionsp, andpy,
respectively, of the nodes are removed until the network collapses. We find that the network design which
optimizes network robustness has a bimodal degree distribution, with a fraabibthe nodes having degree
k,=((ky—1+r)/r and the remainder of the nodes having dedgeel, where(k) is the average degree of all the
nodes. We find that the optimal value ofs of the order ofp/p, for p;/p, <1.
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Recently, there has been much interest in the resilience dfibution has a long power-law tafl.e., hubs with large de-
real-world networks to random attacks or to attacks targetedree, the scale-free networks are very vulnerable with
on the highest degree nodés-8|. Many real-world net-  respect to targeted attafk].
works are robust to random attacks but vulnerable to targeted (jii) Networks with bimodal degree distributiorior resil-
attacks. Itis important to understand how to design netWOfk%nce to Sing|e random or Sing|e targeted attacks, certain bi-
which are optimally robust against both types of attacksmodal distributions are superior to any other netwig].
with examples being terrorist attacks on physical network§jere we ask if these networks are also most resilient to mul-
and attacks by hackers on computer networks. Studies tf?ple waves of both random and targeted attacks.
date[7,8] have considered only the case in which there was " \ve present the following argument that suggests that the

only one type of attack on a given network—that is, thegegree distribution which optimizés is a bimodal distribu-
network was subject to either a random attack or to a tarsgn in which a fractionr of the nodes has degree

geted attack but not subject to different types of attack simul-

taneously. (Ky—1+r
A more realistic scenario is one in which a network is kp=—"""—

subjected to simultaneous targeted and random attacks. This

scenario can be modeled as a sequence of “waves” of tagnd the remainder has degige 1, and we show thatis of
geted and random attacks which remove fractipnandp,  the order ofp,/p,. To optimize against random removal, we

of the original nodes, respectively. The rafg/p, is kept  maximize the quantityx=(k?/(k), since for random re-
constant while the individual fractions; and p; approach  moyal the threshold ig3]

zero. After some timeafterm waves of random and targeted

attacks the network will become disconnected; at this point rand 1

a fractionf.=m(p,+p,) of the nodes has been removed. This fo =1~ 1 (2)

f. characterizes the network robustness. The lafgethe

more robust the network is. We propose in this Brief ReportSince we keegk) fixed, « is just the variance of the degree

a mathematical approach to study such simultaneous attackgstribution and is maximized for a bimodal distribution in
and find the optimal network design one which maximizesyhich the lower-degree nodes have the smallest possible de-
fc. In our optimization analysis, we compare the robustnesgreek,=1 and the higher-degree nodes have the highest pos-
of networks which have the same “cost” of construction andsjble degree consistent with keepiiik) fixed, k,=((k)—1
maintenance, where we define cost to be proportional to they/r Thys, k, is maximized wherr assumes its smallest

average degre¢k) of all the nodes in the network. possible valuer=1/N. On the other hand, if all of the high-
We study mainly two types of random networks. degree nodes are removed by targeted attacks, the network
(i) Scale-free networka/any real world computer, social, il be very vulnerable to random attack. So we want to
biological, and other types of networks have been found tQje|ay as long as possible the situation in which all of the
be scale free; i.e., they exhibit degree distributions of. thehigh-degree nodes are removed by targeted attacks—which
form P(k) ~k™ [9-17]. For large scale-free networks with argues for not choosingas small as possible but choosing

eXponent)\ less than 3, for random attacks essentially allsuch that some high-connectivity nodes remain as |0ng as
nodes must be removed for the network to become disconthere are some low-connectivity nodes. Such a condition is

nected[3,4]. On the other hand, because the scale-free disachieved when is of the order ofp,/p;.
The method we employ for determining the threshold
makes use of the following: the general condition for a ran-
*Electronic address: toshi@argento.bu.edu dom network to be globally connected[13,5,6]
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2 1.0
K= & =2. (3) i
(K 0.9}
Random removal of a fractiop, of nodes from a network
with degree distributionPy(k) results in a new degree distri- 0.8
bution[3] o
K 07
Pl =2 Po(k)<|;°>(l = PP @) '
ko=k 0.6

whereK is the upper cutoff of the degree distribution. Tar-
geted removal of a fractiop, of the highest-degree nodes
reduces the value of upper cutdffto K, which is implicitly 0.0001
determined by the equation

K
pe= > Po(k). (5) 0.9

k=K

. 0.8
The removal of high degree nodes causes another effect.

Since the links that lead to removed nodes are eliminated, the o ¢.7
degree distribution also changes. This effect is equivalent to

the random removal of a fraction @fnodes where 0.6
8 -O- p,=0.1
S kPok) 05 4 o p,=0.2]
'ﬁ:T. (6) 04 é . . . —A—pr=0.4
0 o 2 4 6 8 10
The averagék), is taken over the degree distribution before r/(p/p;)

the removal of nodef5]. Equation(4) with p, replaced byp

can then be used to calculate the effect of the link removal. FIG. 1. (@ The thresholdf; of three bimodal networks with
Starting with a certain initial degree distribution, we recur-(k=3, with (i) r=2x10" and k,=200, (ii) r=5X10"° and k,
sively calculateP(k), alternating between random and tar- =90, and(iii) r=10"2 andk,=50. The results are plotted as a func-

: tion of the ratiop,/p, for three fixed values qgf,. These plots show
geted attack using Eq$4)—(6), and calculate« after each ! Pr v !
wave of attacks. Whew< 2 global connectivity is lost and that the values of the threshold are dependent only on thep@p

_ . and independent of the value pf itself. (b) Scaled plot of the data
fe=m(p,+p) wherem is the number of waves of attacks in (a). Thpe data show that thgfplots (Eollapse inpthe region where
performed._ _ o _ t/(pd p) = 1.

We begin our study by first establishing numerically that,
for small values oy, p,, andp;/p;, the threshold, depends
only on p,/p;. In Fig. 1(a), we plot the threshold, of a
network with a bimodal degree distribution witk)=3 for

various values op, andr as a function of the ratip,/p,. The

collapse of the plots with the samebut differentp, shows 1.0]— p¢p, = 0.005 :
that the values of threshold are essentially independent of the - pdp,=0.01 It
value ofp, itself but depend only on the ratig/p,.* 0.9]-- p¢p, =0.02 o l

In Fig. b) we plot f, against the scaled variable
r/(p/p;). We see that the plots for different valuesratol-
lapse, indicating that only the scaled variablép,/p,) is
relevant

Next we study the dependencefgfon k,. As seen in Fig.
2, as expected the maximum valuesfgfor various values
of p/p, are obtained wherk, is maximumf i.e., whenk;
=1; see Eq(1).]. .. T

We are now in a position to determine the valuerof 04p = : 3
which optimizesf, rqy. In Fig. 3, we plotf; as a function of 50 100 150 200
the scaled parameter (p,/p,) with k, set to the maximum ko

FIG. 2. The threshold, versusk, for a bimodal network with
A similar dependence on only,/p, is also found in other net- (k)=3 andr=1072 for three values op,/p;,. The value ofp, is fixed
work types including scale free. at 0.02. For each value @/ p;, the thresholds take their maximum
2Similar results are obtained for other values(lof. values at the maximurk, (obtained wherk;=1).
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FIG. 3. The threshold, versus the scaled parametdfp/p;) FIG. 4. The threshold, versusp,/p,. The topmost(thickes)
for a bimodal network withk)=3 andk, maximum(i.e., k;=1). curve is for a bimodal network witkk)=3 with k;=1 and withr

optimized by Eq.(7) for each value ofp/p,. The values of the
value possible for each value of We note that there is a threshold for the same bimodal network wki=1 when we fixr
transition at a well-defined value af (p,/p,) at which f, independent ofy/p, are plotted in thin curves. The valuesroére
increases rapidly to a shallow maximuif at roy/ (p/p,) =001, 0.002, 0.005, 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, and
~1.7. This value ofry,/(p/p,) is valid for p/p,<1. In 0.15, from left to right. The curve marked with crossed circles
order to determine /‘EFS /pt) orver a wider rantger we make 'S @ plot of the threshold values for a scale-free network With
extensive numeric;'I)t Caltculrations for £6¢ p./p <’O 1. For =3,N=10% and with exponent values in the range 2.3 to 2.5 chosen

t r . .

for eachp,/p, to optimize the threshold. Note that the thresholds for
each value ofy/p;, we calculate the valug,,/ (p,/p;) where 0ol networks with 0.0% 1 < 0.09 are always more robust than

f. takes its maximum value and find the optimized scale-free network.
2
Sopt 47 51{&) + o(&) (77  bimodal degree distribution with a fractianof the nodes
PPy r r having degreek,=((k)—1+r)/r and the remainder of the

nodes having degree 1. The optimal valueraé approxi-
mately 1.7(p,/p,) for p/p,<1. For larger values op,/p;,

the optimal value ofr is 1 and all nodes have degrée.
Even if p/p, is not known exactly, a value of can be
chosen which maximizes the network robustness over a wide
range of values ofy/p;, as seen in Fig. 4. Of course, there
ge other quantities which one may want to optimize in ad-

within the range of our calculation. For larger values of
Pt/ Pry Fop=1 and from Eq(1) all nodes have degreg). In
Fig. 4, we plot the values of the optimal threshdfdl' by a
thick solid curve.

In Fig. 4 we also plot the values of the threshéldor the
same bimodal network but we fixindependent of,/p,. We
see that these configurations are not significantly less robu
than the optimal configuration. Thus, even if we do not know
the ratiop,/ p, exactly, we can design networks which will be
relatively robust. For example, the bimodal network with
=0.03 is relatively robust fop,/p,=<0.1 and the bimodal
network withr=0.09 is robust fop,/p, < 1. Also plotted in
Fig. 4 is the optimal scale-free network witky=3. We see
that the optimal bimodal network is more robust than the
optimal scale-free network and we can even pick a configu-
ration with fixedr (e.g.,r=0.03 which is more robust than
the optimal scale-free network in most rangepgp,.

In Fig. 5 we show a typical optimal realization of a bimo-
dal network. The network oN=100 nodes consists oN
nodes with k=k, (“hubs” which are highly connected
among themselves; the nodes of single degree are each con-
nected to one of these hubs. We note that while the hubs are
highly connected among themselves, they do not form a
complete graph—every hub is not connected to every other <, O
hub. For largeiN, the fraction of hubs to which a given hub of ®
connects decreases but the robustness of the network is un- ° dd oo ©
changed.

In summary, we have provided a qualitative argument and FIG. 5. Realization of bimodal network withi=100 nodes,
numerical results which indicate that the most robust net¢ky=2.1, andr=0.1, so there areN=10 “hub” nodes of degree 12,
work to multiple waves of targeted and random attacks has as found from Eq(1).
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dition to network robustnes®.g., shortest paths, flow, etc. single random attack results in the network becoming dis-

This work provides the conceptual structure in which theseconnected, the optimal distribution is also bimodal whth

optimizations can be performed. =1, k,=((k)=1+r)/r andr of the order ofp,/p,, supporting
We note that while the optimal distribution found here andthe results found here for multiple waves of attacks.

that found in Ref.[8] are both bimodal, the values of the . . .

parameters characterizing these distributions are different. As We thank S. Sr_eemvasan for helpful discussions and ONR

found in Ref.[8] the network with optimal resilience to ei- and the Israel Science Foundation for support.

ther random or targeted attack has1/N andk,~ =23, Fi-

nally, we note that it is possible to prove analytically that for *T. Tanizawa, G. Paul, R. Cohen, S. Havlin, and H. E. Stanley,

the case in which a single targeted attack followed by gunpublished
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