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The critical-point exponent 7 for a critical point of order © in dimensions less than d g =20/ (0 - 1),
is calculated to leading nonvanishing order in the parameter eg=dg—d. The result is given for n-compo-
nent isotropically interacting magnetic systems. For Ising systems, #=1, the result is no=€34(0—-1)?/(3%3.
As 0 increases, the coefficient of €3 rapidly becomes very small, varying as 27%0 for @large. In the limit of
large n, ng for odd order points approaches a constant and, for even order points, is proportional to 1/n.

The classification and study of critical points of
“higher order” has been of recent interest.'~” The
order of a critical point is defined by some authors
to be the number of phases simultaneously critical
at the critical point, *2 Thus, an ordinary critical
point is an © =2 point; tricritical points are 0 =3
points. Although there are many kinds of higher-
order points, > much of the work has concentrated
on systems that in the mean-field approximation
could be represented by a Landau-Ginzberg form
for the Hamiltonian density,

1@ = [ % s(x>l2+2(2k),(s ).

where we have specialized to the “magnetic” case
of an isotropically interacting z#-component spin
s(x).

The renormalization-group approach to such sys-
tems was introduced by Wilson® for the case 0 =2,
Corrections to mean-field behavior are calculated
in a perturbation expansion in €;=4 -d. The tri-
critical case, ©=3, has been studied by Riedel and
Wegner* at d=3. Chang, Tuthill, and Stanley and
Stephen and McCauley calculated exponents below
three dimensions in an expansion in €;=3 -d. %8
Reference 5 also gave explicit exponents to first
order in €,= £ —d for the ©=4 case. The critical-
point exponents for the general @ case were given
in Nicoll, Chang, and Stanley’ to first order in
€=20/(0-1)-d. The critical-point exponent 71
was shown in Ref. 7 to be at most O(€%). In this
work, we complete the calculation of all critical-
point exponents to leading order by calculating 7
to O(ed).

The €y calculations of Ref. 7 were based on the
differential renormalization-group generator of
Wegner and Houghton. ® The calculation of 7 by this
method is difficult and, therefore, through most of
this work we will adopt a field-theoretic approach
utilizing Feynman diagrams., However, we will
extract the dependence of 1 on the number of spin
components # by combining graph counting with the
solutions of Ref. 7.

11

Followmg the method used to locate fixed
points, 5~° we assume u,, to be O(¢p) for k= 0. It
is then possible to carry out a self-consistent per-
turbation expansion in the parameters u,, ug, ..., Uy
while applying a “mass counterterm”?® so that the
bare propagator is (% +7)™, with » ! the zero-order
ing-field susceptibility. The exponent 7o is defined
by a proportionality relation for the Fourier trans-
form G of the spin-spin correlation function for
small wave number,

G p)~p*™o ~pP(1 =Nglnp + =), (2)

at the order-0 point (=0). We will now show that
to O(€?), the calculation of 7o involves only two
Feyman graphs to be evaluated in dimension dg.

In the perturbation expansion for G™! we may
write

GYp,7) =P +v+Z(p, 7), (3)

where Z represents the sum of all remaining graphs
(with counterterm) displayed schematically in Fig.
1. The mass counterterm u, — 7 cancels all p-in-
dependent terms in (3) (in particular, all single-
vertex diagrams). The series may be further sim-
plified by formally eliminating closed loops that
include only one vertex and introducing 7-dependent
generalized vertices ,,(7), defined by

Upe (V) = ”2k+Z:'1§2‘,’“TZL [F(r)]! (4)

Here, as in Ref. 6, F(7) represents the loop inte-
gral [d*pG(p, ¥)/(27)*. With this change in notation
and to O(€2), the set of graphs in T is reduced to
those shown in Fig. 2.

Next, we note that #%,,(»=0)=0 for all 2<©, This
follows from Wilson’s scaling theorem?® for 2k-point
vertex functions

r2k(p = 0) ~ ,rk-(k-l)d/(z-n) B (5)

For d=dgy, Eq. (5) requires that I',, vanish at
=0 for all k<O, Since the first-order perturba-
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FIG. 1 Perturbation series to O(eg) for the function
=, 7), defined by Eq. (3). Each diagram carries net
momentum P.

tion expansion for T',, is just #,,, Uy, must vanish
as well, At the critical point, therefore, all the
graphs except the last shown in Fig. 2 are zero.
The combinatorial factor for this diagram may
be evaluated by considering first the Ising case, in
which it is simply 1/(20-1)!. To determine the
n dependence, it suffices to note that a factor of
n+2N -2 is associated with the connection of two
legs of a single 2N-leg vertex., Thus, the n depen-
dence of the u2, diagramis given by f,(n)/(20-1)!,
where

'8 !
Ao T3 ®)

With this factor and denoting the uZ, integral by
I,, the correspondence between (2) and (3) gives

P —nanﬂwh%

X [Il(py 7’=0)]p21nppart' (7

Since g is O(€p), 7p is clearly O(e2).

The fixed point value of u,, remains to be deter-
mined; it is chosen so that the vertex functions
satisfy scaling laws. For 2=0 in (5) this gives

Ty~ 70O V/2~ 1 L ¢ [(0-1)/2]In7 .. . . (8)

The constant of proportionality must also be ex-
panded as a series in €, so that
To=A +€o1[A(0 - 1)/2]1n7 + B}, (9)

with A and B constants,
In first order, T',qis uy, so that A=u,9. Second-

FIG. 2. Mass counterterm u, -7 cancels all p-in-
dependent terms in £, and the use of the generalized
vertices #y(7) eliminates all closed single-vertex loops.
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FIG. 3. Typical second-order contribution to Tyq.
The 20 external lines carry no momenta.

order terms all involve two-vertex diagrams u,;

Uy (With 7, 1’<0) and graphs with internal lines
numbering I <0, (cf. Fig. 3). The 7 dependence of
Uy, is given by the integral F(r) - F(0), since by
the remarks above #%,,(0)=0 for I<o:

d’k 11
—-F(0)= [ o (——
£ -F0= [y ()
Q  [~FSdk
= - v
2m) -{)‘ Bar’
where ,=2(m)*2/T'(3d) is the area of the unit

sphere in dimension d. Changing variables, we
have

(10)

© g 4273
F(r) - F(0)=- L y(d-a)/z/ dxx®? (11)
0 z

(27 1+x

The integral converges for 2<d<4 so that all 7
dependence is in the prefactor; no In7 factors are
present.

Next, we examine the 7 dependence of the graph
of Fig. 3. By power counting, this integral di-
verges like 7#"9/ D for small 7. [For <0, the in-
tegral converges at large k2 without a momentum
cutoff, and a change of variables similar to that in
(11) shows that the diagram gives a prefactor of
y{i-0/©-1 myltiplied by a convergent integral. ]
Only for ¢=0 will In» terms arise; the integral for
this case is denoted as (7).

To compare with the scaling form (9), we note
that the perturbation expansion gives

Fae=“ze-(_zc'2)2(!.)_lgz)(2ﬁ udgerr . (12)

The resulting Value for u,p to first order is

~(0-1)(01)¢
2 =——[——T——9— . 13
2 (20‘) 12(1’) Inrpart’ ( )
Combining (13) with (7), the expression for the ex-

ponent 7o (for #=1; » dependence will be discussed
below) to leading order is

(0~ 1Y (oN)°[L,(p)],2
o= 50— 1)1 [@oD FIL (ML, - (14)

All that remains is the calculation of the two in-
tegrals
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N A oifR \201
ll=fd"Re‘5 R < W—?— (15)
and

12=fddﬁ(f(‘%qik:g—f (16)

where d and © are, of course, related by d=dp
=20/(9-1). Both integrals are divergent as writ-
ten; I, diverges quadratically and I, diverges loga-
rithmically. To extract the finite terms desired,
we cut off the R integrations by integrating over
IR|>A™,

From Bateman'® we note that

[atzettt= [ ax sttt I Gy, (1)
0
where v=3(d —2). Therefore, applying (17) to (15)

we have

[Qr@d/2)Br= _,. Lpiye
11=—(2"—,,in 1/ARd YdR J,(Rp) (3RP)

| [ 1 ar J(kR) (zkR)™ o . (18)
U ]

The inner integral can be evaluated exactly; after
a change of variable (18) becomes

L 2p=1 20-1
= (BECDETTO N o risay e

xfp/A dx x73 J,(x%) (32)™ . (19)

The integral over the interval [1, =) gives a finite
contribution to the p? term. The integral over the
interval [p/A, 1] can be evaluated by expanding the
Bessel function in its Taylor series. We find that

Q,T'(3d) 22711 (v) | 201
Iﬁ( @y )

The I, integral can be handled in the same way
except that »#0. Although the inner integral with
nonzero ¥ can be performed exactly, it is not nec-
essary to do so explicitly. We merely note that

ddE eifsﬁ ~ zv-lr (V)
f @m?® ¥+r ~(2m)i/2R2
where C(x) is analytic at x=0, C(0)=1, and C(x)
~1/x for x large. The I, integral is therefore
_q (2LGD 2> )0
IZ‘Qd< (z,n.)d F(V)
dx
VF/AX

C(YR?), (21)

X Cox?. (22)
The integral over [1, ) is a finite constant which
we may discard. For the integralover [V¥/A, 1], C(%)
may be expanded in its Taylor series. Thus,

_ Sy (9D (zd) 22!
T2 ( (2m)?

Combining (14), (20), and (23) we have for n=1 the
following simple expression

N9 =4(0 — 1) 4/%)°. (24)

For the general # case, more combinatorial factors
must be computed. The # dependent factor for the
numerator is f;(#), given in (6). The combinatorial
factor for the fixed-point vertex u,o is more com-
plicated. In the differential-equation formulation
of Ref. 7, these same combinatorial complications
determine the # dependence of the fixed point. In
Ref. 7, this » dependence is given as an integral
involving three generalized Laguerre polynomials,
Performing this integral we find!! the combinatorial
factor for the numerator is f,(#), where

I, I“(u))a In7 + O(1nA). (23)

(D"(0,0)10)

2= 556.0)10)

(25a)

L . g L.

Xﬂdr\l(zd) P2Inp +O(A2). (20) and the inner p.roduct (D"(0,0)10) is given by the

4T (3d+1) double summation
|
1 1 . . 1
n _ o+zn—1\fo+an-1\ . - (z+]—2>(z+]—1+§n) yied
@000 -0 (0 N p-ts@-n@-01 ()Y ) coml e
I
With these combinatorial factors, the result for e (n+2)(n+4) (27)
5= 312(3n + 22)°

general # and general O is

_1\2

It is easy to check that (26) reduces to the pre-
viously calculated results for ©=2° and 0 =38,

ny=ed 2
2 22(714-8)2’

We note that as © increases the coefficient of €&
rapidly becomes very small, ~ 2 for 0 large. In
the limit of large »n, no for odd order points ap-
proaches a constant and, for even order points, is

proportional to 1/n,
For all ©= 3 we have do< 3, and the mean-field

result, 7y=0, therefore applies in three-dimension-
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al systems. However, these results and those of
Refs. 5-7 may apply to higher-order critical points
in two-dimensional systems. In any event, the
previously obtained results® for ordinary critical
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points are placed in a broader theoretical context
by the extension to general 0. '

We wish to thank Prof. T. S. Chang for many
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