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h i g h l i g h t s

• We construct a theoretical model of interdependent supply chain network.
• A time-varied cascading failure model of failed loads propagation is developed.
• We present a priority redistribution strategy for failed loads propagation.
• The robustness of supply chain network is assessed in three node removal ways.
• The simulation results show a sudden collapse of interdependent supply chain network.
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a b s t r a c t

A supply chain network is a typical interdependent network composed of an undirected
cyber-layer network and a directed physical-layer network. To analyze the robustness
of this complex interdependent supply chain network when it suffers from disruption
events that can cause nodes to fail, we use a cascading failure process that focuses on load
propagation. We consider load propagation via connectivity links as node failure spreads
through one layer of an interdependent network, and we develop a priority redistribution
strategy for failed loads subject to flow constraint. Using a giant component function and
a one-to-one directed interdependence relation between nodes in a cyber-layer network
and physical-layer network, we construct time-varied functional equations to quantify
the dynamic process of failed loads propagation in an interdependent network. Finally,
we conduct a numerical simulation for two cases, i.e., single node removal and multiple
node removal at the initial disruption. The simulation results show that when we increase
the number of removed nodes in an interdependent supply chain network its robustness
undergoes a first-order discontinuous phase transition, and that even removing a small
number of nodes will cause it to crash.
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1. Introduction

In recent years we have begun to understand the behavior of such phenomena as natural disasters, the breakdown of
technological systems, epidemic propagation, and spreading social unrest in terms of their complex network structure.
During these events, supply chain systems often collapse, e.g., during the 2011 earthquake in Japan the Toyota Motor
Company was forced to stop operations in twelve assembly plants and absorb a production loss of 140,000 vehicles.
The main cause of this problem was the disruption of the supply chain supporting the manufacturing subsystem. During
disruptive events, supply chains are particularly vulnerable to propagating failure. A major cause of this is the connectivity
and interdependent relationships between supply chain partners. Dependence relationships can cause the transmission of
disruptions to ‘‘snowball’’ through a supply chain network or through a portion of it [1].

In order to develop effective countermeasures to these disruptions, we must understand the conditions that allow them
to occur and the mechanisms that drive risk propagation. Linked relations are one precondition for cascading failures that
collapse a supply chain system, but there are others. As information and network technology becomes increasingly sophisti-
cated, supply chain systems increase in complexity and become ever more dependent on a collaborative network structure.
Most real-world supply chain collaborative networks consist of two networks: an undirected cyber-layer network and a
directed physical-layer network. As the two layers interact they guarantee the function of the supply chain system, but they
also become less robust to attack and breakdown and more likely to facilitate global collapse. A significant amount of em-
pirical and quantitative research has been done on supply chain risk management, including measuring global supply chain
risk, planning for catastrophic events in supply chains, and increasing chain agility and risk mitigation [2]. These research
have been of limited usefulness because they have been focused on the risk of cascading failure in single isolated networks
and, in contrast, most real-world supply chain networks are geographically dispersed across regions and countries [3–5].

Most current studies of cascading failures in complex networks have focused on single networks [6–12]. Because it is
difficult to depict real-world network systems using a single network model, e.g., a supply chain network with multiple
attributes andmultiple functions, some researchers have proposed a ‘‘super network’’ concept [13–16], and interdependent
network models have also been proposed. A notable case is the work by Buldyrev et al. [17] in which they describe a one-
to-one correspondence model for studying the ramifications of interdependence between two networks. Their analytical
framework is based on a generating-function formalismwidely used for studies of percolation and structure within a single
network [7]. This framework for interdependent networks enables us to follow the dynamics of the cascading failures and
derive analytic solutions for the final steady state. Inspired by the work of Buldyrev [17], many researchers have studied
interdependent networks from different angles [18–26].

Most of the above researches especially those related to interdependent networks, do not consider the spreading of failed
loads, and thus their determining whether neighbor nodes connecting with failed nodes will fail depends on the connectiv-
ity links and dependence links, and not on the capacity of the neighbor nodes. Unlike most of these previous works, which
focuses on interdependent networks formed from undirected networks, we analyze the cascading failure process and the
robustness of interdependent networks that are composed of both undirected and directed networks. We also take into
account the flow constraints present when failed loads propagate through a directed layer network, which is an important
factor in a supply chain network. We examine the cascading failure mechanism of an interdependent supply chain network
subject to a one-to-one interdependence relation in order to measure its robustness against disruption when it is composed
of an undirected cyber-layer network and a directed physical-layer network. Our results can provide a scientific basis for
the structural optimization of an interdependent supply chain network and for the development of a robustness control
strategy.

2. Theoretical model of interdependent supply chain networks

As described above, an interdependent supply chain network is composed of a physical-layer network GP and a cyber-
layer network GL. We assume all suppliers, production centers, distribution centers, and customers to be network nodes.
Because the cyber-layer and the physical-layer of a supply chain network are interactive, failed nodes in one layer can
propagate their failure through dependence links to nodes in both layers. The links between nodes in the same layer are
connectivity links, and they can transfer failed loads. The links between nodes in different layers are dependence links. In
this two-layered interdependent supply chain network, failures caused by disruption are redistributed.

Here both networks have N nodes. Without loss of generality, we assume the nodes in network GP are connected with
directed links using a degree distribution function PP(k), which contains an in-degree distribution PP(kin) and an out-degree
distribution PP(kout). The nodes in networkGL are similarly connectedwith undirected links using a degree distribution PL(k).

2.1. Supply chain physical-layer network

A supply chain physical-layer network is composed of suppliers, manufacturers, distributors, retailers, and customers,
all of which can be denoted as nodes, and the connecting relationship between entities can be denoted as edges. A model of
a physical-layer network can therefore be represented as

RP
= (V P , EP ,W P , LP , CP), (1)
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Fig. 1. Example of a supply chain physical-layer network.

where V P
= {vP

1 , v
P
2 , . . . , v

P
n } is a set of nodes, and EP

= {(vP
i , v

P
j ) | ePij = 1 or 0} is a set of connectivity links. Here,

ePij = 1 indicates that a directed connection from node vP
i to node vP

j exists; otherwise, ePij = 0. In a supply chain
physical-layer network, nodes of suppliers connect to nodes of manufacturers, nodes of manufacturers connect to nodes
of distributors or customers, nodes of distributors connect to retailers or customers, and nodes of retailers connect to nodes
of customers, as shown as Fig. 1. When a disruption occurs, the failed loads propagate via these directed connections. In
addition, W P

= {wP
ij | ePij = 1, i, j = 1, 2, . . . , n} is a set of load constraints on connectivity links, and indicates the

maximum permitted failed load that can be propagated. Each physical node thus usually employs countermeasures for risk
prevention, e.g., improving inventory level, in order to reduce risk and restrict the size of failed loads that can be propagated
through connectivity links.

In our network model, we define the initial degree of node vP
i as Ki (Ki = Ki(in) + Ki(out)), where Ki(in) is the in-degree of

node vP
i , and Ki(out) is the corresponding out-degree. We define LPi(0) as the initial load of node vP

i , which is a function of the
out-degree of node vP

i [27] represented by

LPi(0) = αKβ

i(out), (2)

where α and β are adjustable parameters, and α, β > 0. For a supply chain physical-layer network, the initial load of a
node is positively related to its out-degree. When node vP

i fails, its failure is redistributed to its neighbor node vP
j through

out-degree connectivity link ePij .
CP

= {cP1 , cP2 , . . . , cPn } is a set of node load constraints and denotes the largest load capacity allowed a node. If the load of
a node exceeds its capacity, it fails. In a supply chain physical-layer network, the capacity CP

i of node i is linearly correlated
with its initial load LPi , and thus the node capacity is

CP
i = (1 + σ)LPi(0), (3)

where σ ≥ 0. When load LPi(t) of node vP
i at time t is larger than its capacity CP

i , node vP
i will fail. When LPi(0) ≤ LPi(t) < CP

i ,
node i is in a normal state. A higher node capacity usually indicates a higher cost. Consequently, CP

i is limited by the cost
constraint.

2.2. Supply chain cyber-layer network

A supply chain cyber-layer network composed of cyber entities is undirected because the data can be transmitted in
both directions. Here we assume that each physical enterprise entity possesses a corresponding cyber node, and thus the
number of nodes in a cyber-layer network is the same as that of a physical-layer network. Similarly, a model of supply chain
cyber-layer network can be represented by

RL
= (V L, EL, LL,W L, C L), (4)

where V L
= {vL

1, v
L
2, . . . , v

L
n} is a set of cyber node entities, and EL

= {(vL
i , v

L
j ) | eLij = 1 or 0} is a set of undirected

connectivity links; eLij = 1 denotes that data propagation between node vL
i and node vL

j exists; otherwise, eLij = 0, as shown in
Fig. 2. In a cyber-layer network, high-degree nodes function as hubs, and their failure when attacked has dire consequences.
When a disruption occurs, the congestion data of a failed node will be propagated via these undirected connectivity links.
W L

= {wL
ij | eLij = 1, i, j = 1, 2, . . . , n} is a set of flow constraints on undirected connectivity links, and indicates the

maximum permitted data load that can be propagated.
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Fig. 2. Example of a supply chain cyber-layer network.

Fig. 3. One-to-one interdependence relations between nodes in an interdependent supply chain network. The arrows indicate the interdependence
relations between nodes: (a) node vP

j in GP depends on node vL
i in GL , and once node vL

i fails, node vP
j will also accordingly fail; (b) node vL

i in GL depends
on node vP

j in GP , and once node vP
j fails, node vL

i will also fail; and (c) node vL
i in GL depends on node vP

j in GP , and vice versa. Once any one node fails, the
other node will also fail.

In contrast to the physical-layer network, we define the initial degree of node vL
i in a cyber-layer network to be Ki, and

the initial load of cyber node vL
i to be

LLi(0) = αKβ

i . (5)

Here the initial load LLi(0) denotes the initial amount of data. In addition, C L
= {cL1, c

L
2, . . . , c

L
n} is the set of constraints on

the cyber nodes and represents theirmaximumdata capacity.When a cyber node fails due to attack, the resulting congestion
data are propagated to the neighbor nodes through undirected connectivity links, and the capacity C L

i of cyber node vL
i is

C L
i = (1 + σ)LLi(0). (6)

2.3. Description of interdependence relations

Because an interdependent supply chain network is composed of a physical-layer network and cyber-layer network,
we need to know the interdependence relation between the nodes in the two layers in order to quantify the risk
propagation facilitated by these interdependent relations. We here assume that each node in the physical-layer network
has a one-to-one relationship with only one node in the cyber-layer network. Fig. 3 shows several different kinds of node
interdependence.

Fig. 3 shows that each node in the cyber-layer network depends on only one node in the physical-layer network, and vice
versa. The set of nodes in GL is V L

= {vL
1, v

L
2, . . . , v

L
n}, and in GP it is V P

= {vP
1 , v

P
2 , . . . , v

P
n }. We use Φ(vL

i ) = vP
j to indicate

that node vL
i in GL is mapped to node vP

j in GP , and Φ−1(vP
j ) = vL

i to indicate that node vP
j in GP is conversely mapped to

node vL
i in GL. Since the mapping has a one-to-one relation, we obtain Φ(vL

i ) = vP
j only when Φ−1(vP

j ) = vL
i .

3. Cascading failure model of failed loads propagation

To analyze the process of a cascading failure in an interdependent supply chain network, we construct a model to
describe failed loads propagation in an isolated network and in interdependent networks. As described above, a two-layer
interdependent supply chain network has connectivity links within each layer and dependence links between them. The
dependence link that connects one node in network GL with one node in network GP maintains the communication and
collaboration between GL and GP , and thus supports the functioning of the interdependent supply chain network.

We assume that there is a fraction qp of nodes in physical-layer network GP that depend on the nodes in cyber-layer
network GL, and a fraction ql of nodes in cyber-layer network GL that depend on the nodes in physical-layer network GP . We
use RvLi v

P
j
and RvPj vLi

to express the interdependence between nodes vL
i and vP

j , respectively, which are given by

RvLi v
P
j

=


0 no dependence between node i in GL and node j in GP

1 node i in GL depends on node j in GP ,
vL
i ∈ V L, vP

j ∈ V P (7)
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RvPj vLi
=


0 no dependence between node i in GL and node j in GP

1 node j in GP depends on node i in GL,
vL
i ∈ V L, vP

j ∈ V P . (8)

According to Eqs. (7) and (8), ql =


RvLi v
P
j
/n, and qp =


RvPj vLi

/n.

3.1. Process of a cascading failure in an interdependent supply chain network

We assume that when a node is not connected to a giant component [7] it is not functioning and has failed. When a
fraction 1 − p of nodes in GL or GP is initially removed, the resulting cascading failure occurs as follows.

Stage 1: When a fraction 1 − p of nodes in GL or GP fails, the risk load of these failed nodes first propagates through
connectivity links in the same layer network according to a priority redistribution strategy. This divides each layer into
several components, and the valid nodes are those that have not failed after redistribution.

We construct the supply chain cascading failuremodel using a flow constraint and node capacity constraint, and through
the giant component function YL,P we can determine the probability that a surviving network node still belongs to an
effective cluster after failure load propagation. We formulate the comprehensive efficiency index (robustness index) used
to measure network robustness according to YL,P .

If node vP
i fails in directed network GP , the failed load will be propagated to its neighbor nodes vP

s based on a priority
redistribution strategy. The redistribution probability is defined as PP

s , P
P
s = αKβ

s(out)/


s∈Ni
αKβ

s(out), where Ni is the set of
nodes s that are neighbors of node vP

i . However, if node vL
i fails in undirected network GL, the risk load propagates according

to the probability PL
s = αKβ

s /


s∈Ni
αKβ

s . A neighbor node s receives an extra risk load 1S = LiPL,P
s , and when Ls + 1S ≤ Cs

node s does not fail. When Ls + 1S > Cs, node s fails and causes a cascading failure. We present failed load redistribution
strategies based on parameters α, β , and σ for three cases. (i) Failed loads 1S are no more than the flow constraints wis
on the connectivity links, i.e., 1S ≤ wis. Here the load on node s is replaced by L′

s = Ls + 1S. Node s will not fail while
Kβ

i(out)/


s∈Ni
Kβ

s(out) ≤ σ or Kβ

i /


s∈Ni
Kβ
s ≤ σ inferred from a new value of Ls. Or node s will fail and lead to a further

propagation of the failure. (ii) Failed loads 1S are larger than the flow constraints wis on the connectivity links (1S > wis).
The loads 1S − wis are abandoned due to risk defense countermeasures, and the new load on node s is L′

s = Ls + wis. When
L′
s ≤ Cs, node s does not fail. (iii) Some failed loads 1S ≤ wis, and other failed loads 1S > wis. For these failed loads 1S,
when 1S ≤ wis, 1Sn is used and the corresponding flow constraint becomes wisn. We determine the value of Ls + 1Sn and
Cs, and when Ls + 1Sn > Cs, the loads of node swill be Cs and propagate further. When Ls + 1Sn ≤ wisn, nodes sn carry out
a secondary redistribution. We define the extra failed loads when 1S > wis to be 1So, and wiso to be the flow constraints
on the connectivity links. The failed loads 1So − wiso will be redistributed to the connectivity links that satisfy 1Sn ≤ wisn
and Ls + 1Sn < Cs. The secondary redistribution strategy is given by

Ps = [Cs − (Ls + LiPs)]/


Ls+1Sn≤Cs

[Cs − (Ls + LiPs)]. (9)

Applying Eq. (9), the secondary failed loads 1So − wiso are delivered from node i to nodes s that satisfy the condition
Ls + 1Sn < Cs with probability Ps.

Stage 2: After the failed loads propagate through the same layer during stage 1, we find those nodes that have not
failed based on the three redistribution strategies, and determine the ultimately functional nodes belonging to the giant
components according to YL,P . We also identify those nodes that have not failed but do not belong to the giant components,
and determine that they are only partially functional. All connectivity links of the failed nodes are then cut.

Stage 3: The failed nodes in the same layer in GL (GP ) affect the corresponding nodes in the other layer GP (GL) through
dependency links.We then identify the newly generated nodes that have failed in the other layerGP (GL), and the failed loads
of these newly failed nodes propagate further in the same network GP (GL) in accordance with the redistribution strategies
described in Stage 1.

Stage 4: We loop stages 1–3 until no more new node failures occur in the interdependent supply chain network.
Fig. 3 shows a simple example of the cascading failure process in a supply chain interdependent network. Both the

directed physical-layer GP and the undirected cyber-layer GL have nine nodes, and the interdependence relations among
the nodes are shown in Fig. 4, where qp = 6/9, and ql = 6/9. Undirected curves represent connectivity links within the
same network GL, and directed curves represent connectivity links within the same network GP . The directed lines with
arrows indicate the dependence links between networks GL and GP . We assume that only one node is removed initially in
network GL, and thus 1 − p = 1/9 initially.

In Fig. 4, the attack is on node vL
2 (in yellow) in network GL at first. Under certain parameters α, β , and σ , the nodes

vL
5 and vL

8 in the same network may fail according to the risk load redistribution strategy in undirected network GL. The
connectivity links of failed nodes vL

2, v
L
5, and vL

8 are then removed (as shown in stage 1). At this time, though nodes vL
4, v

L
7,

and vL
9 are still valid, they cannot function completely since they no longer belong to the giant components. We therefore

mark these nodes in white (as shown in stage 2). The failed nodes vL
2, v

L
4, v

L
5, v

L
7, v

L
8, and vL

9 in network GL will lead to failures
of the corresponding nodes in network GP according to the directed dependence links. Based on the dependence relations
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shown in stage 1, the nodes vP
2 , v

P
4 , v

P
5 , and vP

9 (in black) are failed in network GP . With certain adjustable parameters α, β ,
and σ , nodes vP

8 (in blue) may fail according to the directed redistribution strategy. We then remove all connectivity links
with failed nodes, and thus obtain the cascading failure shown in stage 2. At this point, nodes vP

1 , v
P
3 , v

P
6 , and vP

7 have not
failed in network GP . However, since vP

1 (in purple) does not belong to the giant components, and thus has yet to fail, it
leads to a failure of the corresponding node vL

1 (in green) in network GL according to dependence link. Here, if the adjustable
parameters α, β , and σ cause node vL

3 to not fail while the risk loads of node vL
1 are redistributed to node vL

3, the cascading
failure propagation finishes; the final steady state of this is shown in stage 3. However, if adjustable parameters α, β , and σ
cause node vL

3 to fail, all nodes in networks GL and GP will then become isolated and fail, thereby causing an interdependent
supply chain collapse. We therefore need to find the most suitable parameters leading to a minimal cascading failure.

3.2. Time-varied cascading failure equation

In order to understand the dynamic failure spread mechanism in an interdependent supply chain network, we construct
time-varied cascading failure equations of load propagation based on the failure process described above. We assume that
when a fraction 1 − p of nodes fails in network GL after an initial removal of nodes, the remaining fraction of functional
nodes in the network will be δ1 = p.

Removing these nodes will cause the nodes directly connected to them to disconnect from a giant component. Hence the
remaining functional fraction of nodes in network GL becomes δ′

1 = δ1YL(δ1), where YL(δ1) is the fraction of nodes belonging
to a giant component.

Since a fraction qp of nodes in network GP depends on the nodes in network GL, the non-functional nodes in network GP

become (1− δ′

1)qp and the remaining functional nodes ζ1 = 1− (1− δ′

1)qp. Here the fraction of functional nodes belonging
to a giant component is ζ ′

1 = ζ1YP(ζ1) in network GP , and thus 1− ζ ′

1 denotes the fraction of those nodes not belonging to a
giant component. Thus the fraction of non-functional nodes newly occurring in network GL is p(1− ζ ′

1)ql because a fraction
ql of nodes in network GL depends on the nodes in network GP . We recall that a fraction 1−p of the nodes in network GL has
failed as a result of the initial attack, and we find that there is a total fraction 1 − p + p(1 − ζ ′

1)ql of nodes that has failed in
network GL that can be transformed into 1 − p[1 − (1 − ζ ′

1)ql]. Consequently, the remaining fraction of functional nodes in
network GL is δ2 = p[1− (1− ζ ′

1)ql], and thus δ′

2 = δ2YL(δ2). It is easy to obtain the recursive relations of a cascading failure
according to the above description, and the time-varied equations of functional nodes at each stage can be summarized
as

L1 : δ1 = p δ′

1 = δ1YL(δ1)

P1 : ζ1 = 1 − (1 − δ′

1)qp ζ ′

1 = ζ1YP(ζ1)

L2 : δ2 = p[1 − (1 − ζ ′

1)ql] δ′

2 = δ2YL(δ2)

P2 : ζ2 = 1 − (1 − pδ′

2)qp ζ ′

2 = ζ2YP(ζ2)

. . .

Lt : δt = p[1 − (1 − ζ ′

t−1)ql] δ′

t = δtYL(δt)

Pt : ζt = 1 − (1 − pδ′

t−1)qp ζ ′

t = ζtYP(ζt).

(10)

When t → ∞, Eq. (10) arrives at a steady state, i.e., δt+1 = δt and ζt+1 = ζt because the giant components in an
interdependent network stop the separation, and the fraction of removed nodes at step t is equal to the fraction at step
t + 1. Here δ′

t = δ′

t+1 and ζ ′
t = ζ ′

t+1, and we obtain

Lt : δt = p[1 − (1 − ζ ′

t )ql] (11)

Pt : ζt = 1 − (1 − pδ′

t)qp. (12)

We represent the giant components in networks GP and GL at the end of a cascading failure as UL,∞ = δtYL(δt) and
UP,∞ = ζtYP(ζt), respectively.

4. Numerical simulation

To generalize our results, we numerically simulate a randomly generated supply chain physical-layer network GP (see
Fig. 1) and cyber-layer network GL (see Fig. 2). We assume that there are 500 nodes in both networks GP and GL, and that
the average degree of networks GP and GL is ⟨k⟩ = 4. Thus we know that the average in-degree ⟨k⟩in and out-degree ⟨k⟩out
are the same at 0.5⟨k⟩ = 2 in network GP . One-to-one dependence links are randomly generated, and the values of the flow
constraints of connectivity links are set to within 60 and 140. We simulate the cascading failure results for two cases: initial
single and initial multiple node removal.
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Fig. 4. Process of a cascading failure of an instance. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. CEI of an interdependent supply chain network under the conditions of single node removal in network GL .

4.1. Network robustness of single node removal

We use a comprehensive effectiveness index (CEI) to indicate the average robustness of an interdependent supply chain
network. For the single node removal case, CEI =

N
i=1(U

i
L,∞ + U i

P,∞)/2N2, where N is the number of nodes in a single
network as discussed above, and

N
i=1(U

i
L,∞ +U i

P,∞) is the sum of fractions when each single node in GP and GL is removed
sequentially.

(1) Robustness of single node removal in network GL.
We set the parameters to be α = 1, β changes from 0.1 to 5 with a step size of 0.1, and σ = 1, 2, 3, or 4. We simulate

a cascading failure when initially a single node failure occurs in network GL, and Fig. 5 shows the simulation results of the
CEI.

Asβ increases gradually, the CEI of an interdependent supply chain network first decreases, and then increases gradually.
This indicates that the node loads will reach a certain extent with an increase of β , and thus the redistribution strategies (ii)
and (iii) will be adopted, which lead to more failures. Nevertheless, when β increases to a certain extent, although the node
loads still increase in size, the speed increase of the node capacity becomes faster than that of the node loads. Consequently,
the sum of the failed nodes becomes correspondingly smaller. Meanwhile, under the conditions of a same β and different
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Fig. 6. CEI of an interdependent supply chain under the conditions of a single node removal in network GP .

σ , CEI usually increases along with an increase in σ from 1 to 4, which is due to the fact that the node capacity increases
with an increase in σ while α and β remain unchanged, and the node failure probability becomes accordingly smaller.

(2) Robustness of single node removal in network GP .
When a single initial node failure occurs in network GP , we compare the CEI with that obtained from the simulation

results when a single initial node removal occurs in network GL. We find that the CEI is usually smaller at the same β when
a single initial node removal occurs in network GP . As in the single node removal in network GL, the CEI first decreases and
then increases gradually as β increases. When σ increases from 1 to 4, the CEI also increases. Fig. 6 shows these simulation
results.

From Fig. 6, CEI suddenly approaches zero while β is at a certain value, which is different from the results obtained while
a single node removal occurs in network GL initially. When σ = 1 and β = 2, the value of CEI is 0.015; when σ = 2 and
β = 2.5, the value of CEI is 0.045; and when σ = 3 and β = 2.7, 3.1, and 3.3, the values of CEI are 0.0518, 0.0592, 0.0602,
respectively. In particular, CEI will fluctuate when β changes from 2.7 to 3.6. When σ = 3 and β = 3.2, the value of CEI is
0.1904, which indicates that with a growth of σ to a certain extent, the corresponding increase in node capacity leads to a
reduction of failed nodes, and CEI therefore becomes larger. Clearly, the growth of σ is proportional to the costs.

4.2. Network robustness of multiple node removal

To measure the robustness of an interdependent supply chain network when a fraction 1 − p of nodes is removed, we
analyze the changes in the CEI when multiple nodes are initially removed from network GP , and check to see whether a
first-order phase transition occurs [17]. We can remove multiple nodes (1) by the degree of descending order, (2) by the
degree of ascending order, or (3) randomly. We compare the results with the CEI obtained from single network GP under
the condition of the same fraction of removed nodes. Here the CEI is given by CEI = (U1−p

P,∞ + U1−p
P,∞)/2N , which differs from

that when a single node is removed.
(1) Node removal based on the degree of descending order.
Fig. 7 shows that when the fraction 1 − p of removed nodes in an interdependent supply chain network approaches 0.2,

all nodes fail, i.e., the CEI = 0. This failure is abrupt, and thus is a first-order phase transition. In particular, the CEI suddenly
becomes 0 from0.57, and the removal fraction is 0.19. Asβ grows from0.5 to 2, the CEI becomes smaller at the same removal
fraction. Because the node load increases with an increase in β , the number of failure nodes in the same network and the
coupled network is larger.

The simulation results for the node removal in single network GP are shown in Fig. 8, where CEI is larger than that of in
interdependent supply chain network at the same removal fraction, 1 − p. That is, single network GP collapses while the
removal fraction approaches 0.73. However, the interdependent supply chain network collapses while the removal fraction
is approximately only 0.2.

(2) Node removal based on the degree of ascending order.
Fig. 9 shows the simulation results when multiple nodes in an interdependent supply chain network are removed by

degree of ascending order. Here β = 0.5, 1− p approaches 0.16, and 95% of the nodes fail. When the nodes are removed by
degree of descending order, the CEI becomes 0while 1−p approaches 0.2 at the same value of β . The CEI obtainedwhen the
node removal is by degree of ascending order is smaller than when it is by degree of descending order because most of the
small-degree nodes in network GP link to large-degree nodes in network GL randomly. When the node removal is by degree



66 L. Tang et al. / Physica A 443 (2016) 58–69

Fig. 7. CEI of an interdependent supply chain network according to the descending degree of removal.

Fig. 8. CEI of single network GP according to the descending degree of removal.

of ascending order in single network GP (shown in Fig. 10), the CEI is larger when multiple nodes are removed in a single
network. In single network GP , the CEI increases as β increases from 0.5 to 2. In an interdependent supply chain network,
the CEI decreases as β increases.

(3) Node removal based on the degree of random order.
Fig. 11 shows that when multiple nodes are randomly removed, CEI = 0.05 when β = 0.5 or β = 1, and the removal

fraction 1 − p is approximately 0.14, and CEI = 0.01 when β = 1.5 or β = 2, and the removal fraction 1 − p approaches
0.04. The CEI obtained when node removal is random is smaller than when it is by descending degree order and larger than
when it is by ascending degree order. In a single network GP , the CEI approaches 0 when 1 − p approaches 0.8 (see Fig. 12),
and is larger when multiple nodes are removed in an interdependent supply chain network.

4.3. Results and discussion

(1) In the simulation results, when a single node is removed from an interdependent supply chain network the CEI
changes with parameters α, β , and σ , and failed loads propagate through the system. In both GL and GP when a single
node is removed, the CEI first decreases and then increases because the redistribution strategies change from case (i) to
case (iii) and then to case (ii). In particular, the node loads increase as β increases and failures increase. When β increases
beyond a certain value the node loads still increase, but node capacity increases more rapidly than node load. Thus the CEI
increases.



L. Tang et al. / Physica A 443 (2016) 58–69 67

Fig. 9. CEI of an interdependent supply chain network according to the ascending degree of removal.

Fig. 10. CEI of single network GP according to ascending degree of removal.

This indicates that the risk defense strategies implemented by the entity nodes in an interdependent supply chain
network enhance the CEI by making failed load propagation subject to W L or W P . Because these risk defense strategies
are costly, they are often applied only within a certain range and thus failed loads are not avoided completely.

(2) The degree of ascending order yields the worst CEI. Random removal yields a CEI that is larger than removal by
ascending degree and smaller than removal by descending degree. Failure in an interdependent supply chain network is a
first-order phase transition in all three methods of multiple node removal, and failure in a single network GP is a second-
order phase transition. Following the characteristics of a directed physical network, failed loads propagate along the directed
links in network GP , which leads a CEI of 0 once a large number of nodes are removed.

(3) The simulation results show that removal by degree of ascending order yields the lowest robustness value of the
three removal methods. This counterintuitive observation indicates that most of the dependence links connect small degree
nodes in the cyber layer to large degree nodes in the physical layer, and vice versa. Parshani et al. [26] and Gu et al. [21]
found that robustness increases as the similarity of the interdependent networks increases. Interdependent networks with
a low structural similarity are thus weak and highly susceptional to cascading failure even when only a few nodes have
failed. Although we can thus improve the robustness by adjusting the network structure, network structure adjustment is
extremely costly, and a more practical method of regulation is optimizing the dependence links between the nodes in the
different network layers. This topic will be the subject of a future paper.
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Fig. 11. CEI of an interdependent supply chain network according to the random degree of removal.

Fig. 12. CEI of single network GP according to the random degree of removal.

5. Conclusions

In this paper we describe the interdependent structure of an undirected cyber network and a directed physical network,
two layers that constitute an interdependent supply chain network, and we construct models of a physical-layer network
and a cyber-layer network using a risk-analysis conceptual framework. We describe node load, node capacity, and other
factors using adjustable parameters α, β , σ , and node degree. To measure the robustness of an interdependent supply chain
network during an attack, we study the cascading failure mechanism of a single network and an interdependent supply
chain network with a one-to-one dependence relation between physical network GP and cyber network GL. We describe
cascading failure using a time-varying cascading failure equation, which enables us to identify the nodes still functioning
after the failed loads have ceased propagating.

To measure network robustness at parameters α = 1, β = 0.1–5, and σ = 1, 2, 3, and 4, we simulate the CEI of
an interdependent supply chain network and a single network with risk flow constraints. We simulate a cascading failure
for two cases in an interdependent supply chain network: single node removal and multiple node removal. In multiple
node removal we found that a first-order phase transition occurs, subject to three methods of removal: degree ascending,
degree descending, and random. We compare the simulation results obtained using these three removal methods in an
interdependent network and a single network. Our research provides a way of analyzing the robustness to attack of an
interdependent supply chain network, and the scientific basis for network structure optimization and cascading failure
control.
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The significant difference between the undirected cyber network GL and the directed physical network GP causes a first-
order phase transition. The random dependence links between nodes in network GL and network GP significantly lower the
robustness. In a future paper we will build on the intra-network and inter-network link research described in the literature
and develop strategies for optimizing the structure of an interdependent supply chain network.
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