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h i g h l i g h t s

• We construct a theoretical risk model of assembly supply chain network.
• A cascading failure model based on production capability loss is developed.
• We consider different disruption scenarios and their probability.
• We assess network robustness at different node threshold and linking intensity.
• The simulation results show that 30% nodes removal cause network collapse.
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a b s t r a c t

An assembly supply chain network (ASCN) is composed of manufacturers located in
different geographical regions. To analyze the robustness of this ASCNwhen it suffers from
catastrophe disruption events, we construct a cascading failure model of risk propagation.
In our model, different disruption scenarios s are considered and the probability equation
of all disruption scenarios is developed. Using production capability loss as the robustness
index (RI) of an ASCN, we conduct a numerical simulation to assess its robustness. Through
simulation, we compare the network robustness at different values of linking intensity
and node threshold and find that weak linking intensity or high node threshold increases
the robustness of the ASCN. We also compare network robustness levels under different
disruption scenarios.

© 2016 Published by Elsevier B.V.

1. Introduction

In recent years we have begun to understand the behavior of phenomena such as natural disasters, the breakdown of
technological systems, epidemic propagation, and spreading social unrest in terms of their complex network structure.
During these events, supply chain systems often collapse, e.g., during the 2011 earthquake in Japan the Toyota Motor
Company was forced to stop operations in twelve assembly plants and absorb a production loss of 140,000 vehicles. The
influence of this production loss spread to other countries and sent shockwaves through the worldwidemotor industry. The
main cause was the disruption of the supply chain supporting the manufacturing subsystem. If companies transfer their
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internal risks to their supply chain partners, directly or indirectly they affect those partners [1]. The negative effects of risk
are transferred to other companies because most real-world supply chain networks are geographically dispersed [2–4].
Although strong interdependencies increase supply chain efficiency, they also decrease system robustness—and when
disruption occurs the negative effects are more severe. Since supply chain system becomes more and more important in
current global production mode, it is necessary to do the study of supply chain robustness by considering the disruption
propagation. More importantly, assembly supply chain is one of the most popular one because it is important and
fundamental in manufacturing industry. Consequently, we aim to assess the robustness of ASCN.

Because all supply chains networks are vulnerable to disruption, supply chain risk management has been the subject of
much recent study. The goal is to secure the uninterrupted flow of directed materials and undirected information [5]. When
a firm is able to manage the risk of disruption they can better serve their customers, and thus increasing the robustness
of supply chain networks is an important competitive factor in any free market [6–8]. A significant amount of empirical
and quantitative research has been done on supply chain risk management, including measuring global supply chain risk,
planning for catastrophic events in supply chains, increasing chain agility, andmitigating risk [9–15].Wu et al. [16] proposed
a disruption analysis network methodology for modeling how the effects of disruptions propagate through a supply chain.
Oke and Gopalakrishnan [17] investigated how to classify andmanage the risks in the supply chain of a large US retailer and
classified risks as either inherent and of high frequency or disruptive and of low frequency. They developed risk mitigation
techniques that included generic strategies for handling most types of risk and specialized strategies for handling particular
risks. Marucheck et al. [18] examined how the global supply chain creates or exacerbates vulnerabilities, and they focused
on how operations management science can provide fresh insights into product safety concerns and security in the global
supply chain. Świerczek found that dependence relationships can cause the transmission of disruptions to ‘‘Snowball’’
through a supply chain network or through a portion of it. He modeled this effect by linking the disruption intensity and
extent of supply chain integration to the amplification of transmitted disruptions [19].

Our goal here is to construct a cascading failure model of risk propagation that can quantify the robustness of ASCN
under different disruption scenarios. Most current studies of cascading failures in complex networks have focused on
single networks [20–23]. Holme and Kim [20] studied evolving networks based on the Barabási–Albert scale-free network
model with vertices sensitive to overload breakdown. They considered two cases of load limitation, i.e., when the average
number of connections per vertex increases with the network size and when it remains constant. They found avalanche-
like breakdowns for both load limitations in their work and, to avoid these avalanches, the authors argue that the capacity
of the vertices has to grow with the size of the system. The irregular dynamics of the formation of a giant component has
also been studied. Moreno et al. [21] studied the tolerance to congestion failures in communication networks with a scale-
free topology. They proposed that the traffic load carried by each damaged element in the network must be partially or
totally redistributed among the remaining elements. Overloaded elements might fail in turn and trigger a failure cascade
that isolates large portions of the network. They also found a critical traffic load above which the probability of massive
traffic congestions destroying the network communication capabilities is finite. Motter and Lai showed that, for complex
networks, the loads can be redistributed among the nodes, and intentional attacks can lead to a cascade of overload failures.
They also demonstrated that the heterogeneity of complex networksmakes themparticularly vulnerable to attacks, because
disabling a single key node can trigger a large-scale cascade [22].Wang andXu [23] investigated cascading failures in coupled
map lattices with different topologies. They found that cascading failures occur much more frequently in small-world and
scale-free coupled map lattices than in globally coupled map lattices. There have also been some recent studies of failure
cascades in interdependent networks. Buldyrev et al. [24] recently used a one-to-one correspondence model to study the
ramifications of interdependence between two networks. Their analytical framework used a generating-function formalism
widely applied in studies of percolation and structure within single networks [25]. This framework for interdependent
networks enables us to follow the dynamics of the failure cascades and derive analytic solutions for the final steady state.
Researchers have used this work of Buldyrev in a variety of ways to study interdependent networks [26–31].

In summary, our goal is to quantify the robustness of ASCN against disruption in order to provide a scientific basis for the
development of network protection. Our innovations of studying the cascading failure of ASCN are in two aspects: the risk
propagationmode and the RI of ASCN. Applying cascading failure theory, wewill (i) describe the concept of risk propagation
in an ASCN, (ii) construct a cascading failure model to depict the dynamic process of risk propagation, and (iii) use different
disruption scenarios to assess the robustness of ASCN.

2. Theoretical risk model of supply chain network

2.1. Conceptual framework for risk propagation

Every entity in a supply chain network faces risk. When a natural disaster, criminal act, or terrorist act disrupts a supply
chain network, we need to be able to quantify the risk that it will propagate and to analyze its mode of propagation. Fig. 1
shows a traditional supply chain operation model.

There are four types of entity that form a single supply chain network: suppliers, production centers, distribution centers,
and customers. Here we assume all entities to be network nodes [32]. The links between those nodes in the supply chain
network are called connectivity links, and can transfer risk. Whenever any of the nodes in a directed supply chain network
is disrupted and fails, there is a risk that they will propagate.
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Fig. 1. A traditional supply chain operation model.

Fig. 2. Risk propagation through supply chain networks.

Fig. 2 shows the process of risk propagation. When disruption causes one or more nodes to fail, because of their
connectivity links there is a risk that failure will propagate to other nodes.

Fig. 2 shows that the risk propagation process has a ripple effect. When a node v4 fails at time t0 the failure can propagate
to neighbor nodes vP

6 and vP
8 (‘‘first risk propagation’’) through connectivity links. Then failed nodes vP

6 and vP
8 can transfer

the failure to their downstream neighbor nodes accordingly (‘‘second risk propagation’’). This process continues through to
the final customers. It is thus important to be able to quantify the risk that failurewill propagate and to assess the robustness
of the entire assembly supply chain.

2.2. Cascading failure model of risk propagation in assembly supply chain

In this study we consider one type of supply chain network, i.e., an ASCN. As discussed above, the assembly supply chain
is one of the most popular supply chain types. From network perspective, ASCN is directed network, and upstream nodes
in assembly network provide components to downstream nodes. So, the directed links between nodes denote the supply
and demand relationship. Examples of ASCN include the automobile manufacturing, computer fabrication, and airplane
production industries. To assess the maximum risk a supply chain network can encounter, we evaluate network robustness
when the disruption events are catastrophic, i.e., when the duration of the disruption event greatly exceeds the length of
time required for product delivery. In an ASCN for final product A many upstream manufacturers produce parts for the
downstreammanufacturers. Let i ∈ M = {1, 2, . . . ,m} be the index of all manufacturers. Fig. 3 shows an ASCN, but focuses
on the process from the part manufacturers to the final assembled products, i.e., it is only one portion of the traditional
supply chain network shown in Fig. 1. Each node is a particular part k, but the pattern differs from the traditional supply
chain network [32] because each manufacturer has the ability to produce a variety of parts. The demand quantity of final
product A from customers, denoted by qA, is known in advance. The quantity of part k required at manufacturer i is qki,
thus the total quantity demand qk of part k is


i qki, and rkk′ denotes the number of upstream parts k required for each

downstream part k′.
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Fig. 3. A sample sketch of assembly supply chain.

We use our model to measure the production capability loss of an entire supply chain during a catastrophic disruption,
one that causes the production capability of a manufacturer to fail completely. Downstream manufacturers are affected
through connectivity links, and we define ‘‘linking intensity’’ δii′ to quantify how much manufacturer i influences
manufacturer i′, 0 ≤ δii′ ≤ 1. When manufacturer i is disrupted and fails, the produced risks (production capability loss) to
its downstream part k′ at manufacturer i′ is qkiδii′/rkk′ . Each manufacturer usually employs countermeasures to lower risk,
e.g., by improving inventory level in order to reduce δii′ . We also define a threshold Φk′i′ for part k′ at manufacturer i′ when
the risks are being propagated. When the remaining production capability q′

k′ i′ drops belowΦk′i′ due to the lack of upstream
parts at manufacturer i, the node part k′ at manufacturer i′ also fails, and the risk propagates and causes a failure cascade.
In particular, when there are two or more disrupted upstreammanufacturers, the risk to the connected downstream nodes
will be at a maximum.

Note that part manufacturers for complex products are commonly located in different geographical regions, both
domestic l = 1 and foreign l = 2. Let M1 (M1 ⊆ M) be the set of domestic manufacturers, and M2 (M2 ⊆ M) be the set of
foreignmanufacturers,M1 ∪M2 = M . Because foreignmanufacturers are more susceptible to material flow breakdown due
to disruptions in long distance shipping, domestic manufacturers tend to be more reliable. The local disruption probability
formanufacturer i isαi and thus the probability thatmanufacturer iwill not be disrupted is 1−αi. In addition,manufacturers
located in the same region constitute a group risk and can collapse simultaneously when disrupted by earthquake, flooding,
hurricane, and general strikes. The probability that there will be a simultaneous disruption of all manufacturers in region l
is α∗

l . If ps is the probability that disruption scenario s will occur, and if there are a total of q disruption scenarios, q = 2m.,
probability ps can be represented

ps =
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where Ms is the set of manufacturers that are still functional under the disruption scenario s.

2.3. Robustness index (RI) of an ASCN

The robustness index (RI) quantifies the robustness of an ASCN. Traditional assessment method of network robustness
is based on the number of ultimate failed nodes. However, it is not suitable for measuring the robustness of ASCN since
the node will not fail completely while disruption occurs. Commonly, it will lead to production capability loss when some
enterprises (nodes) are affected by initial disruptions. Consequently, we use production capability loss as RI. Another
reason that we employ production capability loss as RI in assembly supply chain is that we usually evaluate the disruption
affection based on the number of products that can finally be provided to customers. Here we measure the RI in two ways:
(1) RI =

m
i=1 Ui,∞/m, where Ui,∞ is the final number of product units that can be delivered, i.e., the final production

capability when a singlemanufacturer i is removed, and (2) RI =


s PsUs,∞, whereUs,∞ is the final number of product units
that can be delivered when there is a disruption s. Note that the second RI measurement takes into account all disruption
scenarios.
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Fig. 4a. RI of ASCN at different threshold Φ .

Fig. 4b. RI of ASCN at different linking intensity δ.

3. Computational examples

We next implement a numerical simulation of a randomly generated ASCN with fixed qki and rkk′ and use these
computational examples to demonstrate how the risk propagation model can be used to quantify the robustness of an
assembly supply chain at risk of disruption. Here qA = 10 000, δii′ changes from 0.3 to 1 with a step size of 0.1, and Φk′i′

changes from 0.1 to 1 with a step size of 0.1. There are 500 manufacturers located in different geographical regions, and we
simulate the RI using different disruption scenarios.

3.1. RI =
m

i=1 Ui,∞/m

Figs. 4a and 4b show the results using this formulation. When we fix the threshold Φk′ i′ , the RI decreases as the linking
intensity increases, indicating a higher probability that risks will be propagated to the nodes that are downstream of a
failed node and that production capability will decrease. When we fix the linking intensity, the RI increases as the threshold
increases because this threshold increase improves the defensive capability of the downstream nodes. Thus fewer nodes fail
and the RI value increases. In particular, when threshold Φk′ i′ is at 10% all the robustness indices are 0 irrespective of linking
intensity, i.e., there is minimum robustness. When Φk′ i′ is 20%, the RI is 955 only when the linking intensity is 30%. At all
other linking intensity values RI is 0.

Similarly, when the linking intensities are 80%, 90%, and 100%, the RI value remains at 0, even when threshold Φk′ i′ does
not exceed 40%.
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Fig. 5a. RI at 10% manufacturers disruption with different threshold Φ .

Fig. 5b. RI at 10% manufacturers disruption with different linking intensity δ.

3.2. RI =


s PsUs,∞

Using this RI formulation requires that we take the disruption probability into consideration. Here the disruption
probability is uniformly distributed over [0.005, 0.01] for domestic manufacturers i ∈ M1 and over [0.05, 0.1] for foreign
manufacturers i ∈ M2, i.e., the disruption probabilities are drawn independently from U [0.005, 0.01] and from U [0.05, 0.1],
respectively, for domestic and foreign manufacturers. The simultaneous global disruption probability is α∗

1 = 0.00001 for
domestic region 1 and α∗

2 = 0.0001 for foreign region 2.
(1) 10% manufacturers disruption scenario
Figs. 5a and 5b show that, when 10% manufacturers are disrupted, the simulation results from the RI =


s PsUs,∞

formulation indicate a decrease RI comparingwith the simulation results from the
m

i=1 Ui,∞/m formulation. This difference
is due to the fact that the disruption probability has been taken into consideration.

(2) 20% manufacturers disruption scenario
Figs. 6a and 6b show the simulation results when 20% manufacturers are disrupted.
Here the RI values sharply decrease, indicating that removing 20% manufacturers seriously influences the ASCN. It also

indicates that the robustness drops because the 500 manufacturers must now rely on a simple assembly network structure,
in which case the dependence between each node is tightened. Figs. 7a and 7b show that when 30% manufacturers are
removed virtually all RI values fall to 0.

To determine whether changing the robustness affects network structure, we conduct a numerical simulation for 1000
manufacturers. Figs. 8a, 8b, 9a, and 9b show that when we remove 10% or 20% manufacturers the robustness is greater
than when the network only encompasses 500 manufacturers. This larger-scale network structure also has increased
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Fig. 6a. RI at 20% manufacturers disruption with different threshold Φ .

Fig. 6b. RI at 20% manufacturers disruption with different linking intensity δ.

redundancies, i.e., multiple suppliers can provide the identical part for downstream manufacturers, and this increases the
robustness of the supply chain. These figures clearly indicate that as the network structure becomes more complex and
increases in size the robustness of theASCNwill also increase. A large-scale network requiresmore parts for the final product,
but more suppliers provide identical parts for the downstream manufacturers and this makes the network more reliable.

(3) All disruption scenarios
The RI valuewhen all disruption scenarios are taken into account is the simple summation of RI when 10%manufacturers

are disrupted, when 20% manufacturers are disrupted, when 30% manufacturers are disrupted, and so on. Figs. 7a and 7b
show that the RI will be almost always be 0 when 40% or more node removals occur, and thus the simulation results for
all disruption scenarios show results similar to those of the sum of RI at 10% manufacturers disruption, 20% manufacturers
disruption, and 30% manufacturers disruptions (see Figs. 10a and 10b).

(4) Random removal of manufacturers
In order to measure the RI value while the manufacturers are removed randomly, we also do the simulation based on

different manufacturer removal fraction, 1 − p. Here, the RI is average value based on 20 times simulation. The simulation
results are shown in Fig. 11.

While threshold Φ and linking intensity δ are both 50%, the RI is 981 correspondingly at 10% nodes removal, 41 at 20%
nodes removal, and 1 at 30% nodes removal. While threshold Φ and linking intensity δ are 60% and 30% respectively, the RI
is 2102 at 10% nodes removal, 248 at 20% nodes removal, 15 at 30% nodes removal. While threshold Φ and linking intensity
δ are 80% and 60% respectively, the RI is 1056 at 10% nodes removal, 31 at 20% nodes removal, 1 at 30% nodes removal.While
threshold Φ and linking intensity δ are both 100%, the RI is 18 at 10% nodes removal, 0 at 20% and 30% nodes removal. Note
that while nodes are removed at approximately 30%, almost all values of RI become 0.

4. Conclusions

In this paper we have described the ASCN and analyzed the risk propagation process. By considering different disruption
scenarios, we have constructed a cascading failuremodel of risk propagation. The goal has been tomeasure the robustness of
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Fig. 7a. RI at 30% manufacturers disruption with different threshold Φ .

Fig. 7b. RI at 30% manufacturers disruption with different linking intensity δ.

Fig. 8a. RI at 10% manufacturers disruption with different threshold Φ (1000 manufacturers).

an ASCN. In our model, the measurement of network robustness is based on production capacity loss, i.e., the final quantity
of product that can be delivered to customers after risk propagation. To analyze the effect of ASCN robustness at different
parameters of linking intensity δ = 0.3–1, and Φ = 0.1–1, we have simulated the RI of an ASCN. The simulation results
show that the value of RI increases with increase in the threshold, and decreases with increase in the linking intensity.
We have also carried out simulations at different disruption scenarios and taken disruption probability into account. We
have found that almost all values of RI drop to 0 when there is 30% or more nodes disruptions. We have also compared the
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Fig. 8b. RI at 10% manufacturers disruption with different linking intensity δ (1000 manufacturers).

Fig. 9a. RI at 20% manufacturers disruption with different threshold Φ (1000 manufacturers).

Fig. 9b. RI at 20% manufacturers disruption with different linking intensity δ (1000 manufacturers).

simulation results on 500 manufacturers with a larger complex ASCN of 1000 manufactures and found that more complex
network structure and the redundancies in the upstream suppliers improve the robustness of the ASCN.

In summary, our research could provide a valuable analysis tool for the robustness of an interdependent supply chain
network as it experiences attack. Our research may also provide the scientific basis for network structure optimization and
cascading failure control.
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Fig. 10a. RI at all disruption scenarios with different threshold Φ .

Fig. 10b. RI at all disruption scenarios with different linking intensity δ.

Fig. 11. RI at random removal of manufacturers.
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