
ARTICLE

Extreme risk induced by communities
in interdependent networks
Jiachen Sun1, Rui Zhang2, Ling Feng3,4, Christopher Monterola5,3, Xiao Ma6, Céline Rozenblat7,

H. Eugene Stanley8, Boris Podobnik8,9,10,11,12 & Yanqing Hu6

Networks in nature not only depend on each other but also have internal community

structures, such as infrastructure networks with links within and across geographic regions.

The communities play an important role when the networks undergo localized failures in

specific regions, for instance when natural disasters or economic sanctions disrupt a local

community region and consequently influence the whole system. How a disruption in one

community propagates through the entire system is a crucial, but still open, question. Here

we find that the community structure embeds extreme risk: weakening the community

strength could abruptly drive the system to a precarious state. Examining the business-flight

network among cities as a proxy for the world economy, we find this real coupled system

evolving towards the extreme vulnerable phase due to ongoing globalization. This shows the

community risk indeed exists in real world networks and deserves more attention from

the scientific community.
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Interdependent networks are important since many real work
systems have interactions at different levels, and such com-
plexity often leads to new and rich phase transition behaviors

not present in single layer networks1–3. Although much research
has focused on the robustness to failure in multilayer inter-
dependent networks1,4–12, these studies have assumed that net-
works are unstructured. This is in sharp contrast to real-world
networks that have an internal community structure6,13–16. For
example, transportation networks have more connections within
urban regions than between urban regions. A group of countries
usually have more economic ties within the group than with
countries outside the group. A problem of particular interest is
determining how these complex systems with a rich community
structure behave under localized disruption. Such community
structure has been studied on single layer networks17 to under-
stand the impact of removing intercommunity links, and rich
phase transition has been found when the number of commu-
nities changes. Random attack on intercommunity links on
interdependent networks have also been found18,19 to have even
more complex transitions and scaling relations. Yet, certain
attacks are localized in specific communities, like natural disasters
and economic sanctions. The underlying mechanism controlling
how such localized disruption in one community of a complex
system disseminates throughout the entire system has not been
understood, as well as the conditions that the network becomes
vulnerable to abrupt collapse. Analytically, it is challenging to
study since the network system with both interdependency and
communities structure is highly complex.

Here, we present a generalized framework of interdependent
multilayer network with community structure1,6 based on gen-
erating functions, and study cascading processes that occur across
the entire network initiated by random damage disruption in a
single community. Such framework can be generalized to any
layers of interdependent networks with arbitrary number of
communities. Our analysis reveals that such system has rich phase
transition behaviors that are much more complicated than inter-
dependent networks without community structures. In particular,
we find both theoretically and empirically that network robustness
changes abruptly from safe to vulnerable as the strength of the
community changes. The safe region of the system is characterized
by the lack of phase transition phenomenon, i.e. the system does
not disintegrate even with one whole community fully removed
from the system. The vulnerable region is when phase transition is
present, i.e. removing enough fraction of one community will
disintegrate the whole system. Employing the business-flight
network among cities of North America, Asia, and Europe as an
example with strong community structure, we confirmed the
presence of such risk in this interdependent system. More strik-
ingly, this system is evolving towards the transition point from the
safe to the vulnerable phase due to ongoing globalization.

Results
Theoretical analysis. We consider an interdependent multilayer
network with a community structure. In a simple network con-
sisting of two network layers A and B, each layer has the same
number of communities m in which Ai and Bi are of size Ni, i= 1,2,
…...m. Every node in Ai has exactly one interdependent node in Bi,
and vice versa [see Fig. 1a]. We define the generating function of Ai

as

QiAðxÞ ¼
X1
k¼0

piAðkÞxk; ð1Þ

where piA(k) is the degree distribution of nodes in community i of
layer A. We define the community structure using the distribution

of both intra- and intercommunity links14,16. For a community Ai

within network layer A and has average degree 〈KiA〉, we use 〈kijA〉
to denote the average number of intercommunity links per node in
community Ai that connects to community Aj. We further let αij;=
〈kijA〉/〈KiA〉 to be the fraction cross community links in Ai. These
parameters can also be defined in terms of stub that is a link with
one end from a node and the other end not connected yet. Then in
the network formation process one make αii fraction of stubs in
community Ai to be connected to other stubs in community Ai, and
connect αij fraction of stubs in community Ai to stubs in com-
munity Aj. βii and βij are defined similarly for community B.

The generating functions for communities Ai and Bi
are GiAðξ1; ξ2; :::; ξmÞ ¼

P
PiAðk1; k2; :::; kmÞξk11 :::ξkmm and

GiBðζ1; ζ2; :::; ζmÞ ¼
P

PiBðk1; k2; :::; kmÞζk11 :::ζkmm , respectively20.
PiA(k1, k2, ..., km) is the probability of finding a node in
community Ai with k1 links connecting to nodes in community 1,
k2 links connecting to nodes in community 2,…, and km links
connecting nodes to community m. PiB(k1, k2, ..., km) is defined
analogously for network layer B. These generating functions can
be expressed by substituting x in Eq. (1) with (ξ1, ξ2, ..., ξm)
(derivation provided in Methods),

GiAðξ1; ξ2; :::; ξmÞ ¼ QiA
Pm
j¼1

αijξj

 !
;

GiBðζ1; ζ2; :::; ζmÞ ¼ QiB Pm
j¼1

βijζ j

 !
:

ð2Þ

Community 1 Community 2

Community 1

0 < �11 < 1

Network A

A2

A1

A3

Network B

B1

B2

B3

Community 2 Community 2Community 1

a b

c d

�11 = 1

�11 = 0

Fig. 1 Illustration of the giant components of the communities. The set
of connected (orange) nodes denotes the giant component of the
communities. a The nodes in networks A and B have one-to-one
interdependence. The communities of each network also has one-to-one
interdependence as well, meaning the interdependent nodes of community
A1's nodes form community B1 in network B. b The giant components for
α11 = 1. α11 is the average fraction of links per node in community A1

connected to nodes within the same community in A. The two communities
are disconnected and each of them has a giant component. c The giant
component for 0 < α11 < 1. The two giant components in both communities
are connected through intercommunity links. d The giant component for
α11= 0. The giant components are connected only though inter links
between the two communities
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We next attack community A in one of the network layers (say
Ai) by initially removing a fraction of 1−pi nodes in community
Ai. In interdependent networks, it is usually assumed, based on
percolation theory, that nodes become non-functional if they
become disconnected to the network giant component1,5,21–25.
That is all nodes outside the giant component in network A are
removed, and so are their interdependent nodes in network B.
This cascading process continues until no more nodes can be
removed from the system. We finally obtain the mutually
connected giant component of the remaining functional nodes.

As we remove nodes and links during the cascading process,
the entire network breaks down into the components connected
through inter- and intra-community links. The components in
community Ai comprises the set of Ai nodes belonging to a single
percolation component of the entire network. The largest of these
components is the giant component of Ai, and only nodes of
the giant component continue to function. Figure 1b–d shows the
various types of giant component in multicommunity networks.
Note that some nodes are not linked to nodes in the same
community but to nodes in the other community.

At the end of the cascading process, the remaining size of Ai

and Bi is

μ1i ¼ pig
1
i h1i ; ð3Þ

where g1i ¼ 1� GiAðf11 ; f12 ; :::; ; f1m Þ and h1i ¼ 1�
GiBðf11 ; f12 ; :::; f1m Þ are the giant component sizes of community
i in network layers A and B, respectively. Here f1i is the
probability that a node in Ai along a randomly selected link is
non-functional (i.e. not connected to the giant component at
the steady state). It satisfies the self-consistent equation (see
Methods for details).

f1i ¼ 1� pið1� GiA
1 ðf11 ; :::; f1m ÞÞð1� GiB

1 ðf11 ; :::; f1m ÞÞ; ð4Þ
where GiA

1 ðξ1; ξ2; :::; ξmÞ is the generating function for the

branching process GiA
1 ðξ1; ξ2; :::; ξmÞ ¼

∂ξi G
iAðξ1;ξ2;:::;ξmÞ

∂ξi G
iAðξ1;ξ2;:::;ξmÞjξi�1

.

GiB
1 ðζ1; ζ2; :::; ζmÞ is defined analogously for community Bi. For

example, for a pair of Erdös–Renyi networks26, Eq. (3) reduces to
a simple form, the derivation of which is provided in
Supplementary Note 1. The internal structure of our network
model is a generalization of a model1 in which networks have no
internal community structure.

To demonstrate critical phenomena in our network model, we
consider a simple case of two equally sized communities that are
symmetrical in each layer of the network27, i.e., m = 2. Without
loss of generality, we attack community 1 at the initial stage, i.e.,
p1 < 1 and p2= 1. We also set α11= α22, β11= β22, 〈KA〉 ≡ 〈K1A〉
= 〈K2A〉, and 〈KB〉≡ 〈K1B〉= 〈K2B〉. Here the set of parameters
α11 and β11 is sufficient to describe the community structure. A
key parameter that quantifies the robustness of the system is the
size of the critical value p1c that describes the threshold below
which the entire system disintegrates with no remaining
functional giant component. Thus the smaller the p1c value, the
less vulnerable the network, implying that when p1c = 0 the
network is perfectly robust.

Our first main finding is that a stronger community structure
does not always increase the robustness of the interdependent
networks, a phenomenon significantly different from the one
found in single networks. In single networks, the stronger
community structure always increases robustness as shown in
Fig. 2a (see Supplementary Note 2 for derivation). Differently,
Fig. 2b shows the critical point p1c against the community
strength α11 of network layer A when the community strength β11
of network layer B is fixed. The average degree is fixed at 〈KA〉 =
〈KB〉= 4 in both network layers. When the community structure

is strong in layer B—which occurs when β11 > 0.436—there is a
monotonic dependence of p1c on α11, but when the community
structure in B is relatively weak (i.e., when β11 < 0.436) the
behavior of p1c is non-monotonic.

In order to better understand this, we draw the contour of p1c
with respect to the changes of community structures strength in
Fig. 2c. Figure 2c shows that when β11 < 0.436 the contour of p1c
is the bulging of the equipotential line, specified by the constant
value of p1c, cuts the horizontal line characterized by constant
β11 value twice, resulting in non-monotonous changes as the
parameter α11 changes. Besides this, we find that that system
robustness falls into one of the three regions (see Fig. 2c):
“vulnerable” p1c>p

r
1c

� �
, “robust” p1c<p

r
1c

� �
, and “safe” (p1c= 0,

which means that even after the removal of all nodes in a
community, there still exist a giant component of the system)
regions with the increase of community structure strength in both
two network layers A and B. Here pr1c is the critical point of the
corresponding interdependent networks without any community
structures (α11= β11= 0.5).

We also note that the contour lines intersect at two interesting
symmetrical points: (α11, β11) equals to (0.436, 1) and (1, 0.436)
(see Fig. 2c and Supplementary Note 3 for deviation), which
implies p1c changes abruptly at these two unusual points. α11= 1
or β11= 1 means network A or B has two disconnected (localized)
communities. This is a good approximation of real-world
network segmentations which could be either geographical or
political/economic imposed by embargo/sanctions. For instance,
the world-wide business-flight network, which we examine below,
has β11= 0.98. We find that when one network layer has
disconnected communities, as the community strength in another
network layer weakens, the critical point suddenly jumps from 0
to a finite number, which is our second main finding. This abrupt
jump of the critical point value is a first-order phase transition in
which a small change in community strength dramatically
increases structural risk (see Fig. 2d and Supplementary Note 4
for derivation).

Empirical implications. An example of a multilayered commu-
nity structure network is the network of global cities. We examine
the data from the system of North American, European, and
Asian cities—three different communities—in which transporta-
tion and business connections among them define two layers
of network in the system. As expected, there are more connec-
tions among cities located on the same continent than that
among cities located on different continents28. We collect busi-
ness and flight data for 145 North American cities, 158 Asian
cities, and 334 European cities and for companies across 21 major
industrial sectors in 2010 and 2013 (see Supplementary Note 10
for data description)29,30. We use the data to construct an
interdependent network of business and flight connections
among these cities, where cities are nodes and business and
flight connections are links between the cities. In the business
network layer (Fig. 3a), a connectivity link between two cities is
formed when at least 10 pairs of companies have business con-
nections with each other. In the flight network layer (Fig. 3b), a
link is formed when there are at least 200,000 passenger trips
between the two cities annually. Simulations demonstrate that the
results are not sensitive to these two threshold values (see Sup-
plementary Fig. 5).

The business and transportation network layers are inter-
dependent because businessmen must travel to conduct their
business, and airport of one city also dependents on the
companies of this city. Usually, it is not easy to obtain the
interdependency relationships on important infrastructure net-
works, thus we begin by assuming a single interdependency link1
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between business and transportation in the same city. We then
assume the typical failure mechanism for interdependent net-
works in which the failure of one node leads to the failure of its
interdependent node.

In numerical simulations, we first construct three interdepen-
dent networks comprising only cities in North America vs Asia,
Europe vs Asia, and Europe vs North America. Secondly, altering
the business network A but fixing the flight network B (β11 is close
to 1), we tune down community strength α11 of business network
by rewiring some of its links while keeping their node degrees
unchanged (see Supplementary Note 5–8 for the technical details).
This approach enables us to assess the system robustness, i.e. how
p1c depends on α11, and for what range of parameter values does
the system reside in the safe phase or the vulnerable phase. As
shown in Fig. 3c–e, we see a phenomena similar to Fig. 2d that p1c
changes abruptly from 0 to a finite value, signaling the emergence
of the community structure risk in the system. As the trend of
globalization continues, we expect the community structure in the
business network to become weaker. Indeed this was the case
when comparing the value of community strength α11 value
between year 2010 and 2013 in Fig. 3 for each pair of communities
North America–Asia, Europe–Asia, and Europe–North America.
Our results from Fig. 3c–e show that as globalization drives global

economic system to be more integrated, the North American and
European economies exhibit larger robustness than the Asian
economy. Finally, we construct an interdependent network of
business and flight connections comprising all cities in North
America, Europe, and Asia and we find that the overall system is
still shifting towards the abrupt change through removing nodes
within the Europe community (Fig. 3f). Our results and analysis
are based on communities divided according to different
continents, and use them to serve as proxies to represent the
coarse structure of the world economy. Using our mathematical
framework, we can estimate the risk towards the unstable region
given the trend from 2010 to 2013. In essence, the world economy,
according to this mechanism, had been likely heading towards the
unstable phase. In Supplementary Note 9 we discuss some
additional weaker forms of interdependency between two network
layers characterized by probabilistic interdependency links.

Discussion
In summary, we have studied the robustness of multilayer
interdependent networks under community attacks, characteristic
of many real system constrained by geographic locations.
Through our developed framework, we find that such a system
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Fig. 2 Critical behavior of network(s) with community structure. a Critical transition point p1c of a single layer random network subjecting to community
attack is plotted against its community strength α11. As the positive community structure strengthens with increasing α11, p1c decreases monotonically
before reaching 0, after which point the two communities both can have a giant component even when the other community is removed from the network.
b Critical transition point p1c of interdependent networks subjecting to community attack is plotted against the community strength α11 of layer A for
different β11 values of layer B. For large β11 values (0.5 and 0.8), the behavior is similar to single networks with monotonic decrease of critical threshold p1c
value. Whereas for small β11(0 or 0.4), the change of p1c is non-monotonic and does not reach the safe state of p1c= 0. The solid red circle represents
random failures of an unstructured random network system which is equivalent to α11= β11= 0.5. c Phase diagram of p1c with respect to the changes in
community structures described by α11 and β11 in interdependent networks. The upper right region is the safe region, in which even if we remove a whole
community, there still exist a giant component in the whole system. The robust region between boundary p1c= 0 and p1c ¼ pr1c represents a phase that is
more robust than unstructured networks without community structures. The vulnerable region below the boundary p1c ¼ pr1c represents a phase that is
more vulnerable than unstructured networks. In b and c, the two interdependent networks are Erdös–Rényi (ER) networks and both have two communities
with equal size and equal average degree 4. d When one layer of the networks is completely localized (β11= 1), extreme community structure risk exists
when the community strengths α11 decreases, as p1c changes discontinuously from 0 to 0.34. In the system, K = 4 for two equally sized communities. The
network has a total of N;= 10,000 nodes, with each community having 5000 nodes. Each data point is an average of 10 simulations and the standard
deviation is presented by the error bar
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exhibits much more complex behaviors than the ones without
clear community structures. Depending on the respective com-
munity strengths of the different network layers, the whole sys-
tem may reside in one of the three different regions of phase
diagram, with different phase transition behaviors. In particular,
we find that the system embeds extreme risk when one of the
layers has strong community structure. In contrary to a single
network which is always more robust with enhanced community
structure, interdependent networks showing strong community
structure sometimes makes the system more vulnerable. In cases
of extremely strong community structure with very sparse
intercommunity in one layer of network, a small change in the
other layer of network’s community strength could induce abrupt
changes in total systemic resilience if one community is under
attack. This new finding adds to the growing knowledge of resi-
lience of interdependent networks with community structure, in
particular attacks on specific communities that is representative

of realistic events like natural disaster and economic embargo.
From the global business-flight networks taken as a proxy for the
world economy, we observe that, as globalization weakens the
community structure, the entire network is approaching a state in
which there is a potential for abrupt disruptions in certain
communities. This also leads to the finding that Asia strongly
depends on North America and Europe economies but not the
other way round. Our result is indicative for a broad range of
systems which have community structures defined by geographic
location and physical infrastructure. While we mainly focused on
the analytical results of two communities on two-layer inter-
dependent networks, our adopted mathematical framework
allows for more complex network structures, and their phase
transition behaviors could be very interesting for further studies.
On the empirical side, our methods can be similarly extended to
study other real interdependent networks with community
structures, to give better understanding of their dynamical
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behaviors for risk assessment, which then leads to the develop-
ment of efficient risk mitigation strategies in those systems.

Methods
Multivariate generating function. In this subsection, we harness multivariate
generating function to formalize the cascading process of interdependent networks
with multiple communities20,30,31. We first construct the multivariate generating
function of the interdependent networks with communities. For conciseness, we
illustrate the generating function associated with the bi-community structure (a
network with two communities). The result can be easily generalized to account for
multicommunity systems. For bi-community system, the probability normalization
requires that α12= 1− α11 and α21= 1− α22 and the inter-link identity requires
that N1⋅〈K1A〉⋅α12=N2⋅〈K2A〉⋅α21. Therefore one can describe the structure of
network A by one parameter α11, because the other three parameters can be cal-
culated from the above three relations. By the definition of α11, the probability of
finding a node in community 1 with intra-degree k1 and inter-degree k2 should be
k1 þ k2

k1

� �
αk111ð1� α11Þk2 . Such node with degree k1+ k2 has a prior probability

piA(k1+ k2). Thus one can write the generating function of community 1 in terms
of ξ1 and ξ2:

G1Aðξ1; ξ2Þ ¼
P1
k1¼0

P1
k2¼0

k1 þ k2
k1

� �
αk111ð1� α11Þk2p1Aðk1 þ k2Þξk11 ξk22

¼ P1
k1þk2¼0

p1Aðk1 þ k2Þðα11ξ1 þ ð1� α11Þξ2Þk1þk2

¼ P1
k¼0

p1AðkÞðα11ξ1 þ ð1� α11Þξ2Þk

¼ P1
k¼0

p1AðkÞðα11ξ1 þ α12ξ2Þk

¼ ¼ Q1A
P
j
α1jξj

 !

: ð5Þ

The prefactor of ξk11 ξ
k2
2 represents the probability of finding a node in

community 1 of network A with intra-degree k1 and inter-degree k2. By a similar
derivation, one can write out the generating function for community i in
multicommunity network A and B as

GiAðξ1; ξ2; ::; ξmÞ ¼ QiA
P
j
αijξj

 !
;

GiBðζ1; ζ2; ::; ζmÞ ¼ QiB P
j
βijζ j

 !
:

ð6Þ

Percolation equation. Here we show the percolation equation in the form of
generating functions32. Initially a fraction (1− pi) of nodes from community i are
randomly removed. The initial removal is followed by a cascading process of
percolation failures of the rest nodes. Recall a single complex network with gen-
erating function G(x) and branching process G1(x)=G′(x)/G′(1) (ref. 33), it is
known that after a random removal of 1− p nodes, the generating function of the
degree distribution of the remaining nodes can be written by Gremain(x)=G(1− p
(1− x)). At step n, say the size of the giant component of community i in layer
A and B due to percolation failures are gni and hni . Analogously, we introduce uni
and vni as the probability of finding a non-functional node by following a link of
a randomly chosen node in community i of network A and B at step n after the
initial removing of 1−pi fraction of nodes from each community, respectively.
We define f ni by

f ni ¼ 1� pið1� uni Þð1� vni Þ: ð7Þ

The physical meaning of f ni is the probability of finding a node along a
randomly selected link in community i of the original network to be non-functional
at step n. So the fraction of nodes that are still functional at step n+ 1 is

gnþ1
i ¼ 1� GiAðf n1 ; f n2 ; :::; f nmÞ; ð8Þ

or equivalently

gnþ1
i ¼ 1� GiAð1� p1ð1� un1Þð1� vn1 Þ; 1� p2ð1� un2Þð1� vn2 Þ; :::;

1� pmð1� unmÞð1� vnmÞÞ:
ð9Þ

uni should obey a transcendental equation3

uni ¼ GiA
1 ð1� p1ð1� un1Þð1� vn1 Þ; 1� p2ð1� un2Þð1� vn2 Þ; :::;

1� pmð1� unmÞð1� vnmÞÞ;
ð10Þ

in which GiA
1 ðun1 ; un2 ; :::; unmÞ is the generating function associated with the

branching process:

GiA
1 ðξ1; ξ2; ::; ξmÞ ¼

∂ξi Q
iA
P
j

αijξj

� �

∂ξi Q
iA
P
j

αijξj

� �
jξ1¼ξ2¼:::¼ξm¼1

¼ P
k1 ;k2 ;���;km

PiAðk1 ;k2 ;���kmÞki
hkii ðαiiξiÞki�1 Qj≠i

j¼1;���;m
ðαijξjÞkj

" #
:

ð11Þ

Similarly, the fraction of functional nodes hnþ1
i in community i in network B at

step n;+ 1 is

hnþ1
i ¼ 1� GiBð1� p1ð1� un1Þð1� vn1 Þ; 1� p2ð1� un2Þð1� vn2 Þ; :::;

1� pmð1� unmÞð1� vnmÞÞ;
ð12Þ

in which vni is the probability of finding functional node by following a link of a
randomly chosen node in community i of network B. It satisfies the following
transcendental equation:

vni ¼ GiB
1 ð1� p1ð1� un1Þð1� vn1 Þ; 1� p2ð1� un2Þð1� vn2 Þ; :::;

1� pmð1� unmÞð1� vnmÞÞ;
ð13Þ

where GiB
1 ðvn1 ; vn2 ; :::; vnmÞ is the generating function related to the branching

process:

GiB
1 ðζ1; ζ2; ::; ζmÞ ¼

∂ζ i Q
iB
P
j

βijζ j

� �

∂ζ i Q
iB
P
j

βijζ j

� ��
jζ1¼ζ2¼:::¼ζm¼1

¼ P
k1 ;k2 ;���;km

PiBðk1 ;k2 ;���kmÞki
hkii ðβiiζ iÞki�1 Qj≠i

j¼1;���;m
ðβijζ jÞkj

" # ð14Þ

At equilibrium when no more nodes can be removed due to percolation and
interdependency failures, the above important parameters u1i and v1i should obey
the following self-consistent equations:

u1i ¼ GiA
1 ð1� p1ð1� u11 Þð1� v11 Þ; 1� p2ð1� u12 Þð1� v12 Þ; :::; 1� pmð1� u1m Þð1� v1m ÞÞ;

v1i ¼ GiB
1 ð1� p1ð1� u11 Þð1� v11 Þ; 1� p2ð1� u12 Þð1� v12 Þ; :::; 1� pmð1� u1m Þð1� v1m ÞÞ;

ð15Þ
and the remaining size of i'th community μ1i becomes

μ1i ¼ pig
1
i h1i ¼ pi 1� GiA 1� p1ð1� u11 Þð1� v11 Þ;��

1� p2ð1� u12 Þð1� v12 Þ; :::; 1� pmð1� u1m Þð1� v1m Þ��
� 1� GiB 1� p1ð1� u11 Þð1� v11 Þ;��
1� p2ð1� u12 Þð1� v12 Þ; :::; 1� pmð1� u1m Þð1� v1m Þ��;

ð16Þ

i ¼ 1; 2; :::;m

Data Availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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