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Abstract

Cooperation abounds in all biological systems. Spatial public goods game (PGG) serves as a baseline
model when investigating the evolution of cooperation in collective interactions. Since analyzing
collective interactions and dynamics in spatial structures is very complicated, a full theoretical
understanding of spatial PGGs is still deficient. Here we generalize spatial PGGs in a three-layer
weighted network—investment, benefit allocation, and strategy dispersal layers—which are not
necessarily identical and thus cover a wide class of population structures and interaction scenarios. We
provide an analytic formula that accurately predicts when cooperation is favored over defection, and
thatis applicable in populations of any size under weak selection. We prove that in regular networks
investment and benefit allocation are essentially symmetric—that exchanging structures of
investment and benefit allocation layers does not affect the evolutionary dynamics at all. The success
of cooperators relies heavily on the correlation between an individual’s investment in a game and its
benefit allocated from the same game. In most cases, the positive correlation, i.e., a greater investment
in games with a larger share of benefits, facilitates a cooperative society. Importantly, we also show that
diversifying the amounts of investment in different games or benefit allocation to different
participants, ifimplementing improperly, might impede the global cooperation.

1. Introduction

Cooperation among unrelated individuals [ 1] has puzzled both evolutionary biologists and sociologists since
Darwin [2]. Evolutionary game theory is an efficient mathematical tool for modeling and studying this
cooperation conundrum [3]. The public goods game (PGG) is a typical game metaphor frequently used to
describe social dilemmas involving multiple agents [4]. In the classical PGG, each of L participants
independently chooses cooperation or defection. Each cooperator invests an amount ¢ (‘cost’) to a public goods
pool, and defectors do not. Finally the total investment is multiplied by an enhancement factor r and is evenly
allocated to all participants. Because defectors do not invest, they obtain a larger net benefit than cooperators.
Thus defection is the stable evolutionary stable strategy. The behavior of free riders, i.e., defection, then drives
the population into the tragedy of the commons despite the greater benefit derived from collective

cooperation [4].

To understand how a real-world population escapes from this cooperation dilemma, from the perspective of
realistic societies, researchers have extended the simple PGG model in various ways, such as the PGG with a
success threshold [5-8] and the PGG ultilizing continuous investment [9—12]. Besides, several mechanisms such
as reward and punishment [13—19], reputation [13, 20], have been demonstrated to facilitate the evolution of
cooperation. The recent investigation of real-world contact and interaction patterns [21-23] has found that
individuals’ interactions are not random and that some individuals interact more frequently than others. Thus,
itis natural to spatially situate players and study the evolutionary dynamics in structured populations [24—-33]
(see reference [34], and references therein). Extending the scope of PGGs from traditional well-mixed settings to
spatial structures (termed spatial PGGs) can further expand our understanding of these mechanisms [16, 17]. In
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addition, spatial games provide a powerful framework for investigating other factors such as diversity and
heterogeneity [35] (see reference [36], and references therein).

Investment and payoff allocation are two crucial ingredients in PGGs. Given both theoretical and
experimental importance of spatial PGGs, the interplay between investment, payoff allocation and evolution of
cooperation must be clear. On the one hand, it is conducive to make clear which factor plays the dominant role
in the evolutionary outcome when various factors are coupled. On the other, it may inform new solutions to get
rid of the tragedy of the commons without invoking other mechanisms such as reward, punishment [13-17],
and reputation [13, 20]. Most prior studies assume that in each PGG each cooperator invests the same amount ¢
and that ultimately the produced benefits are equally allocated to all participants [35]. This is in sharp contrast to
the behavior observed in real-world animal communities and microbial colonies [37, 38]. For example, when
guillemots preen each other (a reciprocal behavior), the duration of allopreening bouts ranges from under a
second to over a minute, where the longer duration is the larger investment [37]. In addition, a cooperative
budding yeast secretes invertase to hydrolyse disaccharide but 99% of the created production diffuses to
neighboring yeasts [38]. All these imply nonuniform investment and payoff allocation. Despite the results
obtained by a few numerical simulation studies [29, 39-45], many fundamental questions still remain
unanswered. Prior studies always couple various factors (besides nonuniform investment and payoff allocation)
into a model, which usually obscures how the heterogeneity in investment or payoff allocation affects the
evolutionary outcomes [39, 41]. For example, when payoffs are distributed amongst players by assigning each
player an individual scaling factor, the nonuniform scaling factors actually lead to twofold heterogeneities, i.e,
allocating benefits nonuniformly and possessing different individual attributes [41]. Thus it is hard to tell which
factor should be responsible for the evolutionary outcome [41]. More importantly, few work so far has studied
investment and payoff allocation simultaneously. Their synergistic effects on the evolution of cooperation thus
are still undiscovered. In addition, because both multiplayer game and spatial structures have added complexity
to the theoretical exploration [46—49], analytical results have been deficient. Nevertheless, a recent investigation
by Allen et al [50] provides a few analytical insights into evolutionary dynamics when there is an unequal sharing
of diffusible common goods. They found that a lower level of diffusion to neighbors is conducive to cooperation.

Here we generalize the spatial PGGs using a three-layer weighted network with investment, payoff
allocation, and strategy dispersal layers in which structures in different layers are not necessarily identical. We
investigate a minimal model in which each individual can have nonuniform investments and shares of benefits
in different games, but all individuals cannot be distinguished except their strategies. This excludes any
difference in individuals’ attributes and makes the acts of investing and allocating benefits the only variables
affecting cooperation. Our analytical investigation arrives at a few unexpected results. We find that in regular
networks exchanging structures of investment and payoff allocation layers does not change the evolutionary
outcomes, implying that investment and payoff allocation are essentially symmetric. In addition, the
evolutionary outcome relies largely on the correlation between the investment in a game and the benefit
allocated from the same game. In most cases, the positive correlation, i.e., a large investment in games with a
large share of returns, is conducive to societal cooperation. Importantly, our finding indicates that diversifying
the amounts of investment or benefit allocation in different games, if implementing improperly, might impede
the global cooperation. This finding contrasts sharply with most prior studies addressing that diversity (or
heterogeneity) promotes cooperation [36]. Also, it enriches our knowledge of interplay between diversity and
the collective behavior.

The rest of the paper is structured as follows. Section 2 briefly describes our model. Section 3 presents the
method of identity by descent (IBD) for deriving an exact analytical condition in three-layer weighted networks.
Section 4 examines analytical calculation results and shows all findings. Section 5 provides our concluding
remarks.

2.Model

Figure 1(a) shows the three-layer networked structure of the spatial PGG. Each node represents an individual
and edges capture events associated with investment (investment layer), payoff allocation (payoff allocation
layer), and strategy dispersal (dispersal layer). Investment and payoff allocation are modeled as directed
networks. In each generation, each individual initiates a PGG centered on itself. Figure 1(b) shows that in the
investment layer the direction of the edge indicates who makes an investment to whom-centered game, and the
weight indicates the investment fraction. Here the total investment of a cooperator in all PGGs in each
generation is normalized to 1. Figure 1(c) shows that in the payoff allocation layer the benefit goes to players
being directed and that the edge weight denotes the allocation fraction.

In the PGG initiated by j, i invests a fraction d;; of its total investment, i.e., dj;s;, where s;is i’s strategy (s; = 1
indicates cooperation and s; = 0 defection). Note that d;;is not necessarily identical to dj;. The accumulated
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Figure 1. Spatial public goods game with a general setting of investment and payoff allocation. (a) Spatial structure described by a
three-layer weighted network (investment, payoff allocation, and strategy dispersal). Nodes represent individuals (marked by 1, 2, 3,
4). Directions of edges in the investment (payoff allocation) layer represent investment (payoff allocation) directions, and weights
show investment fractions in different games (benefit fractions allocated to different participants). (b) Investment and payoff
allocation associated with individual 1. Individual 1 participates in a self-centered and two neighbor-centered PPGs (highlighted). The
investments are dy 51, dys1, and dy 45y, respectively. In each game (taking the game centered on 1 for example), the accumulated
investment is multiplied by an enhancement factor and then benefits (II,) are allocated to all participants, i.e. e;111;, €511, and e, 411,
to individual 1, 2 and 4, respectively. (c) Strategy dispersal according to the death-birth update rule. A random individual 1 is chosen to
die. A random neighbor replaces 1 proportional to their efficient fitness (see the main text for details). As illustrated, 2 competes to

. . wi2F2
replace 1 with probability P ——

investment in PGG centered onjis given by 3~ ,dj;s;, where Vis the set of all individuals. After the investment
produces a benefit Il a fraction eji, 1.€., ¢;il 1, is allocated to i. Similarly, e;; may be different from eji. Overall, the
net benefit for i from PGG centered on jis

fl = rei Y dysi — dysi, M
lev
and 7’s total benefits in one generation is
fi=r Z djejis; — si. 2)
jlev

Here ’s payoffis transformed to fitness by F; = 1 — 6 + 0f;, where ¢ denotes the selection intensity. Since the
fitness of an individual is often the consequence of many factors rather than only games considered here, payoffs
derived from games have only marginal effect on individuals’ fitness [51]. We thus take weak selection (§ < 1).
Following all interactions, in the strategy dispersal layer, the population evolves according to the classic
death-birth update rule [52]. That is, a random individual i is chosen with a uniform probability to die and

anv(agler individual j competes to replace i with a probability proportional to its effective fitness w;;Fj, i.e.,
)

Yievwiki

definition for such a network is that for any twonodes 7,j € V, there exists a permutation T'such that T(i) = j

and dr 1) = Ay €1:07() = €xp WT(oT(y) = Way fOr any pair of x, y. The node-transitivity gives all nodes the
same spatial configuration. Joint transitive networks describe a large class of population structures, such as rings
and square lattice. Note that we can recover the traditional spatial setting by making the structures in different

layers overlapped fully and the edge weights identical.

. We constrain the three-layer structure into a joint transitive network [53-55]. A mathematical

3. Method

When there are no mutations, the system evolves to a homogeneous state in which all individuals are either
cooperators or defectors. The fixation probability pc is the probability that a cooperator in a random position
takes over the whole population of defectors [51]. Analogously, pp, is the probability a defector in arandom
position takes over the whole population of cooperators. Here pc > ppindicates that natural selection favors
cooperation over defection. Using the method of IBD [54, 56] we find the critical enhancement factor r* for
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pc > pp- Because when r* is larger it is harder for cooperation to evolve, the success of cooperators is negatively
correlated with r*.

Biologically IBD describes that two individuals inherit alleles from a common ancestor. Two individuals are
called IBD when no mutation separates them from their common ancestor during evolution. This is frequently
used to study the type assortment [56], and the related methods have been used to solve varieties of problems in
evolution [57, 58]. Allen et al formalize IBD method and apply it to pairwise games on graphs [54]. In this paper,
we further extend it to multiplayer games such as PGGs in multilayer networks. The analytical calculation is
based on an evolving system with strategy mutation rate y.. The derived results can predict a system with no
mutations in the limit of rare mutations (i — 0) [54]. We present the key points for this extension.

We define a (11, m, [)-random walk in the three-layer network to be a random walk with # steps using the
weights {d;;}; ; in the investment layer, m steps using the weights {e;;}; ; in the payoff allocation layer, and I steps
using the weights {w;;}; ; in the strategy dispersal layer. In the joint transitive network, the commutativity of the
adjacency matrices ensures that the probability of terminating at an assigned node is independent of the step
order. Here p"™"™ " is the probability that a (1, 1, I)-random walk terminates at its starting node, p.](," ™D the
probability that a (1, m, [)-random walk starting at i terminates at j, q( mm D the probability thata (1, m, I)-
random walk terminates ata node IBD to the starting node, g;; the stationary probability that individuals
occupying i, j are IBD under the neutral drift (5 = 0), s">"" the probability that an individual accessible to node
1viaa (n, m, )-random walk is a cooperator, "™ the average payoff of individuals who can reach node 1 viaa
(n, m, l)-random walk, and Vl(”’m’l) the node set in which any node can reach node 1 via a (1, m, l)-random walk,
nmm%wmw:{mﬁmbim.

From equation (2), we have

f(n,m,l) _ rs(n+1,m+1,l) _ S(n,m,l)_ (3)

Combining
(n ml) _ 1 (n,m,1)
> P N 2 b
ic V(n m, I) ]E v iev){n,m,l)
— Z py@m,l) -1
,Jev

and

(n,m,l) _ 1 (n,m,1l)
by 9= Z Z pi]' qij

iev](n,m,l) N jEV iev)(n,m,l)

_ (nml) —_ (nml)
= E:& =4

ijEV
from reference [54], we have

S(ﬂ,m,l) = Z pi({l’m’l)Pﬂszo[Si = 1|51 = 1]

iev(n,m,l)
(n m,l) + (n m, l)
16 ‘;m h ze V(Z”"' bh
1+ q(n,m,l)
=, (€]
2

where Pr;_q[s; = 1|s; = 1]is the probability that under neutral drift the occupant of node i is a cooperator when
the individual occupying node 1 is a cooperator. While pi;.””"’l) = p]_(l_”’m’l) is not guaranteed by the directed edges,

we still get which allows the low-mutation expansion
q(n,m,l) _ q(n,m,l+1) — H(Np(n,m,l) _ 1) 4 O([LZ). (5)
Extending the conclusions in reference [54], we find that cooperation is favored over defection under the
death-birth update rule when f 000 f ©.02), Substituting equations (3), (4), and (5) into f ©.00_ f 002 \we
derive the critical enhancement factor r*
. N -2
N [pLL0) 4 pMLLD] — 2 ’
where p(-h0 = 37, dieii / Nand ptbb = 3o, idieiw /N . Note that the analytical result is valid for a wide

class of population structures, from networks with no loops (e.g., square lattice) to those with loops (e.g., rings),

from overlapped structures in different layers to non-overlapped structures. In particular, we recover a previous

2
* = Gt 13) in infinite and unweighted random regular networks with a

(6)

conclusion as a special case that gives r
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degree k [30]. Analogously, when the system is updated using the pairwise comparison or birth-death rule [52],
we have

N-1

e
NpLO |

)
Although equation (6) is applicable to many cases, given that the focus in this paper is investment and payoff
allocation, we avoid making the spatial structure complicated. Thus we take two constraints:

(1) Edges in different layers overlap such that d;; = 0 and e;; = 0 ifand only if w;; = 0, and edges do not form
triangle loops.

(2) Edge weightsin the dispersal layer are identical, i.e., wj; = % ifiandjare connected.

4. Results

4.1. Symmetry between investment and payoff allocation

In each generation, each individual participates in the self-centered and all neighbor-centered games. Thus, it
must decide how much to invest in each game. Besides, as the initiator of the self-centered game, it probably
plays a dominant role in allocating the produced benefits. A typical example is that a rectangular bacteria
Escherichia coli diffuses more public goods to neighboring bacterium contacted along long edges [50]. The
question is how these two decisions affect the evolution of cooperation and whether there is any correlation
between them. Equation (6) shows that the evolutionary outcomes are determined by p™"* + p"" for a given
population of size N. Here we exchange the structures in investment and payoff allocation layers by exchanging
their edge weights. That is, individuals make investments based on the structure in the payoff allocation layer
and allocate payoffs based on the structure in the investment layer. We have

ﬁ(l’l’o) + ]3(1’1’1) = iz e,']'d]',' + LZ eijdﬂwli. (8)
N5 N

The aforementioned commutativity of the adjacency matrices makes >, i€ii di =3, jdi]- ejiand
Sjeidiwi = 3, i dijepwy. Thus PO 4 LD = p(LLO 4 5(LLD findicating that switching the structures
of the investment and payoff allocation layers does not affect the evolutionary outcomes. The implication is that
because investment and payoff allocation are symmetric, targeted interventions to social investment or to benefit
distribution have the same outcome. In addition, the symmetry is valid when aforementioned constraints are
released and when the system is updated using pairwise comparison or birth-death rule. Figure 2 shows the
analytic predictions agree well with Monte Carlo simulations.

Note that this finding is not apparent at the individual level. Equation (2) indicates that after switching
structures in interaction and payoff allocation layers, the benefit for individual i is ﬁ =T eve diis; — si.

Under the same strategy configuration, f, = f: is invalid. Thus switching structures affects i’s viability.

Although we constrain the research scope of this paper in regular networks, we stress that the symmetry
between investment and payoff allocation is also visible in a few heterogeneous networks. Typically, in the star-
structured population, a strongly heterogeneous network consisting of a center node and a few leaf nodes, we
assume that the total investment amount of each cooperator is identical. Each player invests a fraction d in the
self-centered game and invests the rest evenly in all neighbor-centered games. When allocating benefits, each
player gains a fraction e of the total earnings from the self-centered game and the rest is distributed to all
neighbors equally. We find that exchanging the values of d and e does not affect the evolutionary outcomes at all,
applicable to various update rules such as birth-death, death-birth and pairwise comparison rules.

4.2. Nonuniform investment and uniform payoff allocation

We proceed with the study about how arrangement of investment and payoff allocation affects the evolutionary
dynamics. Due to the node-transitivity of joint networks, p™"? 4 p> does not depend on node i. We use
edge weights associated with node 1 to rewrite p>? 4 p-bD

p(l,l,O) + p(l,l,l) — [l

2 1
p + (1 - ?)ell]dll + > dijeji + o )]

j=1
The value of p? 4 p™1V relies on the product of d; jand ¢;;. The former is the fraction of individual 1’s
investment in the PGG centered on j. The latter is the share of benefits allocated to individual 1 from the PGG
centered onj.

We apply this finding to clarify a classic issue: how does heterogeneity in investment or payoff allocation

affect cooperation? Because of the symmetry between investment and payoff allocation, we take uniform payoft
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Figure 2. Symmetry between investment and payoff allocation. (a), (b) Investment (upper layer) in different games and payoff
allocation (lower layer) to different individuals. Structures in all layers are ring networks, see figure 1. Only node 1 and its associated
edges are presented. The investment (payoff allocation) fractions in (b) correspond to payoff allocation (investment) fractions in (a).
(¢) Critical enhancement factor r* as a function of d and e for case (a) and (b). Exchanging the structures in investment and payoff
allocation layers does not change evolutionary outcomes. Dots indicate simulation results and solid lines represent analytic
predictions. Simulation settings: a ring with node degree k = 2 and population size N = 200. Edge weights are determined by eand d.
pc(pp) is the fraction of runs where cooperators (defectors) reach fixation out of 10” runs under weak selection § = 0.02. We sample a
revery 0.01 and take r that makes pc — pp closest to 0 as 7. The smaller sample interval can further reduce the deviation between
analytical predictions and simulated results.

allocation and focus on heterogeneous investment. Figure 3 shows that heterogeneity in investment can
promote (0 — a), does notaffect (0 — b), orinhibit (0 — c¢) the evolution of cooperation, implying that its
effects on cooperation are multiple. According to figure 3, we can accurately predict when heterogeneity boosts
cooperation. Actually, the impact of heterogeneity is determined by d; (the investment in the self-centered
game) and is unaffected by any other d,; (the investment in j-centered game). This shows that in the most
frequently studied spatial PGGs, individuals’ behavior in self-centered game and in neighbor-centered games do
not have the same effect on social cooperation. Although benefits are allocated to all participants equally,
increasing the investment in the self-centered game can confer cooperation more advantages, an effect never
observed in prior studies [29, 39—45]. Figure 4 shows an example that makes this explicit. The cooperator cluster
expands only when the cooperator in the boundary successfully disperses its strategy to the node occupied by the
adjacent defector. Assuming a weak selection strength (6 < 1), in both figures 4(a) and (b), the probability of the
cooperator cluster expandingis p._,,, = % + (% — i) % However the probability of defectors’ expansion in

figure 4(b)is pp_, - = % — (é — i) %, larger than p, - = % — (% — i)% in figure 4(a). This indicates that
investments in neighbor-centered games facilitate the invasion of defectors. Analogously, figures 4(a) and (c)
show that investments in neighbor-centered games could weaken the expansion of cooperators. Thus under
uniform payoff allocation, investment in self-centered games benefits cooperation more than investment in
neighbor-centered games.

4.3. Nonuniform investment and nonuniform payoff allocation

Equation (9) shows that the success of cooperators relies on the correlation between individuals’ investment in a
game and shares of benefits from the same game. Although an individual cannot control the level of benefit
received from each game, they can decide their investment level in each game. Here we fix the allocation fraction
{ejj}ijand determine how adjusting the investment can positively affect cooperation. We treat equation (9) asa
linear polynomial of d;(j € V') with a coefficient that is termed return coefficient &;;. Here
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d12 d14

Figure 3. Nonuniform investment can promote or inhibit the evolution of cooperation. In the left-top inset, dy; (d;, and d,4)
represents the investment fraction of individual 1 in the self-centered (neighbor-centered) game, see figure 1(a). e1; (e5; and ey)
represents the share of benefits allocated to individual 1 from the self-centered (neighbor-centered) game. Illustrated in the triangle
panel is critical enhancement factor r* in the full configuration space of investment (d, ,, d,, , d,4) under uniform payoffallocation, i.e.,
(€11, €21, €41) = (%, %, %). Each point corresponds to a specific investment configuration. The value of " at each configuration is
shown using the blue-yellow-red scale indicated. The black line indicates conﬁgurations with fixed d;; while varying d, and dy 4.

. . . . 1 1
Points o and a, b, c represent configurations of uniform investments (5’ - ) and three nonuniform investments, (-

1 2i4)
GLOG D

" 959888

0 L, —1"71 r—1
SRS R

(c)
/\/\/\/\/\
000

__1__
0 0 37" 3r1

Figure 4. Investment in self-centered games benefits cooperation more than investment in neighbor-centered games under uniform
payoftallocation. (a) Individuals invest all to self-centered games. (b), (c) Individuals invest all to neighbor-centered games. Green
arrows represent investment. Benefits in each game are evenly allocated to the focal individual and its two nearest neighbors. Payoftfs at
the boundary of strategy clusters are shown below corresponding individuals. Based on the death-birth rule described in section 2,
transition from (a) to (b) strengthens the ability for defector clusters to expand. Transition from (a) to (c) weakens the ability for
cooperator clusters to expand.

e = % + 1 - )en and & = ¢;; for j = 1. The optimal theory tells that increasing d;; with a larger return
coefficient &; causes alarger p™°? 4+ pbY and lowers the barrier for cooperators’ success (see equation (6)).
Thus, in most cases an increase in the investment to games with a larger share of benefits is more beneficial to
cooperation (see figures 5(a)—(c)). For example, in figure 5(c), the benefit shares from games centered on
individual 1, 2, 4 are %, %, é, respectively, making &, > &, > &,;;. Compared with increasing investment in
4-centered PGG, individual 1 investing more in the 2-centered PGG provides more advantages to cooperation.
Increasing d,, (approaching d, , in figure 5(c)) is the optimal investment behavior for building cooperative
societies.

However, we stress that the return coefficient for d;; isnote;; but &; = ¢;; + %(1 — 2ey;).Fore); < %,

%( 1 — 2eyy) is positive and contributes to a larger value of ). Thus, for a small value of e, &) may be the largest
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Figure 5. Success of cooperators relies on the correlation between one’s investment in a game and benefits allocated from the same
game. [llustrated in (a)—(c) is critical enhancement factor r* in full configuration space of investment (d, 1, d, 5, d 4) under nonuniform
payoftallocation (e;, €1, €41). The symbol and notation using follows figure 3. (e;1, €21, €41) is shown in the top left inset. Point o
represents the configuration with uniform investment, i.e. (d,,, d1,, d14) = (é, é, %). Three cases of (e, €51, €41), 1.€. (%, é, é)(a),

(]5, %, é)(b), and (é’ %, 1;)(5), correspond to & > &) > &, &1 = &) > &,and & > & > &, respectively. Depicted in (d) is the
optimal investment direction for promoting cooperation under the full configuration space of payoff allocation. For example, in the
bright blue zone, increasing d;; benefits cooperation more than increasing d; , or di4. In (d), point o corresponds to the configuration
of payoffallocation in figure 3 and point a, b, ¢ corresponds to that in panel (a), (b), (c) in this figure, respectively.

return coefficient and increasing d;  is optimal in facilitating collective cooperation. In other words, investing
more to games with larger shares of benefits is not always conductive to maintain cooperative society. When
e > %, foranyjwehave &, — &, > (2e;; — (1 — %) > 0. Here a negative value of%(l — 2e;1) does not
change the fact that increasing d; ; is optimal to collective cooperation. Overall, the added term to &) increases
the likelihood that augmenting investment in self-centered games is an optimal choice for establishing a
cooperative society. Figure 5(d) shows that in the full configuration space of payoff allocation (e, €21, €41), the
optimal investment zone for self-centered games is the largest.

5. Discussion and conclusions

Here we theoretically demonstrate the symmetry between investment and payoff allocation. This finding
expands our understanding of the baseline model of spatial PGGs. It also indicates that in many cases adjusting
one’s investment strategies or its benefit allocation strategies lead to the same evolutionary outcomes. Thus
when the intervention to benefit allocation is not accessible, targeting and structuring the investment could
achieve the same goal, with potential use by policy makers, managers, and administrators. In addition, we find
that in most cases investing more in games with larger potential returns often facilitates cooperation. The
underlying mechanism is that cooperators can benefit more from their investment while defectors lose the
chance of free riding on cooperators. This finding therefore highlights the importance to coordinate the
investments and payoff benefits in different games.
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Intriguingly, heterogeneity in investment or payoff allocation is not always beneficial to cooperation.
Heterogeneity here can be not only a promoter of cooperation but also its inhibitor, which is in sharp contrast
with previous studies [36, 59, 60]. Traditional investigations into heterogeneity focus on the difference in
individuals’ attributes, such as possessing different numbers of social ties [59] and inhomogeneous teaching
abilities [60] (see reference [36] and references therein). Heterogeneous attributes shape a few distinguished
‘hub’ individuals who have a greater capacity to spread strategies [59—61]. Hub individuals establish
homogeneous strategy ‘clouds’ that surround them, i.e., cooperation ‘clouds’ around hub cooperators and
defection ‘clouds’ around hub defectors. These clouds strengthen the viability of the hub cooperators and
increase survival of cooperation, even under testing conditions. In particular, most prior studies exploring
nonuniform investment or payoff allocation [29, 39—45] incorporate heterogeneity in individuals’ attributes.
For example, when each individual is assigned a random scaling factor to indicate benefit allocation, the scaling
factor difference causes individuals’ heterogeneity, which is partly responsible for the persistence of cooperation
[41]. Here we investigate ‘action’ heterogeneity, such as the heterogeneous investment amount and the benefit
distribution in different games. We find the effect of action heterogeneity on the evolution of cooperation relies
heavily on the correlation among participants’ actions. Positive correlations in heterogeneity facilitate the
evolution of cooperation and negative correlations impede cooperation, indicating the double edged influence
of heterogeneity. In recent studies [32, 62], Su et al develop the interactive diversity in which each individual
adopts and adaptively adjust different strategies against different opponents. They show that this diversity
strengthens the strategy reciprocity between pairs of individuals and maintains large scale cooperation even in
completely connected networks [62]. Research on ‘action” heterogeneity will significantly enriches our
understanding of collective behavior in complex systems.

A tacit assumption in spatial multiplayer games is that each individual engages in a self-centered and all
neighbor-centered games in each generation [29, 39—45]. Few studies have examined how the same behavior in
the self-centered game and neighbor-centered games affect the evolution of cooperation differently. Here we
show that the former more strongly encourages cooperation. For example, in spatial PGGs with a uniform
payoff allocation, an investment in self-centered games provides more advantages to the evolution of
cooperation than the same level of investment in neighbor-centered games. This finding provides us new
insights into escaping the tragedy of the commons without invoking other mechanisms such as reputation
[13,20] and punishment [13—17]. Nevertheless, as seen in most prior studies, update rules often strongly affect
the evolutionary dynamics [54]. When the system evolves using the birth-death or pairwise comparison rule (the
probability that individual i is replaced by its neighbor j is proportional to their payoft difference f; — £), the
same behavior in different games become equivalent in terms of stabilizing cooperation (refer to figure 4).
Broom et al recently develop a new framework for investigating the interactions between territorial animals in
which games are neither initiated by nor centered on individuals [63]. This eliminates the spatial correlations
between games and individuals [35]. Ultimately, the same behavior in different games has an identical effect to
the evolutionary outcomes. Equally important as evolutionary graph theory, it is a promising framework for
exploring how local interactions affect evolutionary dynamics [64].

To focus on investment and payoff allocation, in this paper, we try to make the inter-layer correlation and
intra-layer connection simple, i.e., making edges in different layers overlapping and avoiding structural triangles
in a single layer. Actually, when these constraints are removed, the obtained formula is still applicable. A further
analysis into this formula will help to understand how a few realistic structural features like community
structure affect the evolution of social behavior. Nevertheless, we point out that the formula hinges on the widely
used assumption of weak selection and regular networks. Extending our results to strong selection and any
population structure will be a challenging and important topic in future work.
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