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Abstract
Cooperation abounds in all biological systems. Spatial public goods game (PGG) serves as a baseline
model when investigating the evolution of cooperation in collective interactions. Since analyzing
collective interactions and dynamics in spatial structures is very complicated, a full theoretical
understanding of spatial PGGs is still deficient. Herewe generalize spatial PGGs in a three-layer
weighted network—investment, benefit allocation, and strategy dispersal layers—which are not
necessarily identical and thus cover awide class of population structures and interaction scenarios.We
provide an analytic formula that accurately predicts when cooperation is favored over defection, and
that is applicable in populations of any size underweak selection.We prove that in regular networks
investment and benefit allocation are essentially symmetric—that exchanging structures of
investment and benefit allocation layers does not affect the evolutionary dynamics at all. The success
of cooperators relies heavily on the correlation between an individual’s investment in a game and its
benefit allocated from the same game. Inmost cases, the positive correlation, i.e., a greater investment
in gameswith a larger share of benefits, facilitates a cooperative society. Importantly, we also show that
diversifying the amounts of investment in different games or benefit allocation to different
participants, if implementing improperly,might impede the global cooperation.

1. Introduction

Cooperation among unrelated individuals [1] has puzzled both evolutionary biologists and sociologists since
Darwin [2]. Evolutionary game theory is an efficientmathematical tool formodeling and studying this
cooperation conundrum [3]. The public goods game (PGG) is a typical gamemetaphor frequently used to
describe social dilemmas involvingmultiple agents [4]. In the classical PGG, each of L participants
independently chooses cooperation or defection. Each cooperator invests an amount c (‘cost’) to a public goods
pool, and defectors do not. Finally the total investment ismultiplied by an enhancement factor r and is evenly
allocated to all participants. Because defectors do not invest, they obtain a larger net benefit than cooperators.
Thus defection is the stable evolutionary stable strategy. The behavior of free riders, i.e., defection, then drives
the population into the tragedy of the commons despite the greater benefit derived from collective
cooperation [4].

To understand how a real-world population escapes from this cooperation dilemma, from the perspective of
realistic societies, researchers have extended the simple PGGmodel in variousways, such as the PGGwith a
success threshold [5–8] and the PGGultilizing continuous investment [9–12]. Besides, severalmechanisms such
as reward and punishment [13–19], reputation [13, 20], have been demonstrated to facilitate the evolution of
cooperation. The recent investigation of real-world contact and interaction patterns [21–23] has found that
individuals’ interactions are not randomand that some individuals interactmore frequently than others. Thus,
it is natural to spatially situate players and study the evolutionary dynamics in structured populations [24–33]
(see reference [34], and references therein). Extending the scope of PGGs from traditional well-mixed settings to
spatial structures (termed spatial PGGs) can further expand our understanding of thesemechanisms [16, 17]. In
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addition, spatial games provide a powerful framework for investigating other factors such as diversity and
heterogeneity [35] (see reference [36], and references therein).

Investment and payoff allocation are two crucial ingredients in PGGs. Given both theoretical and
experimental importance of spatial PGGs, the interplay between investment, payoff allocation and evolution of
cooperationmust be clear. On the one hand, it is conducive tomake clearwhich factor plays the dominant role
in the evolutionary outcomewhen various factors are coupled. On the other, itmay informnew solutions to get
rid of the tragedy of the commonswithout invoking othermechanisms such as reward, punishment [13–17],
and reputation [13, 20].Most prior studies assume that in each PGGeach cooperator invests the same amount c
and that ultimately the produced benefits are equally allocated to all participants [35]. This is in sharp contrast to
the behavior observed in real-world animal communities andmicrobial colonies [37, 38]. For example, when
guillemots preen each other (a reciprocal behavior), the duration of allopreening bouts ranges fromunder a
second to over aminute, where the longer duration is the larger investment [37]. In addition, a cooperative
budding yeast secretes invertase to hydrolyse disaccharide but 99%of the created production diffuses to
neighboring yeasts [38]. All these imply nonuniform investment and payoff allocation. Despite the results
obtained by a fewnumerical simulation studies [29, 39–45], many fundamental questions still remain
unanswered. Prior studies always couple various factors (besides nonuniform investment and payoff allocation)
into amodel, which usually obscures how the heterogeneity in investment or payoff allocation affects the
evolutionary outcomes [39, 41]. For example, when payoffs are distributed amongst players by assigning each
player an individual scaling factor, the nonuniform scaling factors actually lead to twofold heterogeneities, i.e,
allocating benefits nonuniformly and possessing different individual attributes [41]. Thus it is hard to tell which
factor should be responsible for the evolutionary outcome [41].More importantly, fewwork so far has studied
investment and payoff allocation simultaneously. Their synergistic effects on the evolution of cooperation thus
are still undiscovered. In addition, because bothmultiplayer game and spatial structures have added complexity
to the theoretical exploration [46–49], analytical results have been deficient. Nevertheless, a recent investigation
byAllen et al [50] provides a few analytical insights into evolutionary dynamics when there is an unequal sharing
of diffusible common goods. They found that a lower level of diffusion to neighbors is conducive to cooperation.

Here we generalize the spatial PGGs using a three-layer weighted networkwith investment, payoff
allocation, and strategy dispersal layers inwhich structures in different layers are not necessarily identical.We
investigate aminimalmodel inwhich each individual can have nonuniform investments and shares of benefits
in different games, but all individuals cannot be distinguished except their strategies. This excludes any
difference in individuals’ attributes andmakes the acts of investing and allocating benefits the only variables
affecting cooperation.Our analytical investigation arrives at a few unexpected results.Wefind that in regular
networks exchanging structures of investment and payoff allocation layers does not change the evolutionary
outcomes, implying that investment and payoff allocation are essentially symmetric. In addition, the
evolutionary outcome relies largely on the correlation between the investment in a game and the benefit
allocated from the same game. Inmost cases, the positive correlation, i.e., a large investment in gameswith a
large share of returns, is conducive to societal cooperation. Importantly, ourfinding indicates that diversifying
the amounts of investment or benefit allocation in different games, if implementing improperly,might impede
the global cooperation. This finding contrasts sharply withmost prior studies addressing that diversity (or
heterogeneity) promotes cooperation [36]. Also, it enriches our knowledge of interplay between diversity and
the collective behavior.

The rest of the paper is structured as follows. Section 2 briefly describes ourmodel. Section 3 presents the
method of identity by descent (IBD) for deriving an exact analytical condition in three-layer weighted networks.
Section 4 examines analytical calculation results and shows allfindings. Section 5 provides our concluding
remarks.

2.Model

Figure 1(a) shows the three-layer networked structure of the spatial PGG. Each node represents an individual
and edges capture events associatedwith investment (investment layer), payoff allocation (payoff allocation
layer), and strategy dispersal (dispersal layer). Investment and payoff allocation aremodeled as directed
networks. In each generation, each individual initiates a PGG centered on itself. Figure 1(b) shows that in the
investment layer the direction of the edge indicates whomakes an investment towhom-centered game, and the
weight indicates the investment fraction.Here the total investment of a cooperator in all PGGs in each
generation is normalized to 1. Figure 1(c) shows that in the payoff allocation layer the benefit goes to players
being directed and that the edgeweight denotes the allocation fraction.

In the PGG initiated by j, i invests a fraction dij of its total investment, i.e., dijsi, where si is i’s strategy (si=1
indicates cooperation and si=0 defection). Note that dij is not necessarily identical to dji. The accumulated
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investment in PGG centered on j is given by d sl V lj lå Î , whereV is the set of all individuals. After the investment
produces a benefitΠj, a fraction eji, i.e., ejiΠj, is allocated to i. Similarly, eijmay be different from eji. Overall, the
net benefit for i fromPGGcentered on j is

f re d s d s , 1i
j

ji
l V

lj l ij iå= -
Î

( )

and i’s total benefits in one generation is

f r d e s s . 2i
j l V

lj ji l i
,
å= -
Î

( )

Here i’s payoff is transformed tofitness by F f1i id d= - + , where δ denotes the selection intensity. Since the
fitness of an individual is often the consequence ofmany factors rather than only games considered here, payoffs
derived from games have onlymarginal effect on individuals’fitness [51].We thus takeweak selection (δ=1).

Following all interactions, in the strategy dispersal layer, the population evolves according to the classic
death-birth update rule [52]. That is, a random individual i is chosenwith a uniformprobability to die and
another individual j competes to replace iwith a probability proportional to its effective fitnesswjiFj, i.e.,

w F

w F
ji j

l V li lå Î
.We constrain the three-layer structure into a joint transitive network [53–55]. Amathematical

definition for such a network is that for any twonodes i, jäV, there exists a permutationT such thatT(i)=j
and dT(x)T(y)=dxy, eT(x)T(y)=exy,wT(x)T(y)=wxy for any pair of x, y. The node-transitivity gives all nodes the
same spatial configuration. Joint transitive networks describe a large class of population structures, such as rings
and square lattice. Note that we can recover the traditional spatial setting bymaking the structures in different
layers overlapped fully and the edgeweights identical.

3.Method

When there are nomutations, the system evolves to a homogeneous state inwhich all individuals are either
cooperators or defectors. Thefixation probability ρC is the probability that a cooperator in a randomposition
takes over thewhole population of defectors [51]. Analogously, ρD is the probability a defector in a random
position takes over thewhole population of cooperators. Here ρC>ρD indicates that natural selection favors
cooperation over defection. Using themethod of IBD [54, 56]wefind the critical enhancement factor r* for

Figure 1. Spatial public goods gamewith a general setting of investment and payoff allocation. (a) Spatial structure described by a
three-layer weighted network (investment, payoff allocation, and strategy dispersal). Nodes represent individuals (marked by 1, 2, 3,
4). Directions of edges in the investment (payoff allocation) layer represent investment (payoff allocation) directions, andweights
show investment fractions in different games (benefit fractions allocated to different participants). (b) Investment and payoff
allocation associatedwith individual 1. Individual 1 participates in a self-centered and two neighbor-centered PPGs (highlighted). The
investments are d11s1, d12s1, and d14s1, respectively. In each game (taking the game centered on 1 for example), the accumulated
investment ismultiplied by an enhancement factor and then benefits (Π1) are allocated to all participants, i.e. e11 1P , e12Π1 and e14Π1

to individual 1, 2 and 4, respectively. (c) Strategy dispersal according to the death-birth update rule. A random individual 1 is chosen to
die. A randomneighbor replaces 1 proportional to their efficient fitness (see themain text for details). As illustrated, 2 competes to
replace 1with probability w F

w F w F
12 2

12 2 14 4+
.
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ρC>ρD. Becausewhen r
* is larger it is harder for cooperation to evolve, the success of cooperators is negatively

correlatedwith r*.
Biologically IBDdescribes that two individuals inherit alleles from a common ancestor. Two individuals are

called IBDwhen nomutation separates them from their common ancestor during evolution. This is frequently
used to study the type assortment [56], and the relatedmethods have been used to solve varieties of problems in
evolution [57, 58]. Allen et al formalize IBDmethod and apply it to pairwise games on graphs [54]. In this paper,
we further extend it tomultiplayer games such as PGGs inmultilayer networks. The analytical calculation is
based on an evolving systemwith strategymutation rateμ. The derived results can predict a systemwith no
mutations in the limit of raremutations ( 0m l ) [54].We present the key points for this extension.

We define a (n,m, l)-randomwalk in the three-layer network to be a randomwalkwith n steps using the
weights dij i j,{ } in the investment layer,m steps using theweights eij i j,{ } in the payoff allocation layer, and l steps
using theweights wij i j,{ } in the strategy dispersal layer. In the joint transitive network, the commutativity of the
adjacencymatrices ensures that the probability of terminating at an assigned node is independent of the step
order. Here p( n,m, l) is the probability that a (n,m, l)-randomwalk terminates at its starting node, pij

n m l, ,( ) the

probability that a (n,m, l)-randomwalk starting at i terminates at j, q( n,m, l) the probability that a (n,m, l)-
randomwalk terminates at a node IBD to the starting node, qij the stationary probability that individuals
occupying i, j are IBDunder the neutral drift (δ=0), s( n,m, l) the probability that an individual accessible to node
1 via a (n,m, l)-randomwalk is a cooperator, f (n,m,l) the average payoff of individuals who can reach node 1 via a
(n,m, l)-randomwalk, andV n m l

1
, ,( ) the node set inwhich any node can reach node 1 via a (n,m, l)-randomwalk,

namely,V j p 0n m l
j
n m l

1
, ,

1
, ,= ¹{ ∣ }( ) ( ) .

From equation (2), we have

f rs s . 3n m l n m l n m l, , 1, 1, , ,= -+ + ( )( ) ( ) ( )
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from reference [54], we have

s p Pr s s

p p q

q

1 1

1

2

1

2

1

2
, 4

n m l

i V
i

n m l
i

i V
i

n m l

i V
i

n m l
i

n m l

, ,
1

, ,
0 1

1
, ,

1
, ,

1

, ,

n m l

n m l n m l

1
, ,

1
, ,

1
, ,

å

å å

= = =

= +

=
+

d
Î

=

Î Î

[ ∣ ]

( )

( ) ( )

( ) ( )

( )

( )

( ) ( )

where Pr s s1 1i0 1= =d= [ ∣ ] is the probability that under neutral drift the occupant of node i is a cooperator when
the individual occupying node 1 is a cooperator.While p pij

n m l
ji
n m l, , , ,=( ) ( ) is not guaranteed by the directed edges,

we still get which allows the low-mutation expansion

q q Np 1 . 5n m l n m l n m l, , , , 1 , , 2'm m- = - ++ ( ) ( ) ( )( ) ( ) ( )

Extending the conclusions in reference [54], wefind that cooperation is favored over defection under the
death-birth update rule when f (0,0,0)>f (0,0,2). Substituting equations (3), (4), and (5) into f (0,0,0)−f (0,0,2), we
derive the critical enhancement factor r*

r
N

N p p

2

2
, 6

1,1,0 1,1,1
* =

-
+ -[ ]

( )( ) ( )

where p d e Ni j ij ji
1,1,0

,= å( ) and p d e w Ni j l ij jl li
1,1,1

, ,= å( ) . Note that the analytical result is valid for awide
class of population structures, fromnetworks with no loops (e.g., square lattice) to thosewith loops (e.g., rings),
fromoverlapped structures in different layers to non-overlapped structures. In particular, we recover a previous
conclusion as a special case that gives r k

k

1

3

2

* = +
+

( ) in infinite and unweighted random regular networks with a
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degree k [30]. Analogously, when the system is updated using the pairwise comparison or birth-death rule [52],
we have

r
N

Np

1

1
. 7

1,1,0
* =

-
-

( )( )

Although equation (6) is applicable tomany cases, given that the focus in this paper is investment and payoff
allocation, we avoidmaking the spatial structure complicated. Thuswe take two constraints:

(1) Edges in different layers overlap such that d 0ij ¹ and e 0ij ¹ if and only if w 0ij ¹ , and edges do not form
triangle loops.

(2) Edgeweights in the dispersal layer are identical, i.e., wij k

1= if i and j are connected.

4. Results

4.1. Symmetry between investment and payoff allocation
In each generation, each individual participates in the self-centered and all neighbor-centered games. Thus, it
must decide howmuch to invest in each game. Besides, as the initiator of the self-centered game, it probably
plays a dominant role in allocating the produced benefits. A typical example is that a rectangular bacteria
Escherichia coli diffusesmore public goods to neighboring bacterium contacted along long edges [50]. The
question is how these two decisions affect the evolution of cooperation andwhether there is any correlation
between them. Equation (6) shows that the evolutionary outcomes are determined by p(1,1,0)+p(1,1,1) for a given
population of sizeN. Herewe exchange the structures in investment and payoff allocation layers by exchanging
their edgeweights. That is, individualsmake investments based on the structure in the payoff allocation layer
and allocate payoffs based on the structure in the investment layer.We have

p p
N

e d
N

e d w
1 1

. 8
i j

ij ji
i j l

ij jl li
1,1,0 1,1,1

, , ,
å å+ = +˜ ˜ ( )( ) ( )

The aforementioned commutativity of the adjacencymatricesmakes e d d ei j ij ji i j ij ji, ,å = å and

e d w d e wi j l ij jl li i j l ij jl li, , , ,å = å . Thus p p p p1,1,0 1,1,1 1,1,0 1,1,1+ = +˜ ˜( ) ( ) ( ) ( ), indicating that switching the structures
of the investment and payoff allocation layers does not affect the evolutionary outcomes. The implication is that
because investment and payoff allocation are symmetric, targeted interventions to social investment or to benefit
distribution have the same outcome. In addition, the symmetry is validwhen aforementioned constraints are
released andwhen the system is updated using pairwise comparison or birth-death rule. Figure 2 shows the
analytic predictions agree well withMonte Carlo simulations.

Note that this finding is not apparent at the individual level. Equation (2) indicates that after switching
structures in interaction and payoff allocation layers, the benefit for individual i is f r e d s si j l V lj ji l i,= å -Î

˜ .

Under the same strategy configuration, f fi i= ˜ is invalid. Thus switching structures affects i’s viability.
Althoughwe constrain the research scope of this paper in regular networks, we stress that the symmetry

between investment and payoff allocation is also visible in a few heterogeneous networks. Typically, in the star-
structured population, a strongly heterogeneous network consisting of a center node and a few leaf nodes, we
assume that the total investment amount of each cooperator is identical. Each player invests a fraction d in the
self-centered game and invests the rest evenly in all neighbor-centered games.When allocating benefits, each
player gains a fraction e of the total earnings from the self-centered game and the rest is distributed to all
neighbors equally.Wefind that exchanging the values of d and e does not affect the evolutionary outcomes at all,
applicable to various update rules such as birth-death, death-birth and pairwise comparison rules.

4.2. Nonuniform investment and uniformpayoff allocation
Weproceedwith the study about how arrangement of investment and payoff allocation affects the evolutionary
dynamics. Due to the node-transitivity of joint networks, p(1,1,0)+p(1,1,1) does not depend on node i.We use
edgeweights associatedwith node 1 to rewrite p(1,1,0)+p(1,1,1)

p p
k k

e d d e
k

e
1

1
2 1

. 9
j

j j
1,1,0 1,1,1

11 11
1

1 1 11å+ = + - + +
¹

⎡
⎣⎢

⎤
⎦⎥( ) ( )( ) ( )

The value of p(1,1,0)+p(1,1,1) relies on the product of d1j and ej1. The former is the fraction of individual 1’s
investment in the PGG centered on j. The latter is the share of benefits allocated to individual 1 from the PGG
centered on j.

We apply this finding to clarify a classic issue: howdoes heterogeneity in investment or payoff allocation
affect cooperation? Because of the symmetry between investment and payoff allocation, we take uniformpayoff
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allocation and focus on heterogeneous investment. Figure 3 shows that heterogeneity in investment can
promote (o al ), does not affect (o bl ), or inhibit (o cl ) the evolution of cooperation, implying that its
effects on cooperation aremultiple. According tofigure 3, we can accurately predict when heterogeneity boosts
cooperation. Actually, the impact of heterogeneity is determined by d11 (the investment in the self-centered
game) and is unaffected by any other d1j (the investment in j-centered game). This shows that in themost
frequently studied spatial PGGs, individuals’ behavior in self-centered game and in neighbor-centered games do
not have the same effect on social cooperation. Although benefits are allocated to all participants equally,
increasing the investment in the self-centered game can confer cooperationmore advantages, an effect never
observed in prior studies [29, 39–45]. Figure 4 shows an example thatmakes this explicit. The cooperator cluster
expands onlywhen the cooperator in the boundary successfully disperses its strategy to the node occupied by the
adjacent defector. Assuming aweak selection strength ( 1d � ), in bothfigures 4(a) and (b), the probability of the
cooperator cluster expanding is pC D N

r

N

1

6

1

4
= + - d

l ( ) . However the probability of defectors’ expansion in

figure 4(b) is pD C N

r

N

1

12

1

4
= - - d

l ( ) , larger than pD C N

r

N

1

6

1

4
= - - d

l ( ) infigure 4(a). This indicates that
investments in neighbor-centered games facilitate the invasion of defectors. Analogously,figures 4(a) and (c)
show that investments in neighbor-centered games couldweaken the expansion of cooperators. Thus under
uniformpayoff allocation, investment in self-centered games benefits cooperationmore than investment in
neighbor-centered games.

4.3. Nonuniform investment and nonuniformpayoff allocation
Equation (9) shows that the success of cooperators relies on the correlation between individuals’ investment in a
game and shares of benefits from the same game. Although an individual cannot control the level of benefit
received from each game, they can decide their investment level in each game.Herewe fix the allocation fraction
eij i j,{ } and determine how adjusting the investment can positively affect cooperation.We treat equation (9) as a
linear polynomial of d1j ( jäV )with a coefficient that is termed return coefficient e j1̃ . Here

Figure 2. Symmetry between investment and payoff allocation. (a), (b) Investment (upper layer) in different games and payoff
allocation (lower layer) to different individuals. Structures in all layers are ring networks, see figure 1.Only node 1 and its associated
edges are presented. The investment (payoff allocation) fractions in (b) correspond to payoff allocation (investment) fractions in (a).
(c)Critical enhancement factor r* as a function of d and e for case (a) and (b). Exchanging the structures in investment and payoff
allocation layers does not change evolutionary outcomes. Dots indicate simulation results and solid lines represent analytic
predictions. Simulation settings: a ringwith node degree k=2 and population sizeN=200. Edgeweights are determined by e and d.
ρC (ρD) is the fraction of runs where cooperators (defectors) reachfixation out of 107 runs underweak selection δ=0.02.We sample a
r every 0.01 and take r thatmakes ρC−ρD closest to 0 as r

*. The smaller sample interval can further reduce the deviation between
analytical predictions and simulated results.
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e e1
k k11
1 2

11= + -˜ ( ) and e ej j1 1=˜ for j 1¹ . The optimal theory tells that increasing d1jwith a larger return
coefficient ej1˜ causes a larger p(1,1,0)+p(1,1,1) and lowers the barrier for cooperators’ success (see equation (6)).
Thus, inmost cases an increase in the investment to gameswith a larger share of benefits ismore beneficial to
cooperation (see figures 5(a)–(c)). For example, infigure 5(c), the benefit shares from games centered on
individual 1, 2, 4 are 2

9
, 2

3
, 1

9
, respectively,making e e e21 11 41> >˜ ˜ ˜ . Comparedwith increasing investment in

4-centered PGG, individual 1 investingmore in the 2-centered PGGprovidesmore advantages to cooperation.
Increasing d12 (approaching d12 infigure 5(c)) is the optimal investment behavior for building cooperative
societies.

However, we stress that the return coefficient for d11 is not e11 but e e e1 2
k11 11
1

11= + -˜ ( ). For e11
1

2
< ,

e1 2
k

1
11-( ) is positive and contributes to a larger value of e11˜ . Thus, for a small value of e11, e11˜ may be the largest

Figure 3.Nonuniform investment can promote or inhibit the evolution of cooperation. In the left-top inset, d11 (d12 and d14)
represents the investment fraction of individual 1 in the self-centered (neighbor-centered) game, see figure 1(a). e11 (e21 and e41)
represents the share of benefits allocated to individual 1 from the self-centered (neighbor-centered) game. Illustrated in the triangle
panel is critical enhancement factor r* in the full configuration space of investment (d11, d12 , d14) under uniformpayoff allocation, i.e.,
(e11, e21, e41) = ( , ,1

3

1

3

1

3
). Each point corresponds to a specific investment configuration. The value of r* at each configuration is

shown using the blue-yellow-red scale indicated. The black line indicates configurationswith fixed d11 while varying d12 and d14.
Points o and a, b, c represent configurations of uniform investments ( , ,1

3

1

3

1

3
) and three nonuniform investments, ( , ,1

2

1

4

1

4
),

( , ,1

3

1

6

1

2
), ( , ,1

6

5

12

5

12
).

Figure 4. Investment in self-centered games benefits cooperationmore than investment in neighbor-centered games under uniform
payoff allocation. (a) Individuals invest all to self-centered games. (b), (c) Individuals invest all to neighbor-centered games. Green
arrows represent investment. Benefits in each game are evenly allocated to the focal individual and its two nearest neighbors. Payoffs at
the boundary of strategy clusters are shown below corresponding individuals. Based on the death-birth rule described in section 2,
transition from (a) to (b) strengthens the ability for defector clusters to expand. Transition from (a) to (c)weakens the ability for
cooperator clusters to expand.
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return coefficient and increasing d11 is optimal in facilitating collective cooperation. In other words, investing
more to gameswith larger shares of benefits is not always conductive tomaintain cooperative society.When
e11

1

2
> , for any jwehave e e e2 1 1 0j k11 1 11

1.- - - >˜ ˜ ( )( ) . Here a negative value of e1 2
k

1
11-( ) does not

change the fact that increasing d11 is optimal to collective cooperation.Overall, the added term to e11˜ increases
the likelihood that augmenting investment in self-centered games is an optimal choice for establishing a
cooperative society. Figure 5(d) shows that in the full configuration space of payoff allocation (e e e, ,11 21 41), the
optimal investment zone for self-centered games is the largest.

5.Discussion and conclusions

Herewe theoretically demonstrate the symmetry between investment and payoff allocation. This finding
expands our understanding of the baselinemodel of spatial PGGs. It also indicates that inmany cases adjusting
one’s investment strategies or its benefit allocation strategies lead to the same evolutionary outcomes. Thus
when the intervention to benefit allocation is not accessible, targeting and structuring the investment could
achieve the same goal, with potential use by policymakers,managers, and administrators. In addition, wefind
that inmost cases investingmore in gameswith larger potential returns often facilitates cooperation. The
underlyingmechanism is that cooperators can benefitmore from their investmentwhile defectors lose the
chance of free riding on cooperators. This finding therefore highlights the importance to coordinate the
investments and payoff benefits in different games.

Figure 5. Success of cooperators relies on the correlation between one’s investment in a game and benefits allocated from the same
game. Illustrated in (a)–(c) is critical enhancement factor r* in full configuration space of investment (d11, d12, d14) under nonuniform
payoff allocation (e11, e21, e41). The symbol and notation using followsfigure 3. (e11, e21, e41) is shown in the top left inset. Point o
represents the configurationwith uniform investment, i.e. (d11, d12, d14) = ( , ,1

3

1

3

1

3
). Three cases of (e11, e21, e41), i.e. ( , ,1

2

1

3

1

6
)(a),

( , ,1

3

1

2

1

6
)(b), and ( , ,2

9

2

3

1

9
)(c), correspond to e e e11 21 41> >˜ ˜ ˜ , e e e11 21 41= >˜ ˜ ˜ , and e e e21 11 41> >˜ ˜ ˜ , respectively. Depicted in (d) is the

optimal investment direction for promoting cooperation under the full configuration space of payoff allocation. For example, in the
bright blue zone, increasing d11 benefits cooperationmore than increasing d12 or d14. In (d), point o corresponds to the configuration
of payoff allocation infigure 3 and point a, b, c corresponds to that in panel (a), (b), (c) in thisfigure, respectively.
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Intriguingly, heterogeneity in investment or payoff allocation is not always beneficial to cooperation.
Heterogeneity here can be not only a promoter of cooperation but also its inhibitor, which is in sharp contrast
with previous studies [36, 59, 60]. Traditional investigations into heterogeneity focus on the difference in
individuals’ attributes, such as possessing different numbers of social ties [59] and inhomogeneous teaching
abilities [60] (see reference [36] and references therein). Heterogeneous attributes shape a few distinguished
‘hub’ individuals who have a greater capacity to spread strategies [59–61]. Hub individuals establish
homogeneous strategy ‘clouds’ that surround them, i.e., cooperation ‘clouds’ around hub cooperators and
defection ‘clouds’ around hub defectors. These clouds strengthen the viability of the hub cooperators and
increase survival of cooperation, even under testing conditions. In particular,most prior studies exploring
nonuniform investment or payoff allocation [29, 39–45] incorporate heterogeneity in individuals’ attributes.
For example, when each individual is assigned a random scaling factor to indicate benefit allocation, the scaling
factor difference causes individuals’heterogeneity, which is partly responsible for the persistence of cooperation
[41]. Herewe investigate ‘action’heterogeneity, such as the heterogeneous investment amount and the benefit
distribution in different games.Wefind the effect of action heterogeneity on the evolution of cooperation relies
heavily on the correlation among participants’ actions. Positive correlations in heterogeneity facilitate the
evolution of cooperation and negative correlations impede cooperation, indicating the double edged influence
of heterogeneity. In recent studies [32, 62], Su et al develop the interactive diversity inwhich each individual
adopts and adaptively adjust different strategies against different opponents. They show that this diversity
strengthens the strategy reciprocity between pairs of individuals andmaintains large scale cooperation even in
completely connected networks [62]. Research on ‘action’heterogeneity will significantly enriches our
understanding of collective behavior in complex systems.

A tacit assumption in spatialmultiplayer games is that each individual engages in a self-centered and all
neighbor-centered games in each generation [29, 39–45]. Few studies have examined how the same behavior in
the self-centered game and neighbor-centered games affect the evolution of cooperation differently. Herewe
show that the formermore strongly encourages cooperation. For example, in spatial PGGswith a uniform
payoff allocation, an investment in self-centered games providesmore advantages to the evolution of
cooperation than the same level of investment in neighbor-centered games. This finding provides us new
insights into escaping the tragedy of the commonswithout invoking othermechanisms such as reputation
[13, 20] and punishment [13–17]. Nevertheless, as seen inmost prior studies, update rules often strongly affect
the evolutionary dynamics [54].When the system evolves using the birth-death or pairwise comparison rule (the
probability that individual i is replaced by its neighbor j is proportional to their payoff difference fj−fi), the
same behavior in different games become equivalent in terms of stabilizing cooperation (refer tofigure 4).
Broom et al recently develop a new framework for investigating the interactions between territorial animals in
which games are neither initiated by nor centered on individuals [63]. This eliminates the spatial correlations
between games and individuals [35]. Ultimately, the same behavior in different games has an identical effect to
the evolutionary outcomes. Equally important as evolutionary graph theory, it is a promising framework for
exploring how local interactions affect evolutionary dynamics [64].

To focus on investment and payoff allocation, in this paper, we try tomake the inter-layer correlation and
intra-layer connection simple, i.e., making edges in different layers overlapping and avoiding structural triangles
in a single layer. Actually, when these constraints are removed, the obtained formula is still applicable. A further
analysis into this formulawill help to understand how a few realistic structural features like community
structure affect the evolution of social behavior. Nevertheless, we point out that the formula hinges on thewidely
used assumption ofweak selection and regular networks. Extending our results to strong selection and any
population structurewill be a challenging and important topic in future work.
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