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Density anomalies and reentrant spinodal behavior * 
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A lattice model that displays anomalous density behavior and exhibits a reentrant spinodal is developed. This model is solved 
in the mean field approximation and the interrelation between density maxima and the reentrance of the spinodal is explicitly 
demonstrated. The limits of stability of the liquid phase are obtained at positive as well as negative pressures, and the nature of 
the limits of stability clarified. The interplay between local energy and local entropy is found to control the thermodynamics of 
the system. 

Considerable effort has been devoted in recent 
years to the study of thermodynamic properties of 
liquids exhibiting density anomalies, with an em- 
phasis on behavior in the metastable state and the 
limits of stability. Water is the best known of such 
liquids; it is also a well known example of a liquid 
with highly directional interactions, the hydrogen 
bonds [l-3]. 

Lattice-gas or lsing models with temperature-de- 
pendent interactions and fields have been used to 
model physical systems where entropic effects aris- 
ing from local geometries play a significant role. Such 
entropic effects arise typically in systems with di- 
rectional bonding interactions between constituents, 
which can take place only when the local geometric 
arrangement is favorable. These interactions lead to 
a non-trivial relationship between the system tem- 

perature and the temperature as measured by the ef- 
fective interactions between constituents, reflected 
in the behavior of the interaction strengths defining 
the model. Such models with temperature dependent 
interactions have proven successful in describing 
many systems with orientation dependent interac- 
tions, like polymer solutions and binary mixtures 
with lower critical solution temperatures [ 41. 

In this Letter, we introduce a lattice-gas model as 
a step towards understanding the microscopic mech- 

* This work is based in part on the Ph.D. Thesis of S. Sastry. 

anisms underlying the interplay between anomalous 
density behavior and the limits of stability of the liq- 
uid phase in systems where orientational degrees of 
freedom play a significant role. We define the model 
in terms of an effective interaction that is temper- 
ature dependent, and discuss the motivation for such 
a definition. The model exhibits phases that can be 
identified with gas, liquid and a low density solid. 
We obtain a liquid-gas limit of stability (spinodal) 
that is reentrant and reaches positive pressures at 
both the high and low temperature ends. We show 
that at low temperatures the liquid-gas spinodal 
meets the liquid-solid spinodal tangentially, and 
gives way to the liquid-solid spinodal, which bc- 
comes the physically relevant limit of stability. 

The system we wish to describe has strong direc- 
tional interactions between molecules which define 

a low temperature solid phase characterized by an 
open structure. States with higher local densities in 
the liquid phase are characterized by an increase in 
energy and orientational entropy, since interactions 
where no strong bonding takes place can occur in 
many orientational states. 

To define a lattice model which incorporates these 
features, we consider a bee lattice, which is divided 
into two interpenetrating diamond sublattices A and 
B. On each site i, we define an occupancy variable 
ni= 0, 1. The complete occupation of one of the sub- 
lattices with the other sublattice empty defines the 

0009-2614/93/S 06.00 0 1993 Elsevier Science Publishers B.V. AU rights reserved. 215 



Volume 207, number 2,3 CHEMICAL PHYSICS LETTER5 21 May 1993 

low density open structure of the solid. Whether the 
occupation of sites on the other sublattice is favor- 
able or not is determined by the competition be- 
tween the interaction energy (which disfavors such 
occupation) and orientational entropy (which fa- 
vors it). The strong interactions are directional, and 
hence can occur only for specific orientations. For 
other orientations, the interactions are weaker. At 
high T, the entropically favorable weak interactions 
are dominant in determining the effective interac- 
tions, while as T is lowered, the energetically favor- 
able directional interactions become dominant. Thus, 
as T is varied, there is an effective change in the in- 
teraction. We define the lattice-gas model by sum- 
ming over the orientational degrees of freedom in a 
detailed Hamiltonian [ 4,5 I. The interaction energy 
between sites on different sublattices then becomes 
a function of temperature, J, =J, ( T). The interac- 
tion between site occupancy variables ni is thus the 
“internal free energy” of molecules arising from the 
orientational degrees of freedom. The resulting 
Hamiltonian is 

CAB) 
d=-25,(T) c njn, 

<ii> 

Here 

J,(T)=2e 0.25 0.5 0.75 1 1.25 1.5 1.75 2 

-knTln l+ i [exp(ZJ/k,T)- I] 
> 

(2) 0.5 I I I I I I (b) 

is the AB interaction strength, JZ=2c is the AA in- 
teraction strength, and fl is the chemical potential. In 
(2), E corresponds to the “normal liquid” interac- 
tion between non-bonding AB pairs, q is the number 
of orientational states, and J corresponds to the en- 
ergy cost of occupying adjacent AB pairs when the 
molecules are properly oriented for directional in- 
teractions. Directional interactions can occur only 
between AA pairs and hence the interaction between 
AB pairs results in their disruption. There are fewer 
orientations where directional interactions are pos- 
sible than those where directional interactions are 
not possible. Hence, at high T, where entropic effects 
dominate, J, ( T) approaches 2( e- J/q). As T de- 
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Fig. 1. (a) The effective AB interaction strength as a function of 
temperature (solid line) for t~D.3, .I= 1.0 and q= 12. The tem- 
perature and the effective interaction are expressed in units of J, 
i.e. by fixing k,= 1. (b) (5, +J2) /2k.T as a function of temper- 

ature (solid line). Also shown is the value of 1 /z (dashed line). 
The two points of intersection correspond to critical points for 

liquid-gas coexistence. 

276 

creases, Ji (T) moves away from this value, even- 
tually crossing over to the opposite sign and ap- 
proaching 2 ( e-J) as T approaches zero. We denote 
by T,, the temperature where J, (T) is zero. The vati- 
ation of J, ( T) with temperature is shown in fig. la. 

To solve the model defined by ( 1) in the mean 
field approximation, we first express the grand po- 
tential R in terms of two density variables ( nA, &), 
corresponding to the two sublattices. Above T,,, 
where both J1 and J2 are positive, the equilibrium 
solutions yield nA = nn. Below T,,, the first neighbor 
coupling J, changes sign, so that we have repulsive 
AB and attructiw AA interactions. In the Ising model 
mapping of the lattice gas, these interactions define 
a metamagnet. Two new minima appear in the grand 
potential below T,,, associated with the ordering on 
one sublattice (i.e. &> i_, ng< 4 and vice versa). We 
shall refer to this low density ordered phase as the 
solid phase. 

The equilibrium phase boundaries between the 
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solid and the liquid/gas phases are found by com- 
paring the grand potential for the respective solu- 
tions, the phase boundary being given by the con- 
dition that the grand potential dd for the two phases 
be the same. We obtain three coexistence lines, one 
between the upper critical point for the liquid-gas 
transition and T,,, and two coexistence lines between 
solid and liquid or gas phases respectively. These 
three coexistence lines meet at T,,. Since at T,, we 
have three-phase coexistence, we identify (T,, P,,) 
as the triple point. Fig. 2 shows the coexistence lines 
in the P-T plane. Note that the liquid-solid coex- 
istence line has negative slope, as observed in water 
at lower pressure. 

We next focus on the liquid phase and its limits of 
stability. We find the equation of state for the liquid 
and gas phase (nA=nB=neP) to be 

Pes= -z(J, +J*)n& -kaTln( 1 -neq) . (3) 

From the equation of state, we locate the critical 
temperature and the critical density by equating to 
zero the first and second derivatives of pressure with 
respect to density. We obtain &=f and k,T,= 
z(J,+&)/2, or (J,+J,)/2k,T,= l/z. This is the 
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Fig. 2. Coexisrence lines, spinodal boundaries of the liquid and 
the line of density maxima in the liquid phase. Note that the line 
of density maxima meets the liquid-gas spinodal at the point of 
reentrance and the liquid-solid spinodal at zero temperature. Both 
temperature and pressure are expressed in units ofJ, i.e. by fixing 
ks= 1 and the value of the volume to 1. 

Bragg-Williams expression for T,, except that in our 
case the interaction strength J1 is temperature de- 
pendent. Fig. lb shows (J, SJ,)/Zk,Tplotted against 
temperature. Also shown is the value of l/z. Note 
that (5, +JZ) /2k,T cuts 1 /z at two values, implying 
that the liquid-gas phase separation region is 
bounded by two critical points, an upper and a lower 
[ 41. The density of the liquid phase is f at both crit- 
ical points, implying that the density must pass 
through a maximum between the two critical points. 
Thus, the model displays a density maximum, which 
is closely connected to the existence of two critical 
points. Interestingly, both critical points appear at 
positive pressure, given by PC= k,T,( ln2- 0.5). Note 
also that the lower critical point is below T,,, so that 
the lower critical point is not in the stable region. 

The limits of stability of the liquid phase can be 
obtained by locating the values of P and T where the 
metastable density value obtained for the liquid phase 
ceases to be a minimum. To find the limits of sta- 
bility also for T< T,, we must study the stability of 
the inean field solution for the liquid phase not only 
with respect to the gas phase (i.e. along the nA=nB 
line), but also with respect to states with n, different 
from flB (the solid phase). The two solutions for the 
densities at the spinodal are 

(4) 

The solution n, corresponds to the limit of stability 
with respect to the gas phase, while the solution n_ 
corresponds to the limit of stability with respect to 
the solid phase. Using these solutions in the expres- 
sion for the equilibrium pressure ( 3 ) , we obtain the 
corresponding expressions for the spinodal values of 
pressure. We see from eqs. (3) and (4) that the liq- 
uid-gas spinodal pressure is non-monotonic, since 
2kBT/ (.I, +Jz) is non-monotonic. As discussed 
above, the non-monotonicity in 2kBT/ (J, +Jz) also 
leads directly to the existence of the density maxi- 
mum. Thus, in the model, the presence of density 
maxima and the reentrance of the spinodal are inti- 
mately related. 

Fig. 2 shows these two spinodals in the P-T plane. 
Note that they meet tangentially at TW We find that 
the liquid-gas spinodal is the limit of stability above 
T,,, while the liquid-solid spinodal is the limit of sta- 
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bility below Tt+ We see that the liquid-gas spinodal 
is reentrant and changes non-monotonically with 
temperature, exhibiting an extreme value at a finite 
temperature and ending at positive pressure at both 
ends. To our knowledge, the present model is the first 
to display a liquid-gas spinodal that extends to pos- 
itive pressures. 

We emphasize that the physically relevant limit of 
stability at positive pressures (at low T) is the liq- 
uid-solid spinodal. The two spinodals form a con- 
tinuous locus, but the “critical” properties of these 
two spinodals are different. The response functions 
(specific heat, compressibility) diverge at liquid-gas 
spinodal, while at the liquid-solid spinodal they do 
not - even though they tend to higher values in the 
same way, as near a liquid-gas spinodal. This can be 
understood in terms of the nature of the instabilities 
at the two spinodals. The metastable liquid phase is 
a minimum of the grand potential 8 in the &+a 
plane, and at both the spinodals, the curvature of 8 
at this minimum vanishes. At the liquid-gas spino- 
da!, the vanishing second derivative is along the 
na= nB line. This corresponds to the derivative of the 
pressure with respect to density approaching zero at 
the liquid-gas spinodal, resulting in a divergent 
compressibility. However, at the liquid-solid @no- 
dal, the liquid becomes unstable with respect to 
“crystal ordering”, i.e. the curvature of Sz vanishes 
along a direction with nA different from na, At the 
liquid-solid spinodal locus, the derivative of the 
pressure with respect to density for the liquid phase, 
which has still to be evaluated along the nA = nB line, 
is different from zero. Thus, the compressibility in 
our model does not diverge at the liquid-solid 
spinodal. 

Next, we study the locus of points where the den- 
sity is maximum. Fig. 2 shows the line of density 
maxima, together with the spinodal lines and the co- 
existence lines. We see that the end points of the line 
of density maxima meet the liquid-solid spinodal at 
the upper end and the liquid-gas spinodal at the 
reentrance point. This is consistent with the predic- 
tions of Speedy and Angell [2] and Debenedetti et 
al. [ 31, based on thermodynamic consistency. At the 
lower end, the slope of the liquid-gas spinodal is 
changed when the line of density maxima meets the 
spinodal. At the upper end, the two lines meet at T= 0 
where the liquid-solid spinodal ends. The high pres- 
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sure termination of the line of density maxima is 
again consistent with the prediction of Speedy and 
Angel1 and Debenedetti et al. 

We also performed Monte Carlo simulations of the 
Ising model that corresponds to the present lattice- 
gas model in 3D. We find that the simulations agree, 
in their qualitative trends, with mean field results. 
The simulations yield qualitatively the same phase 
diagram obtained from the mean field approxima- 
tion .4s expected, however, the critical point for the 
ferromagnetic transition is overestimated by the 
mean field approximation. 

To confirm the reentrant behavior and the conti- 
nuity of the limits of stability of the liquid phase, we 
performed simulations in the metastable regime for 
the corresponding Ising model and determined the 
limits of stability by defining a criterion for the life- 
time of the metastable phase. The locus of the limits 
of stability (or, more accurately, the locus of ho- 
mogeneous nucleation points) thus obtained is shown 
in fig. 3a, along with the corresponding mean field 
solution. It is evident that the limit of stability curve 
is reentrant, and forms a continuous boundary. We 
can further distinguish the nature of the limit of sta- 
bility points by studying the phase to which the sys- 
tem decays when these limits are reached. The sim- 
ulations confirm the statement above that below r, 
the limit of stability is the liquid-solid spinodal, while 
above T,, the limit of stability is the liquid-gas 
spinodal. 

In fig. 3b we show the variation of magnetization 
with temperature obtained from mean field calcu- 
lations and Monte Carlo simulations of the 3D model 
for two different constant field values h=O and 
h=0.2. Figs. 3c and 3d show the magnetic suscep- 
tibility at constant field for the same values of h. The 
magnetization and susceptibility of the king model 
correspond to the lattice-gas density and compress- 
ibility. Thus, we see that the compressibility is non- 
monotonic, increases on cooling, and decreases on 
compression (since increasing the magnetic field for 
the Ising model corresponds to increased pressure in 
the lattice gas). The model displays a region with 
negative coefficient of thermal expansion, and we 
show its variation with Tin fig. 4a at constant pres- 
sure, obtained from the mean field calculations. In 
fig. 4b, we show constant pressure and constant vol- 
ume specific heats. 
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Fig. 3. (a) The liquid-solid (dashed line) and liquid-gas (solid line) spinodal lines from the mean field calculation and homogeneous 

nucleation points from Monte Carlo simulations (points). Note that the nucleation points “track” the mean field spinodal. Below I’, 

the system nucleates to the solid phase (open circles), while above T, it nucleates to the gas phase (filled circles). (b) Magnetization at 
two h values. The continuous lines are mean field results and the data points are from Monte Carlo simulation. The solid line and tilled 

circles are for the magnetic field h=O. The dashed line and filled squares are for h = 0.2. (c) Magnetic susceptibility from the mean field 

calculation (continuous lines) and Monte Carlo simulations (filled circles) for h=O, and (d) h=0.2. Note that the magnitude of the 

susceptibility is lower for the higher h value. Having fixed the value of kB and of the volume to 1, the temperature and the magnetic field 
are expressed in units of J, while the magnetization and the magnetic susceptibility are expressed as a pure number and inverse temper- 

ature, respectively. 
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The behavior of the density and the response func- 
tions described above are qualitatively similar to the 
behavior of water, with a phase diagram similar to 
that of water at low pressures (i.e. the model exhibits 
only a low density solid phase). The model pre- 
sented here suggests a supercooling instability for 
water that is qualitatively different from those where 

divergences in response functions are predicted [ 2 1. 

4 Fig. 4. (a) Constant-pressure coefficient of thermal expansion, 
which changes sign at the temperature of maximum density, as 

calculated in mean field approximation. (b) Specific heats at 

constant pressure and constant volume along a constant pressure 
trajectory. Note that the specific heats increase upon lowering 
temperature and, moreover, coincide at the temperature of max- 

imum density. With kp 1, the temperature is expressed in units 
of J, the cocBicient of thermal expansion is expressed in inverse 
temperature units and the specific heat is a pure number. 
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