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We apply a new method  to study the problem of the residual entropies of  the anti- 
ferromagnetic  Ising systems,  in the max i mum critical field, situated on Sierpinski gasket (SG) 
type of fractal lattices. The SG fractal lattices comprise a family, so that each member  is 
labelled by an integer b (2 ~< b < zc) and is embedded  in d-dimensional  Euclidean space. In 
the two-dimensional (2D) and three-dimensional  (3D) case, we find expressions for the 
residual entropy o-(b) for arbitrary b. and show that in the limit b ~  ~ the calculated values 
should converge to the values pert inent  to the corresponding Euclidean lattices. In particular. 
these results confirm recent findings concerning the residual entropy of the 2D Sierpinski 
gasket type of fractals, obtained by numerical  fitting. We also study the d-dimensional  case 
and find a general  expression for ¢r(b) for arbitrary b ~- 3. 

1. Introduction 

Numerous  theoretical investigations performed in the past decade have 
confirmed that the laws of physics are modified when the underlying lattice is 
fractal instead of  Euclidean. Thus one  can judiciously ask how physical laws on 
fractal lattices cross over to known laws on the standard Euclidean lattices. A 
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few answers to this question have been offered by studying electric resistances 
[1-3], self-avoiding random walks [4-6] and residual entropies of the Ising 
antiferromagnets [7] on the infinite family of Sierpinski gasket (SG) type of 
fractals. However, in order to achieve a general answer to the posed question, 
additional concrete studies are essential. For this reason, here we attack more 
comprehensively the problem of residual entropies of the Ising antiferromag- 
nets on fractals. 

In a previous paper [7] we have studied the specific problem of the residual 
entropies of the Ising antiferromagnets with the nearest-neighbor (nn) coupling 
J, in the maximum critical field. The Ising systems were situated on the family 
of the SG type of fractals embedded in the two-dimensional (2D) Euclidean 
space. Each member of the family is labelled by an integer b (2 ~< b < ~), 
which appears to be the base of the corresponding fractal generator (see, for 
example, fig. 1 of ref. [7]). The general formula for the residual entropy tr(b) 
for b/> 3 has been expressed [7] in terms of only two parameters -  the fractal 
generator base b and its ground state degeneracy g2 G. We have calculated 
exactly [7] the values of o-(b) for 3 <~ b ~< 21, and by a n u m e r i c a l  analysis we 
have established that o-(b), in the limit b---> ~, approaches the exact value 
O'Euclidea n = 0.3332427219761... (found for the standard triangular lattice [8, 
9]) according to the crossover formula 

P 
or(b) = O'Euclidea n b" ' b---)oo, (1) 

where P and a are constants. 
In section 2 of this paper we first report three additional values of tr(b) 

(b = 22, 23, 24), for the 2D case. What is more important, we apply here the 
degeneracy factor method, introduced recently in ref. [10], to analyze the 
crossover behavior of o-(b). Thus we confirm that formula (1) holds, with a 
being equal to one. In section 3 we find general expressions for the residual 
entropies tr(b) for the SG fractal lattices embedded in the 3D Euclidean space, 
and calculate exact values of o-(b) up to b ~< 9. Applying the degeneracy factor 
method we find a crossover formula for tr(b) in the 3D case, which turns out to 
be also of the type (1). In section 4 we find general expressions for ~r(b) in the 
d-dimensional case, and then we provide an overall discussion of the obtained 
results. 

2. Residual entropies of the 2D Sierpinski gasket type of fraetals 

The maximum critical field H c and the concomitant residual entropies of the 
antiferromagnetic Ising systems depend on the maximum coordination number 
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within a given lattice [11]. In the 2D case,  the Sierpinski  gasket  (b = 2) and the 
o the r  m e m b e r s  of  the SG family (b />  3) have  m a x i m u m  coord ina t ion  n u m b e r s  

4 and 6, respect ive ly  [12], and the reby  the co r respond ing  residual  en t rop ies  
have  to be  s tudied separa te ly  [7]. T h e  case b = 2 was c o m p l e t e d  in ref. [7] and 

here  we cont inue  to s tudy behav io r  of  or(b) for  large b. 
The  genera l  express ion  for  o-(b) for  b ~> 3 was found [7] to be of  the fo rm 

2{(b - 1)(b - 2) In 2 + [b(b + 1) - 21 In ,Oo} 
~r(b) = b(b + 1)[(b + 1)(b + 2) - 6] b ~> 3 ,  (2) 

where  b is the fractai  gene ra to r  base  and ~G is the gene ra to r  g round  state  
degeneracy .  H e n c e ,  one  can see that  in o rde r  to learn specific values  of  o-(b) 
one  should first de t e rmine  ~2(;. In ref. [7] we have d e t e r m i n e d  SI G for  

3 ~< b ~< 21. In o rde r  to find out  the large b behav io r  of  o-(b), we have  fitted [7] 
the ob ta ined  values of  ~r(b) for  3 ~< b ~< 21 to the fo rmula  

1 ) '  
o(b)= £ a,. x ' (3) 

i=0  

where  we have a s sumed  the th ree  possibil i t ies x = b, x = In b and x = b",  with 
being a constant .  It t u rned  out  that  the best  fit can be achieved for  x = b", 

and consequen t ly  for  very large b the behav io r  of  type (1) was suggested.  
In this p a p e r  we first r epor t  three  addi t ional  values for  ~(2(; ( for  b = 22, 23 

and 24), ob ta ined  by using m o r e  powerfu l  c o m p u t e r  facilities than before  ( I B M  
3090 ins tead of V A X  750). T h e  values are 

OG(22) . . . .  , =  7.85782360893161668 x 10 ~' , 

~G(23)  . . . .  , =  1.01714646181932794 x 1 0  35 , (4) 

~Qc; (24) ..... t = 1.83734270908004093 x 103s . 

Next ,  ins tead of the pure ly  numer ica l  fitting p rocedu re  m e n t i o n e d  above ,  we 
apply  the degeneracy  fac tor  m e t h o d  ( D F M ) ,  in t roduced  in ref. [10], to 
de t e rmine  the l imiting behav io r  of  ~ ( b )  for  large b. The  essence of  the D F M  is 
the scaling relat ion 

~c(b)~coo b 2 ~ ( b - 1 ) ,  b > k ,  (5) 

which links the two successive gl c .  H e r e  c is a cons tant  (character is t ic  for  the 
ent i re  SG family) ,  and w is the degene racy  cons tan t  (factor)  that  appea r s  on 
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adding a new spin to a fractal generator. Relation (5) is assumed to be valid, 
for a preset accuracy, beyond a certain value b = k. 

If the values of OG(b ) are calculated up to some value b*, then in order  to 
learn (approximately) further values of OG(b ) one can assume that relation (5) 
holds starting with b = b* - 1. This is equivalent to setting k = b* - 2, that is, 
to presetting the accuracy of all subsequent formulas that involve OG(b ) with b 
larger than b*. The constants c and w can now be calculated from (5), 
according to 

g2G(b*)12c(b* - 2 )  
w ~  S2~(b* - 1) (6a) 

and 

OG(b*) 2 b* 

c ~  OG(b , _ 1) ~ (6b) 

Inserting (6) into (5), for b = b* + 1, we find the expression for the unknown 
value g2c(b* + 1), 

a (b*)ao(b* -2) 
g2 (b* + g2 (b* - 1) (7) 

in terms of the known values. 
In order to verify this approach we use our data for I2G(b ), and thus taking 

b * =  21, b * =  22 and b* = 23 in (7) we obtain, respectively, 

~2G(22 ) ~7.85782941 x 1031 , 

Y2G(23 ) ~ 1.01714616 x 1035 , (8) 

g2~(24) ~ 1.83734293 x 1 0 3 8  . 

By comparing these results with the exact results given in (4), one can see a 
rather good accuracy of the approximate approach. One can also see that the 
accuracy increases with increasing b*, and in particular for b * =  23 there are 
seven correct digits in the approximate value of OG(24 ). 

In what follows we adopt the above presented approach for obtaining g2G(b ), 
for large b, and thereby we investigate the limiting behavior of er(b) when 
b - - -~ .  First, by successive application of (5) we find 

g2c(b ) ~- cb-kw (b2-3b-k2+3k)/2g2G(k) , (9) 
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and by inserting (9) into (2) we obtain  

1 S 3 b  3 + $2 b2 + S l b  + S 0 
¢ ( b )  ~ In to + - 

b b 3 + 4b 2 - b 4 

with 

S0 

$1 

$2 

$3 

= 2 k ( k  - 3) In to - 4 In g2c~(k ) + 4k In c + 4 In 2 ,  

= - ( k  2 - 3k - 10) In to + 2 In  ~ 2 ( ; ( k ) -  2(k + 2) In c -  6 1 n 2 ,  

= - ( k  2 - 3k + 4) in to + 2 In  g2G(k ) -  2(k - 1) In c + 2 1 n 2 ,  

= - 6 I n  to + 2 1 n  c .  

Now,  choosing b * =  24, f rom (6) we find 

In to ~ 0.333242687,  

(10) 

In c --~ 0.167735381 , 

( l l a )  

( l l b )  

( l l c )  

( l l d )  

and using these values in (11),  toge ther  with the choice k = 24, we achieve 

S o = 2.357598,  

S 1 = - 1 . 2 8 9 9 0 2 ,  

S 2 = 0 .5962896,  

13) 

S 3 = - 1 . 6 6 3 9 8 5 .  

Having  conf i rmed that  the constants  which appear  in (10) are finite, it 

becomes  clear why the choice x = b and x = b '~ in (3) provided  much bet ter  
fitting [7] than the choice x = In b (see fig. 6 in ref. [7]). For  the same reason,  it 

also follows f rom (10) that  the leading term,  for  very large b, is of  the order  
1 / b .  Thus,  we can now claim that  the asymptot ic  law (1) is t rue with c~ = 1. 
Besides,  compar ing  our  limiting value of  tr(b) for  b--~ ~,  given by (12a), with 

the exactly known  value [8, 9] of  the residual en t ropy  for the infinite t r iangular  

lattice O'Euc~de, o = 0.3332427219761 . . . .  it becomes  clear that  the seven-digit  
accuracy initiated at b = 24 has been  preserved.  In fig. 1 we depict values of  
~ (b )  for  b ~< 1000, calculated using (2) and (10), toge ther  with the residual 
entropies  ~r'(b) of  the cor responding  fractal generators .  Fu r the rmore ,  one  

(12b) 

(12a) 
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Fig. 1. Residual entropies ~z(b) and ~x'(b) of the 2D SG fractals and their generators, represented 
by circles and triangles, respectively. Exact values for 3 ~< b ~< 24 are depicted by full circles and 
triangles, while the extrapolated values for 24< b ~< 1000 are depicted by open circles and 
triangles. Approximate values are obtained using eqs. (10)-(13), in the case of o-(b), whereas 
extrapolated o"(b) are given by g ' (b)  = 2 In O~(b)/[(b + 1)(b + 2)] (here O~(b) is determined by 
(9), and (b + 1)(b + 2)/2 is the total number of spins in the generator). The symbol ~ represents 
the exactly known value [8, 9] of the residual entropy for the infinite triangular lattice ~rZuc,doan = 
0.3332427219761 . . . .  and the shaded region corresponds to the upper and lower bound, cr u = 
0.2970 and cr~ = 0.3403, predicted for the Euclidean lattices with coordination number z = 6 in ref. 
[11]. The full lines serve as guides to the eye. 

s h o u l d  n o t i c e  t h a t  b o t h  r e s i d u a l  e n t r o p i e s  o-(b)  a n d  o " ( b ) ,  a l r e a d y  fo r  b / >  41,  

e n t e r  t he  r e g i o n  o f  v a l u e s  d e t e r m i n e d  b y  the  c o r r e s p o n d i n g  u p p e r  a n d  l o w e r  

b o u n d  (o- u a n d  o-~,) p r e d i c t e d  fo r  t he  E u c l i d e a n  l a t t i ce s  w i th  the  c o o r d i n a t i o n  

n u m b e r  z = 6 in re f .  [11]. Th i s  m e a n s  t h a t  a l r e a d y  f r ac t a l s  w i th  b t>41 ( a n d  

t h e i r  g e n e r a t o r s )  h a v e  a su f f i c ien t ly  l a r g e  r a t i o  o f  n u m b e r  o f  sp ins  wi th  six 

n e a r e s t  n e i g h b o r s  v e r s u s  t o t a l  n u m b e r  o f  sp ins  [7]. 

3.  R e s i d u a l  e n t r o p i e s  o f  the  3 D  S i e r p i n s k i  g a s k e t  t y p e  o f  f r a c t a i s  

E a c h  m e m b e r  o f  t he  3 D  S G  f r ac t a l  f a m i l y  is a l so  l a b e l l e d  by  an  i n t e g e r  b 

(2 ~< b ~< oo) a n d  can  b e  o b t a i n e d  f r o m  a g e n e r a t o r  G ( b ) ,  w h i c h  is an  e q u i l a t e r a l  

t e t r a h e d r o n  o f  s ide  l e n g t h  b [12]. T h e  g e n e r a t o r  G ( b )  is f i l led  wi th  b l aye r s  o f  

s m a l l e r  t e t r a h e d r a  o f  un i t  s ide  l e n g t h  (see  fig. 2) .  E a c h  l a y e r  cons i s t s  o f  u p w a r d  

o r i e n t e d  un i t  t e t r a h e d r a  (see  fig. 3) .  A m e m b e r  of  t he  3 D  S G  f r ac t a l  f a m i l y  is 
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(a) 

r,.. = i 

b ~ 3 ,, 

(b) 

1 " 1 . = 1  

Fig. 2. The generators  (n = 1) of the 3D SG type of fractals. (a) The b 2 case. (b) The h 3 
case. The darkest  unit triangles should be conceived as horizontal bases of the four and ten upward 
oriented tetrahedra,  respectively. 

K =  6 K =  5 K =  4 K =  3 K -  2 K -  1 

Fig. 3. Six successive layers of the b = 6 3D SG fractal generator .  The largcst triangle corresponds 
to the ground layer, which is composed of 21 upward oriented unit tetrahedra.  In all layers, the 
edges of the unit te t rahedra that lie above the horizontal plane are represented by dashed lines. 

also grown in stages. The s tructure of  the (n + 1)th stage is obta ined  by 

enlarging the genera to r  (the n = 1 stage) by b", and filling its all upward 

or ien ted  te t rahedra  with the n th  stage structure.  The  comple te  fractal (lattice) 
is ob ta ined  in the limit n--~ zc. 

In fig. 3 one  can, in fact, see all layers f rom which the SG fractal genera tors  

with 2 ~< b ~< 6 are formed.  Hence ,  one can notice that  the max imum coordina-  

t ion number  z is equal  to 6, 9 and 12, for  b = 2, b = 3 and b > 4, respectively.  

There fore ,  the max imum critical fields [7, 11] are H~ = 6J, H ~ - 9 , I ,  and 
H c = 12J in the three cases, respectively.  The  three different critical fields 
necessitate separate  studies, and we will start with the b /> 4 case, as it is 
relevant  for  the s tudy of  fractal to Eucl idean crossover.  

3.1. The case b >~ 4 

In the max imum critical field H c = 12J, the configurat ion with all spins 
or iented  up has the same energy  ( the g round  state energy)  as all configurat ions 
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with an arbitrary number of spins oriented down, provided that each of the 
latter is surrounded by 12 upward oriented neighbors. In order to find the 
corresponding residual entropy o-(b) of the infinite 3D SG fractal, we shall first 
study degeneracies of the intermediate stages of the fractal construction. 

It can be deduced from fig. 3 that the number of the SG generator spins 
surrounded by 12 nearest neighbors is given by 

B = ~(b - 1)(b - 2 ) ( b  - 3 ) .  (14) 

We will hereafter call these spins the bulk spins. Furthermore, it is important 
to observe that spins at the apexes of the SG fractal, at any stage of the 
self-similar construction, are not nearest neighbors of the bulk spins. When the 
(n + 1)th stage fractal structure is formed out of the nth stage structures, B of 
the apex spins of the latter become surrounded by twelve nearest neighbors 
oriented up and (since the nth stage apex spins cannot be nearest neighbors to 
each other) they may be arbitrarily oriented. Hence, the degeneracy I2n+ 1 of 
the (n + 1)th stage fractal structure is related to the degeneracy 12~ of the nth 
stage structure via 

"(~n+l = 2B"~c , ( 1 5 )  

where 

C = ~b(b + 1)(b + 2).  (16) 

This is the number of the nth stage structures that comprise the (n + 1)th stage 
structure (this is also the number of upward oriented equilateral tetrahedra in 
the SG generator). Starting with the ground state degeneracy J2 G of the SG 
generator, we apply (15) ( n -  1) times and thereby we obtain the following 
relation: 

[2B/(C-1)OG]C'- '  

0 n = 2B/(C_I)  (17) 

The residual entropy of the infinite 3D SG fractal is defined by 

In 
o-= ! im  N .  ' (18) 

where N n is the total number of spins of the nth stage structure, 
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C[(b+ 3)(C n - 1 ) - 4 b ( C ' '  ' - 1 ) ]  
N " =  b ( C -  1) (19) 

Inserting (17) and (19) into (18) we obtain 

b[B In 2 + ( C  - 1) In g2c~] 
o- = C[C(b + 3) - 4b] ' (20) 

which, upon using (14) and (16), acquires the form 

6{(b - 1)(b - 2)(b - 3 ) l n 2  + [b(b + 1)(b + 2 ) -  6] in ~2~} 
or(b) = b(b + 1)(b + 2)[(b + 1)(b + 2)(b + 3) - 24] 

b~>4. 
(21) 

Therefore, the residual entropy o-(b) as a function of b appears to depend 
explicitly on the fractal generator ground state degeneracy /2(~. To determine 
Y/o we use a special numerical technique, similar to the one used in the 
two-dimensional case [7], and thus we obtain the values of o-(b), for 4 ~< b ~< 9, 
presented in table I (even using the most powerful present-day computers, 
instead of the IBM 3090, can hardly provide results for b ~> 11). 

For the purpose of learning the crossover behavior of o-(b), we apply the 
DFM method [10]. In this case it provides the following recursion relation for 
the ground state degeneracies: 

i i ( ; (b ) .~c  ~, 3wib 2)1/, 3). .2Qc(b_l) ' b > k ,  (22) 

Table I 
Residual entropies ~r(b) and cr'(b) of the Ising antiferromag- 
net situated on the 3D Sierpinski gasket type of fractals and 
on the corresponding finite size generators,  respectively. 
Values or(b) are calculated using (21), whereas values cr'(b) 
are determined by o-'(b) 6 In ~l,~(b)/[(b + 1)(h + 2)(b + 3)] 
(here (b + 1)(b + 2)(b + 3) /6  is the total number of spins in 
the generator). 

b ~(b) ,~'(b) 

4 0.023477566 0.019804205 
5 0. 032474129 0. 028739963 
6 0. 048562205 0. 044776192 
7 0. 060159307 0. 056778705 
8 0.071981208 0.069010949 
9 0. 082206607 0. 079642623 
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where  c is a constant  (characteristic of  the tr igonal  Eucl idean lattice), to is the 

degeneracy  factor  that  appears  on adding a new spin to the system, and k is an 

integer  which is, in general ,  de te rmined  by the preset  accuracy.  By successive 

application ((b - k) times) of  (22) we find 

g2G( b ) ~ -  c(b2- Sb-k2 + 5k )/260 (b3-6b2 + llb-k3 +6k2-11k )/6J'~G( k ) , (23) 

and by inserting (23) into (21) we obtain  

1 Ssb 5 + $4 b4 q- $3 b3 q- $2 b2 + S l b  + S O 

t r ( b ) ~ l n t o + ~  b S + 9 b  4 + 3 1 b 3 + 2 7 b 2 _ 3 2 b _ 3 6  ' (24) 

with 

S O = 6k(k  2 - 6k  + 11) In to + 18k(k - 5) In c - 36 In 2 - 36 In J2G(k ) , 

(25a) 

S a = - 2 ( k  3 -  6k 2 + l l k  + 15) In t o -  6 ( k  2 - 5 k -  15) In c + 66 I n 2  

+ 12 In OG(k ) , (25b) 

S 2 = - 3 ( k  3 - 6k 2 + l l k -  30) In to - 3(3k 2 - 15k + 16) In c - 36 In 2 

+ 18 In O G ( k ) ,  (25c) 

5 3 = - ( k  3 - 6k  2 + 11k + 12) In to - 3(k 2 - 5k  + 13) In c + 6 In 2 

+ 6 In S2G(k ) , (25d) 

S 4 = - 3 6  In to - 6 In c ,  (25e) 

S 5 = - 1 2  In w + 3 In  c .  (250 

Formula  (24) for the residual en t ropy  is similar to formula  (10) ob ta ined  in 

the 2D case. The  values J2G(b ) that  we have found  in the 3D case (see table I) 

do  not  seem to be sufficient for a very accurate  evaluat ion of  the constants  So, 

S 1 , S 2, S 3, S 4, S 5, c and w. Nevertheless ,  ext rapola t ion of  data  given in table I, 
pe r fo rmed  in the same spirit as in the 2D case, provides  such values o-(b) which 
in the limit b - - - ~  approach  the value o - ( ~ ) = 0 . 2 2 ,  well within the region 

de te rmined  [11] for  the Eucl idean lattices with coord ina t ion  n u m b e r  z = 12 
(see fig. 4). In fact, the ex t rapola ted  values o-(b) a lready for b /> 138 surpass 
the lower  Eucl idean bounda ry  cre = 0.2030 [11]. It  may  be of  interest to note  
that  this surpassing at b = 138 cor responds  to fractals which contain more  than 
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92% of the bulk spins, which is close to the percentage of bulk spins at which 

the 2D fractal residual entropies o-(b) surpass the corresponding lower Eu- 
clidean bound ~r~ (see the discussion at the end of section 2). Finally, since the 

constants S 0, S~, S 2, S 3, S 4, S 5 and c0 are finite, one can see from (24) that in 
the 3D case the crossover formula of the type (1) (with a = 1) is again valid. 

3.2. The case b =  3 

The above considerations (for b ~> 4) are valid in the case b = 3. The only 

difference is that in the case b = 3 the maximum coordination number  is z = 9. 
The number  of generator  spins with nine nearest  neighbors is B = 4 (these 
spins belong to the generator  surfaces). Inserting B = 4, and (16), into (20), we 

obtain 

o - ( b = 3 ) =  1 ( 4 1 n 2 + 9 1 n g 2 c )  16(1 ~ " (26) 

Since the four spins with nine nearest  neighbors,  within the b = 3 generator ,  
are nearest  neighbors to each other,  the ground state degeneracy is S2~; = 4 + 1, 

and from (26) it follows the exact residual entropy value 

~(b  = 3 ) =  0.10785956. (27) 

The obtained value does not lie between the lower bound cr~ = 0.2400 and the 
upper  bound o- u = 0.2799 predicted in ref. [11] for systems with coordination 

number  z = 9. This is conceivable since the b = 3 fractal generator  has al- 
together  20 spins, out of which only 4 have 9 nearest  neighbors, and since the 
ratio of bulk versus total number  of spins does not change substantially for 
higher stages of the fractal construction. 

3.3. The case b = 2  

In the maximum critical field H c = 6J,  the configuration with all spins 
oriented up has the same energy (the ground state energy) as all other  
configurations with an arbitrary number  of spins oriented down, provided that 
each of the latter is surrounded by 6 upward oriented neighbors (in what 
follows it is useful to call bulk spins those spins which have 6 nearest  
neighbors). Keeping in mind this constraint, we will first determine the ground 
state degeneracies of the nth stage fractal structure for b = 2 that correspond to 
different apex spin configurations. 

The apex spins of the nth stage fractal structure (when it is considered alone) 
must be oriented up because they are surrounded by 3 nearest  neighbors. 
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Fig. 4. Residual entropies o-(b) and tr'(b) of the 3D SG fractals and their generators, represented 
by circles and triangles, respectively. The notation is the same as in fig. 1. The exact values are 
given for 4 ~< b ~ 9 (these values are listed in table I), and the extrapolated values are shown for 
9 < b < 1000. The exact value of the residual entropy for the infinite trigonal lattice is not known, 
and the shaded region here corresponds to the upper and lower bounds, ~r u = 0.2030 and 
tr~ = 0.2398, predicted for the Euclidean lattices, with the coordination number z = 12, in ref. [11]. 

However ,  when the (n + 1)th stage structure is fo rmed  out  of  the n th  stage 

structure,  some of  the n th  stage apex spins become  (n + 1)th stage bulk spins 

neighboring the fo rmer  n th  stage bulk spins (see fig. 2a). For  this reason,  we 

must  consider  all possible configurat ions of  the n th  stage apex spins and find 

cor responding  contr ibut ions  to the different (n + 1)th stage apex spin configu- 

rations. Thus,  we in t roduce  quantit ies (partial degeneracies)  /]i (i = 1, 2, 3, 4, 
5) that  cor respond  to the five different apex spin configurat ions ( + + + + ) ,  

( + + + - ) ,  ( + + - - ) ,  ( + - - - )  and ( . . . .  ), respectively.  In fig. 4 we depict  
all the n th  stage apex spin configurat ions which contr ibute  to the (n + 1)th 

apex spin configurat ion of  the type ( +  + + +) .  F rom fig. 4 we obtain the first 

partial degeneracy  recursion relation 

t _  2 2 2 2 
~'~1 -- ff'~ ÷ ff~4 4 + 3(/]~ + / ] 4 )  + 4 ( / ] ~ / ] 4  + / ]1 / ]33)  ÷ 6 ( / ]  1 / ] 2  ÷ / ] 3 / ] 4 )  

+ 12(/]1/]22/]3 + / ] ~  + / ] 2 / ] ~ / ] 4 )  • (28a) 

Similarly, we obtain  the o ther  four  recursion relations, 
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0~=a~o2+a~2o5+0~0, 

+ 3(01~(2 ~ + 0 3 0  ] + 02102~'~3 q- 01~'~04 

+ 6(0 '20 , + 0~04 + 01020 ~ + n2n~o~) + 7020 ~ + 9022*23~.(~4 , 
(28b) 

2 "~ v 2 2 "~ ~; = s~_ + ~ + o , 0 ~  + ~ 1 o ,  + a~a;. + s ~ n  ~ 

+ o:~&& + 01 &a~) 

+ 7(O22~2~ + n~n])+ 1 2 n 2 * ~ & ,  (28c) 

3 "~ + 3(a~& + o 4 &  + a, 02o~ + a l o e &  + & a ; o ,  

+ 02n24n~ + n3n4n~) 
~-~ 3 2 "~ 

+ 6(.Q2.Q ~ + 304 + .Q252304 + ~Q3~405) + 70~O 4 + 9.Q203~27 ~ , 
(28d) 

O'~. = O~ 4_ + D45 + 3( O4. + D44) + 4(~Q ~ O~_ + .(L O ] ) _  

+ 6(0220~ + 0 ~ a ~ )  + 12(0~Q] + ~ '~2~ '~ '~  4 q- O3~'~24~{'~5) . (28e) 

In fig. 5 we have assumed that all elementary tetrahedra have an interior 
structure. To determine the initial conditions for the recursion relations (28) 
we should consider the situation when elementary tetrahedra do not have a 
substructure, that is, we should find the partial degeneracies of the fractal 
generator that correspond to different apex spin configurations. In fig. 6 we 
show all possible configurations of the generator spins (grouped according to 
the possible apex spin configurations) that appear in the n = 2 fractal stage 
ground state configurations. Thereby, we obtain the following initial conditions 
for relations (28): 

a~11)=10, a(,1)=4_ , ~2(~)=23 , O ~ ) = 1 ,  ~Q~I)=I. (29) 

If we introduce the superscript (n) for the nth stage partial degeneracies, the 
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Fig. 5. All the apex spin configurations of the nth stage fractal structure (b = 2, d = 3) that 
contribute to the ground state degeneracy of the (n + 1)th stage apex spin configuration of the type 
(+ + + +) .  The elementary tetrahedra are assumed to have interior structure, which means that 
their apex spins are not nearest neighbors to each other. 

residual entropy of the infinite fractal lattice can be determined by 

o- = lim In J2~ ") 
.~= Nn , (30) 

where i can be any of the integers (1, 2, 3, 4, 5) since the differences between 
the five quantities 121 "), scaled by the number of spins N. = (4 "+1 + 4 ) / 2 ,  
approaches zero when n--*~.  Indeed,  for each i, we find after 15 iterative 
applications of (28), the following value of ~r(b): 

~(b = 2, d = 3) = 0.32859960. (31) 

This value lies between the lower bound o- e = 0.2971 and the upper bound 
%, =0.3403 predicted by Hajdukovi6 and Milo~evi6 [11] for systems with 
coordination number z = 6. 
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Fig. 6. All spin configurations of the SG ffactal generator (b = 2, d 3) that contribute to the 
ground state degeneracy of the n = 2 stage structure, grouped according to the different possible 
apex spin configurations. In contrast to fig. 5, the elementary tetrahedra here do not have 
substructure, which means that their apex spins neighbor each other. 

4. Summary 

In this sec t ion we first der ive ,  for  the  sake  of  c o m p l e t e n e s s ,  fo rmulas  for  the  

res idual  e n t r o p y  ~r(b) of  the  S ie rp insk i  gaske t  family  of  f racta ls  e m b e d d e d  in 

the  d - d i m e n s i o n a l  E u c l i d e a n  space .  It will be found  that  these  new resul ts  

con ta in  as special  cases  fo rmu la s  o b t a i n e d  in p rev ious  sec t ions  for  d = 2 and 

d = 3 .  

We s tar t  this gene ra l  case by no t ing  tha t  all m e m b e r s  of  the  S G  fracta l  fami ly  

can be o b t a i n e d  f rom the infinite set of  d - d i m e n s i o n a l  ge ne ra to r s  G ( b ,  d ) ,  

where  b is an in teger  tha t  runs f rom 2 to infinity. The  g e n e r a t o r  G ( b ,  d )  is a 

d - d i m e n s i o n a l  h y p e r t e t r a h e d r o n  of  s ide length  b, which is i tself  filled with b 

layers  of  sma l l e r  h y p e r t e t r a h e d r a  of  unit  s ide length  [12]. F o r  a given d and b, 
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the maximum coordination number  is z = bd [12], in the case b ~ d, and 
z = d(d + 1), in the case b ~> d + 1, yielding the maximum critical fields H c = 
bdJ and H c = d(d + 1)J, respectively. 

The reasoning that led to formula (20), in the case d = 3, can be repeated 
here for b/> 3. Thus we obtain the following formula for the residual entropy: 

b[B In 2 + (C - 1) In I2G] 
or = C[C(b + d) - b(d + 1)l ' b/> 3 ,  (32) 

where C is the number of hypertetrahedra with unit side length in a generator,  

C ( b , d ) = ( b  + d - 1 )  
d 

(33) 

and B is the number of bulk spins in the generator (bulk spins are spins with 
z = bd nearest neighbors), that is 

d 
B = l-[ (k + 1) ,  (34a) 

k = b  

fo r3~<b~<d ,  and 

B = ( b - 1 )  (34b) 
d ' 

for b >i d + 1. Inserting (33), (34a) and (34b) into (32) we obtain 

d! d! ]-I ( k + l )  I n 2 +  ( b + k ) - d !  lng2 G 
L " k = b  

= , ( 3 5 )  

' t ~ I  1 (b  -~- k)(k~I=l ( b 3 v  k ) - ( d  -1- 1)! 
k=O - 

for 3~<b~<d, and 

d! 1-I ( b - k )  I n 2 +  ( b + k ) - d !  lng2 G 
k = b  - or = , (36) d-1 d 

I-I ( b +  k)(kI~= 1 ( b +  k ) - ( d +  1)!) 
k=O 

for b i> d + 1. The last two formulas are quite general. Indeed,  inserting d = 2 
into (36) we obtain expression (2), while inserting d = 3 into (35) and (36) we 
obtain (26) and (21), respectively. 

In the case b = 2 (and arbitrary d),  in contrast to the above cases, we cannot 
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present  a general  formula ,  since it would  imply to general ize the complex  

recursion relat ions (12),  which certainly is a formidable  task. Besides,  the case 

b = 2 is irrelevant for the fractal to Eucl idean  crossover  analysis, which is one  

of  the pr imary  object ives of  this paper .  

As  regards behav ior  of  the residual en t ropy  at the fractal to Eucl idean 

crossover ,  we have conf i rmed that  the crossover  formula  (1) (anticipated in ref. 

[7], in the case d = 2) is valid in bo th  cases d = 2 and d = 3, with a being equal  

to 1. The  conf i rmat ion of  fo rmula  (1) was achieved by calculating addit ional  

data,  in the case d = 2, and by creat ing a new set of  data  (b ~< 9), in the case 

d = 3, which were  analyzed using the recent ly  in t roduced  degeneracy  factor  

m e t h o d  ( D F M )  [11]. In addit ion to the validation of  (1),  the ex t rapola ted  

values of  or(b) ob ta ined  by the D F M  lie well in the regions de te rmined  by the 

cor responding  lower,  o- e, and upper  bounds ,  ~r u, for the residual entropies  of  

the Eucl idean lattices [11]. We can expect  that  the crossover  law (1) is valid 

also for  the SG fractals e m b e d d e d  in h igher-dimensional  spaces (d > 3 ) .  

Howeve r ,  it is certainly more  chal lenging to see whe ther  (1) is to some  extent  

universal,  that  is, whether ,  for  instance,  it stays valid for o ther  families of  

fractals which furnish the crossover  to Eucl idean lattices. A n  answer  to this 

quest ion will be e labora ted  in the ad jo ined  paper  II.  
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