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We apply @ new method to study the problem of the residual entropies of the anti-
ferromagnetic Ising systems, in the maximum critical field, situated on Sierpinski gasket (SG)
type of fractal lattices. The SG [ractal lattices comprise & family. so that each member is
labelled by an integer b (2= b < =) and is embedded in d-dimensional Luclidean space. In
the two-dimensional (2D) and three-dimensional (3D} case, we find expressions for the
residual entropy o(b) for arbitrary b. and show that in the limit b — o the calculated values
should converge to the values pertinent to the corresponding Fuclidean lattices. In particular.
these results confirm recent findings concerning the residual entropy of the 2D Sierpinski
gasket type of fractals, obtained by numerical fitling. We also study the d-dimensional case
and find a general expression for o(b) for arbitrary b= 3.

1. Introduction

Numerous theoretical investigations performed in the past decade have
confirmed that the laws of physics are modified when the underlying lattice is
fractal instead of Euclidean. Thus onc can judiciously ask how physical laws on
fractal lattices cross over to known laws on the standard Euclidean lattices. A
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few answers to this question have been offered by studying electric resistances
[1-3], self-avoiding random walks [4-6] and residual entropies of the Ising
antiferromagnets [7] on the infinite family of Sierpinski gasket (SG) type of
fractals. However, in order to achieve a general answer to the posed question,
additional concrete studies are essential. For this reason, here we attack more
comprehensively the problem of residual entropies of the Ising antiferromag-
nets on fractals.

In a previous paper [7] we have studied the specific problem of the residual
entropies of the Ising antiferromagnets with the nearest-neighbor (nn) coupling
J, in the maximum critical field. The Ising systems were situated on the family
of the SG type of fractals embedded in the two-dimensional (2D) Euclidean
space. Each member of the family is labelled by an integer b (2= b <),
which appears to be the base of the corresponding fractal generator (see, for
example, fig. 1 of ref. [7]}. The general formula for the residual entropy o(b)
for b =3 has been expressed [7] in terms of only two parameters — the fractal
generator base b and its ground state degeneracy f1,. We have calculated
exactly [7] the values of a(b) for 3< b =21, and by a numerical analysis we
have established that ¢(b), in the limit b— o, approaches the exact value
Ogyeligesn = 0.3332427219761 . . . (found for the standard triangular lattice (8,
9]) according to the crossover formula

P
U(b) = TEuclidean '55 ” b—)OO H (1)

where P and ¢ are constants.

In scction 2 of this paper we first report three additional values of o(b)
(b =22, 23, 24), for the 2D case. What is more important, we apply here the
degeneracy factor method, introduced recently in ref. [10], to analyze the
crossover behavior of a(b). Thus we confirm that formula (1) holds, with «
being equal to one. In section 3 we find general expressions for the residual
entropies a(b) for the SG fractal lattices embedded in the 3D Euclidean space,
and calculate cxact values of a(b) up to b =9. Applying the degeneracy factor
method we find a crossover formula for o(b) in the 3D case, which turns out to
be also of the type (1). In section 4 we find general expressions for o(h) in the
d-dimensional case, and then we provide an overall discussion of the obtained
results,

2. Residual entropies of the 2D Sierpinski gasket type of fractals

The maximum critical field H, and the concomitant residual entropies of the
antiferromagnetic Ising systems depend on the maximum coordination number
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within a given lattice [11]. In the 2D case. the Sierpinski gasket (b = 2) and the
other members of the SG family (& = 3) have maximum coordination numbers
4 and 6, respectively [12], and thereby the corresponding residual entropies
have to be studicd separately [7]. The case & =2 was completed in ref. [7] and
here we continue to study behavior of a(b) for large b.

The general expression for o(b) for =3 was found [7] to be of the form

C2{(b - Db —2)In2+|h(k+ 1) = 2]In 0,
B b(b+ D[(b + 1)(b +2)— 6]

a(h) b=3, (2)

where & is the [ractlal generator base and f2; 1s the generator ground state
degeneracy. Hence, one can sce that in order to learn specific values of o(b)
once should first determine {2, In ref. [7] we have determined (), for
3= b <21. In order to find out the large b behavior of a(b), we have fitted [7]
the obtained values of a(h) for 3= b = 21 to the formula

o

a(b)= > a()—lc)

i=0

—
(S
—

where we have assumed the three possibilities x = b, x =In b and x = ", with
o being a constant, It turned out that the best it can be achieved lor x = b,
and conscquently for very large b the behavior of type (1) was suggested.

In this paper we first report three additional values for £2,, (for b =22, 23
and 24), obtained by using more powerful computer facilities than before (IBM
3090 instead of VAX 750). The values are

0,(22).,... = 7.85782360893161668 x 10" |
02,23, = 1.01714646181932794 x 10™ (4)
0.(24).,.. = 1.83734270908004093 x 10™ .

Next, instead of the purely numerical fitting procedure mentioned above, we
apply the degeneracy factor method (DFM), introduced in ref. [10], to
determine the limiting behavior of o(b) for large b, The essence of the DFM is
the scaling relation

D,B)=ca’ Qb -1), b>k, (5)

which links the two successive {2;. Here ¢ is a4 constant (characteristic for the
entire SG family), and w is the degeneracy constant (factor) that appears on
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adding a new spin to a fractal generator. Relation (5) is assumed to be valid,
for a preset accuracy, beyond a certain value b = k.

If the values of (2.,(h) are calculated up to some value £*, then in order to
learn (approximately) further values of {2;(f) one can assume that relation (5)
holds starting with & = 6* — 1. This is equivalent to setting &k = b™ — 2, that is,
to presctting the accuracy of all subsequent formulas that involve £2,(b) with b
larger than b*. The constants ¢ and @ can now be calculated from (5),
according to

_ 25(0") 05 (b* - 2)
0L(b*—1)

(6a)

and

26(6%) 5y

sz W (ﬁb)

Inserting (6) into (5), for b = b* + 1, we find the expression for the unknown
value £2,(b* + 1),

025(6%) 1,6 —2)

(6" +1)= ,
S TR

(7)

in terms of the known values.
In order to verify this approach we use our data for 35(b), and thus taking
b* =21, b* =22 and b* =23 in {7) we obtain, respectively,

1.(22) = 7.85782941 x 10°! ,
1,(23) = 1.01714616 x 10™ , (8)
1,.(24) =~ 1.83734293 x 10°"

By comparing these results with the exact results given in (4), one can see a
rather good accuracy of the approximate approach. One can also see that the
accuracy increases with increasing b*, and in particular for &% =23 there are
seven correct digits in the approximate value of 2,(24).

In what follows we adopt the above presented approach for obtaining {2.(b),
for large &, and thereby we investigate the limiting behavior of o(b) when
b— . First, by successive application of (5) we find

QG(b)zCb—kw(bl—zb—kluk)/zﬂc(k) . (9)
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and by inserting (9} into (2) we cblain

1 S,p°+8,b°+8b+S,
by=Inw+ = — s =, 10
e TS BT (10

with
S,=2k(k—3)Inw—4In 2,(k)+4klnc+4in2, {112)
S,=—(k" =3k - 10)Inw+2In (k) - 2(k +2)Inc—61n2, (11b)
S, = (k" =3k+Hnw+2In Q. (A)—2k - Dinc+2In2, (11c)
S,=-6lnw +2Inc. (11d)

Now, choosing b* =24, from (6) we find
In w =0.333242687 , (12a)
In ¢ = (1167735381, (12b)
and using these values in (11), together with the choice & =24, we achieve
8, =12.357598 ,
S, = —1.289902
S, =0.5962896 .
S, =-1.663985.

Having confirmed that the constants which appear in (10) are finite, it
becomes clear why the choice x = b and x = b" in (3) provided much better
fitting [7] than the choice x = In & (sec fig. 6 in ref. [7]). For the same reason, it
also follows from (10) that the leading term, for very large b, is of the order
1/b. Thus, we can now claim that the asymptotic law (1) is true with oo = 1.
Besides, comparing our limiting value of o(b) for &— =, given by (12a), with
the exactly known value [8, 9] of the residual entropy for the infinite triangular
lattice og,_qc., = 0.3332427219761. . . , it becomes clear thal the seven-digit
accuracy initiated at & =24 has becen preserved. In fig. 1 we depict values of
o(b) for b =1000, calculated using (2) and (10), together with the residual
entropies o'(b) of the corresponding [ractal generators. Furthermore, one
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Fig. 1. Residual entropies o(¥) and o’(&) of the 2D SG fractals and their generators, represented
by circles and triangles, respectively. Exact values for 3< b =24 are depicted by full circles and
triangles, while the cxtrapolated values for 24 <b <1600 arc depicted by open circles and
triangles. Approximate values are obtained using egs. (10)-(13), in the case of a(b), whereas
extrapolated v'(d) are given by o'(b)=21n £2,(b)/[(& + 1)(b + 2)] (here £2,(b) is determined by
(9), and (b + 1)(b +2)/2 is the total number of spins in the generator}. The symbol < represents
the exactly known value [8, 9] of the residual entropy for the infinite triangular lattice o0 =
0.3332427219761. .., and the shaded region corresponds to the upper and lower bound, o, =
0.2970 and @, = 0.3403, predicted for the Euclidean lattices with coordination number z =6 in ref.
[11]. The full lines serve as guides to the eye.

should notice that both residual entropies a(b) and o'(b), already for b =41,
enter the region of values determined by the corresponding upper and lower
bound (o, and o,) predicted for the Euclidean lattices with the coordination
number z =6 in ref. [11]. This means that already fractals with b =41 (and
their generators) have a sufficiently large ratic of number of spins with six
nearest neighbors versus total number of spins [7].

3. Residual entropies of the 3D Sierpinski gasket type of fractals

Each member of the 3D SG fractal family is also labelled by an integer b
(2 = b = =) and can be obtained from a generator G(b), which is an equilateral
tetrahedron of side length b [12]. The generator G(b) is filled with b layers of
smaller tetrahedra of unit side length (see fig. 2). Each layer consists of upward
oriented unit tetrahedra (see fig. 3). A member of the 3D SG fractal family is
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{a) (b)

Fig. 2. The gencratars (2= 1) of the 30 SG type of fractals. (a) The b =2 case. (b) The b =3
case. The darkest unit triangles should be concerved as horizontal bases of the four and ten upward
ortented tetrahedra. respectively.
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Fig. 3. Six successive layers of the b = 6 3D SG fractal generator. The largest triangle corresponds
to the ground layer, which is composed of 21 upward oriented unit tetrahedra. In all layers. the
cdges of the unit tetrahedra that lie above the horizontal plane are represented by dashed lines.

also grown in stages. The structure of the (# + I)th stage is obtained by
enlarging the generator (the n=1 stage) by b", and filling its all upward
oriented tetrahedra with the nth stage structure. The complete fractal (lattice)
1s obtained in the limit #— =,

I[n fig. 3 one can, in fact, see all layers from which the SG fractal generators
with 2= b = 6 are formed. Hence, one can notice that the maximum coordina-
tion number z is equal to 6, 9 and 12, for b =2, b =3 and b =4, respectively.
Therefore. the maximum critical fields |7, 1] are H.=&J. H. =9/, and
H_=12J in the three cases, respectively. The three different critical lields
necessitate separate studies, and we will start with the b >4 case, as it is
relevant for the study of fractal to Euclidean crossover.

3.1 The case b=4

In the maximum critical field /f_ = 12J, the configuration with all spins
oriented up has the same encrgy (the ground state energy) as all configurations
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with an arbitrary number of spins oriented down, provided that each of the
latter is surrounded by 12 upward oriented neighbors. In order to find the
corresponding residual entropy o(b) of the infinite 3D SG fractal, we shall first
study degeneracies of the intermediate stages of the fractal construction.

It can be deduced from fig. 3 that the number of the SG generator spins
surrounded by 12 nearest neighbors is given by

B=L1(b-1)b-2)(b—3). (14)

We will hereafter call these spins the bulk spins. Furthermore, it is important
to observe that spins at the apexes of the SG fractal, at any stage of the
self-similar construction, are not nearest neighbors of the bulk spins. When the
(n + 1)th stage fractal structure is formed out of the nth stage structures, B of
the apex spins of the latter become surrounded by twelve nearest neighbors
oriented up and (since the nth stage apex spins cannot be nearest neighbors to
each other) they may be arbitrarily oriented. Hence, the degeneracy 2, of
the {n + 1)th stage fractal structure is related to the degeneracy {2, of the nth
stage structure via

a,,,=2"0,, (15)
where
C=¢bb+1)b+2). (16)

This is the number of the rth stage structures that comprise the {n + 1)th stage
structure (this is also the number of upward oriented equilateral tetrahedra in
the SG generator). Starting with the ground state degeneracy (J; of the SG
generator, we apply (15) (n — 1) times and thereby we obtain the following
relation:

[231((*—1)0 ]c"'*'
(3, = “—?ﬁ?%“_ : (17)

The residual entropy of the infinite 3D SG fractal is defined by

i In 2, 18
o= lim N (18)

Ao x

n

where N, is the total number of spins of the nth stage structure,
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_ Cl(b +3)(C" — 1) —4b(C""" — )]

i HC 1) (19)
I[nserting (17) and (19) into (18) we obtain
_b[BIn2+(C—1)In 0] 50
T+ —4b] (20)
which, upon using (14) and (16), acquires the form
by — 6{(b—1)(b-2)(b—3)In2+[b(b+ 1)(b+2)—6]inf;}
olb) =" Bb+ )b +2)(h+ 1)(b+2)(b+3)—24] ’ )
(21
h=4.

Therefore, the residual entropy a(b) as a function of b appears to depend
explicitly on the fractal generator ground state degeneracy {2,. To determine
{2, we use a special numerical technique, similar to the one used in the
two-dimensional casc [7], and thus we obtain the values of o(b), for 4< b <9,
presented in table [ (even using the most powerful present-day computers,
instead of the IBM 3090. can hardly provide results for b= 11).

For the purpose of learning the crossover behavior of a(b), we apply the
DEM method [10]. In this case it provides the following recursion relation for
the ground state degeneracies:

3
3
N

,b)y=c""0"TMTE0 (b-1)y . h>k. {

Table 1

Residual entropies a(b) and a’(b) of the Ising antiferromug-
net situated on the 3D Sierpinski gasket type of fractals and
on the corresponding finite size gencrators, respectively.
Values a(h) are caleulated using (21), whereas values o '(b)
are determined by '(b) — 0 1n £2,.(bY/[(b + 1)(h = 2)(b + 3))
(here (b + 1)(b +2)(b + 3)/0 is the total number of spins in
the generator).

b a(b) o'(D)

: 0.0234775606 0.019804205
3 0.032474129 (.028739963
6 0.048562205 0.044776192
7 0.060159307 0.056778705
8 0.071981208 0.069010949

9 0.082206607 0.079642623
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where ¢ is a constant (characteristic of the trigonal Euclidean lattice}, w is the
degeneracy factor that appears on adding a new spin to the system, and & is an
integer which is, in general, determined by the preset accuracy. By successive
application ((b — k) times) of (22) we find

2_ep_p2 3_ g2 Lk 114
Qg(b)zc(h Sh—-k +5k)/2m(h 6b°+11b—k " +6k Ilk)’ﬁnﬁ(k) , (23)

and by inserting (23) into (21) we obtain

1 S,6°+ 8,6+ 856> +85,b°+ 5,6+ 8,
Py=lnw+ -+ 24
) I et oL ¥ 31b S 276 32k —36 (24)

with

S, =6k(k® — 6k +11)In w + 18k(k ~ S)In ¢ — 361n 2 - 36 In £2,(k) ,

(25a)

§,==20"-6k>+ 11k +15) Inw - 6(k* =5k~ 15)Inc + 661n 2

+121n Q5(k), (25b)
S, =—3(k — 6k> + 11k — 30) In w — 3(3k* — 15k + 16) In ¢ — 36In 2

+181n Q. (k), (25¢)
S,=—(k'— 6K +11k+12)In @ —3(k" = Sk +13) Inc + 6In 2

+61n 25(k), (25d)
S, =—36lhw-6lnc, (25¢)
S;=—12Inw+3Inc. (25f)

Formula (24) for the residual entropy is similar to formula (10) obtained in
the 2D case. The values £25(b) that we have found in the 3D case (see table 1)
do not seem to be sufficient for a very accurate evaluation of the constants S,
8., 8, 85, 8,, 8, ¢ and w. Nevertheless, extrapolation of data given in table 1,
performed in the same spirit as in the 2D case, provides such values o(b) which
in the limit b— o approach the value o{x)=~=0.22, well within the region
determined [11] for the Euclidean lattices with coordination number z =12
(see fig. 4). In fact, the extrapolated values ¢{b) already for b = 138 surpass
the lower Euclidean boundary o, =0.2030 [11]. It may be of interest to note
that this surpassing at b = 138 corresponds to fractals which contain more than
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92% of the bulk spins, which is close to the percentage of bulk spins at which
the 2D fractal residual entropies o(h) surpass the corresponding lower Eu-
clidean bound o, (see the discussion at the end of section 2). Finally, since the
constants S, §,, 5., S, 5., 5. and o are finite, one can see from (24) that in
the 3D case the crossover formula of the type (1) (with e = 1) is again valid.

3.2 The case b =13

The above considerations (for b = 4) are valid in the casc # = 3. The only
difference is that in the case b = 3 the maximum coordination number is z =9,
The number of generator spins with nine nearest neighbors is B — 4 (these
spins belong to the generator surfaces). Inserting B =4, and (16), into (20), we
obtain

olb=3)= w(4In2+91n £2,) . (26)

Since the four spins with nine nearest neighbors, within the & =3 generator,
are nearest neighbors to each other, the ground state degeneracy is 2, =4 + 1,
and from (26) it follows the exact residual entropy value

a(b = 3) = 0.10785956 . (27)

The obtained value docs not lie between the lower bound o, = 0.2400 and the
upper bound o, =0.2799 predicted in ref. [11] for systems with coordination
number z =9. This is conceivable since the b =3 fractal generator has al-
together 20 spins, out of which only 4 have 9 nearest neighbors, and since the
ratio of bulk versus total number of spins does not change substantially for
higher stages of the fractal construction.

3.3 The case b =2

In the maximum critical field H_=06J, the configuration with all spins
oriented up has the same energy (the ground statc cncrgy) as all other
configurations with an arbitrary number of spins oriented down, provided that
cach of the latter is surrounded by 6 upward oriented neighbors (in what
follows it is useful to call bulk spins those spins which have 6 nearest
neighbors). Keeping in mind this constraint, we will first determine the ground
state degeneracies of the nth stage fractal structure for b = 2 that correspond to
different apex spin configurations.

The apex spins of the nth stage fractal structure (when it is considered alone)
must be oriented up because they are surrounded by 3 ncarest neighbors.
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Fig. 4. Residual entropies o(b) and o'(b) of the 3D SG fractals and their generators, represented
by circles and triangles, respectively. The notation is the same as in fig. |. The exact values are
given for 4< b =9 (these values are listed in table 1), and the extrapolated values are shown for
9 << b < 1000. The exact value of the residual entropy for the infinite trigonal lattice is not known,
and the shaded rcgion here corresponds to the upper and lower bounds, o, =0.2030 and
a, = 0.2398, predicted for the Euclidean lattices, with the coordination number z = 12, in ret. [11].

However, when the (z + L)th stage structure is formed out of the nth stage
structure, some of the ath stage apex spins become (n + 1)th stage bulk spins
neighboring the former nth stage bulk spins (see fig. 2a). For this reason, we
must consider all possible configurations of the nth stage apex spins and find
corresponding contributions to the different (n + 1)th stage apex spin configu-
rations. Thus, we introduce quantities (partial degeneracies) 2, (i =1, 2, 3, 4,
5) that correspond to the five different apex spin configurations (++++),
(+++-), (++——), (+-——) and (——— ), respectively. In fig. 4 we depict
all the nth stage apex spin configurations which contribute to the (n + 1)th
apex spin configuration of the type (++++). From fig. 4 we obtain the first
partial degeneracy recursion relation

Q=00+ 05+ 305+ QD+ 4220, + 2,0+ 6(23 023 + 2.0%
+12(2, 050, + 2207+ 2,0.40,) . (28a)

Similarly, we obtain the other four recursion relations,
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Q=700 + 02,0 + 02,0
+ 3,00+ .07+ 074,02, + 2,050,
000, + 0.0+ 0,0,0.)
O, + 250, + 0,0,05 + ,0,0)+ TL0;+90,0,0,

(28b)
Q=05+ Q5+ Q05+ 050 + Q.00+ 0,0
F2(003 50, + 2,05+ 30+ 0,0, + 0, 0;
+ 0.0+ 2,0.03)
+4(Q, 050, + 2,050+ 0 (1,00, + (,02,0,0,)
+ 700203+ 2:03) 120,050, , (28¢c)

=00+ 00,+ 02,0!
+3(02,0, + 20, + 0,0,0; + 20,0, + 0,00,
L2000+ ,0,00)

+ 6(42 Q‘: + 0,07+ Q30,0 + (220 £, +7.()‘:.(2‘ + 942,007
2 E 3 1 284 1 : 4 ) 1 2=
(28d)

QL= 027+ 027+ 30025+ ) + 4050, + (4,07
+O(Q+ IO+ 1200705+ 2,00, + .00, . (28e)

In fig. 5 we have assumed that all elementary tetrahedra have an interior
structure. To determine the initial conditions for the recursion relations (28)
wc should consider the situation when clementary tetrahedra do not have a
substructure, that is, we should find the partial degeneracies of the fractal
generator that correspond to different apex spin configurations. In fig. 6 we
show all possible configurations of the generator spins (grouped according to
the possible apex spin configurations) that appear in the n =2 fractal stage
ground state configurations. Thereby, we obtain the following initial conditions
for relations (28):

=10, a"=4. 0"=2, 0"=1. a=1. (29)

[f we introduce the superscript (n) for the nth stage partial degeneracics, the
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Fig. 5. All the apex spin configurations of the sth stage fractal structure (b =2, d=13) that
contribute to the ground state degeneracy of the (z + 1)}th stage apex spin configuration of the type
(++++). The elementary tetrahedra are assumed to have interior structure, which means that
their apex spins are not nearest neighbors to each other.

residual entropy of the infinite fractal lattice can be determined by

In Q¢
o = lim N1 , (30)

Piment
n

where i can be any of the integers (1, 2, 3, 4, 5) since the differences between
the five quantities 2, scaled by the number of spins N, = (4"*' +4)/2,
approaches zero when n-». Indeed, for each i, we find after 15 iterative
applications of (28), the following value of o(b):

o(b =2, d=3)=0.32859960 . (31)
This value lies between the lower bound o, =0.2971 and the upper bound

o, =0.3403 predicted by Hajdukovi¢ and MiloSevi¢ [11] for systems with
coordination number z = 6.
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1
Q()

]

Fig. 6. All spin configurations of the SG fractal generator (b =2, ¢ — 3} that contribute to the
ground state degeneracy of the » = 2 stage structure. grouped according to the different possible
apex spin configurations. In contrast to fip. 5. the elementary tetrahedra here do not have
substructure. which means that their apex spins neighbor cach other.

4. Summary

In this section we first derive, for the sake of completeness, formulas for the
residual entropy o(f) of the Sierpinski gasket family of fractals embedded in
the d-dimensional Euclidecan space. 1t will be found that these new resulls
contain as special cases formulas obtained in previous sections for d =2 and
d=73.

We start this general case by noting that all members of the $G fractal {family
can be obtained from the infinite set of d-dimensional generators G(b, d).
where b is an mteger that runs from 2 to infinity. The generator G(b, d) is a
d-dimensional hypertetrahedron of side length A, which is itself filled with &
layers of smaller hypertetrahedra of unit side length [12]. For a given 4 and b,
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the maximum coordination number is z = bd [12], in the case b=d, and
z=d(d +1), in the case b=d + 1, yielding the maximum critical fields H, =
bdJ and H_ = d(d + 1)J, respectively.

The reasoning that led to formula (20), in the case d =3, can be repeated
here for & 3. Thus we obtain the following formula for the residual entropy:

b[BIn2+(C—-1)ln Q2]
ClCb+d)-bd+ D]’

o=

b=3, (32)

where C is the number of hypertetrahedra with unit side length in a generator,

b+d-1)

C(b,d):( d

(33)

and B is the number of bulk spins in the generator (bulk spins are spins with
z = bd nearest neighbors), that is

B=[lk+1), (342)

k=h

for 3=b=4d, and

B=(b;1), (34b)

for b= d + 1. Inserting (33), (34a) and (34b) into (32) we obtain

d![d!(ﬁ (k + 1)) In2+ (dl'[1 (b+k)— d!) In .QG]
o= Aot = , (35)

ﬁl (b+k)(ﬁ (b+k)—(d+1)!)

for 3=b<=d, and

d![( i (b - k)) In2+ (dl_[1 (b+k)- d!) In .QG}
o= ‘k=b k=0 , (36)

‘ijl (b+k)(ﬁ[ (b+k)—(d+1)!)

for b = d + 1. The last two formulas are quite general. Indeed, inserting d =2
into (36) we obtain expression (2), while inserting ¢ = 3 into (35) and (36) we
obtain (26) and (21), respectively.

In the case b =2 (and arbitrary d), in contrast to the above cases, we cannot
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present a general formula, since it would imply to generalize the complex
recursion relations (12), which certainly is a formidable task. Besides, the case
b =2 is irrelevant for the fractal to Euclidean crossover analysis, which is one
of the primary objectives of this paper.

As regards behavior of the residual entropy at the fractal to Euclidean
crossover, we have confirmed that the crossover formula (1) (anticipated in ref.
[7]. in the case d = 2) is valid in both cases d =2 and d = 3, with « being cqual
to 1. The confirmation of formula (1) was achieved by calculating additional
data, in the case d =2, and by creating a new set of data (6= 9), in the case
d =3, which were analyzed using the recently introduced degeneracy factor
method (DFM) [11]. In addition to the validation of (1), the extrapolated
values of o(b) obtained by the DFM lie well in the regions determined by the
corresponding lower, o, and upper bounds, o, for the residual entropies ol
the Euclidean lattices [11]. We can cxpect that the crossover law (1) is valid
also for the SG fractals embedded in higher-dimensional spaces (d > 3).
Howegver, it is certainly more challenging to see whether (1) is to some extent
universal, that is, whether, for instance, it stays valid for other families of
fractals which furnish the crossover to Euclidean lattices. An answer to this
question will be elaborated in the adjoined paper II.
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