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We use a one-dimensional ~1D! core-softened potential to develop a physical picture for some of the
anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The
interest in the 1D system stems from the facts that closed-form results are possible and that the qualitative
behavior in 1D is reproduced in the liquid phase for higher dimensions. We discuss the relation between the
shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density
anomaly. We find that certain forms of the two-step square-well potential lead to the existence at T50 of a
low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the
appearance of a point C8 at a positive pressure, which is the analog of the T50 ‘‘critical point’’ in the 1D
Ising model. The existence of point C8 leads to anomalous behavior of the isothermal compressibility KT and
the isobaric specific heat CP . @S1063-651X~99!06012-2#

PACS number~s!: 61.20.Gy, 61.25.Em, 65.70.1y, 64.70.Ja

I. INTRODUCTION

Water, the most common liquid on earth, is uncommon in
many of its properties. For example, water at ambient pres-
sure has an anomalous density behavior, as for T,4 °C its
density decreases upon cooling. The subject of liquid anoma-
lies is not limited to the density anomaly. Two other anoma-
lies are the increase of isothermal compressibility KT ~den-
sity fluctuations! and of the isobaric specific heat CP
~entropy fluctuations! upon cooling. All these anomalies oc-
cur in liquid water @1# and some occur also in other liquids
@1–3#.

In their pioneering work, Stell and Hemmer investigated
potentials that have a region of negative curvature in their
repulsive core @4# ~henceforth referred to as core-softened
potentials! in relation to the possibility of a new critical point
in addition to the normal liquid-gas critical point. They also
pointed out that for the one-dimensional ~1D! model with a
long-range attractive tail, the isobaric thermal expansion co-
efficient, aP[V21(]V/]T)P ~where V , T , and P are the
volume, temperature, and pressure!, can take an anomalous
negative value. Debenedetti et al., using general thermody-
namic arguments, confirmed that a ‘‘softened core’’ can lead
to aP,0 @5#. Stillinger and collaborators found aP,0 for a
3D system of particles interacting by purely repulsive
interactions—a Gaussian potential @6#.

In this work, we investigate the relation of a core-softened
potential to the liquid anomalies mentioned above. Ab initio
calculations @7# and inversion of structure factor data @7,8#
revealed that a core-softened potential can be considered a
realistic first-order approximation for the interaction of many
materials with anomalous behavior @8,9#, even in the case of
network forming anomalous liquids @1#. A recent work has
showed that the anomalous behavior of a 1D model can be
reproduced in two dimensions ~2D! as well @10,11#.

Here we will provide the details necessary to understand
the preliminary results announced in @10#. Specifically, we
investigate thoroughly an exactly solvable 1D model in order
to develop an intuitive picture of how the core-softened po-
tential can lead to all three anomalies and to relate the oc-

currence of these anomalies to the shape and parameters of
the potential. We also discuss the possible existence of a
second critical point and its relation to the parameters of the
model.

The core-softened potential that we study is ~Fig. 1!

u~r !55
` , 0,r,a

2le , a,r,b

2e , b,r,c

0, r.c ,

~1!

where r is the particle separation. The potential is composed
of a ‘‘hard core’’ of diameter a which has a repulsive shoul-
der ~henceforth referred to as ‘‘softened core’’! of width (b
2a) and depth le , and an attractive well of width (c2b)
and depth e . Unless specified otherwise, our numerical cal-
culations are for the choice of values a51, b51.4, c
51.7, e52, and l50.5 @12#. A similar potential was intro-
duced by Ben-Naim to model water anomalies @13,14#. A
continuous potential of an analogous form models the inter-
action between clusters of strongly bonded pentamers of wa-
ter @15#.

FIG. 1. General form for the core-softened potential u(r) stud-
ied here. The length parameters a ,b ,c and energy parameters e ,l
are shown ~both sets in arbitrary units!.
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This type of interaction qualitatively reproduces the den-
sity anomaly of water. At sufficiently low pressures and tem-
peratures, nearest-neighbor pairs are separated by a distance
r'b to minimize the energy. As temperature increases, the
system explores a larger portion of the configurational space
in order to gain more entropy. This includes the penetration
of particles into the softened core, which can cause an
anomalous contraction upon heating.

The relation between the density anomaly and the shape
of the potential can also be understood using the thermody-
namic relation

~]V/]T !P5b2~P^~dV !2&PT1^dVdE&PT!, ~2!

where b[1/kBT with kB being the Boltzmann factor, E is
the energy, and ^•••&PT is the thermodynamic average in a
constant P, constant T ensemble. For a system with a density
anomaly, the left-hand side of Eq. ~2! is negative at tempera-
tures below the temperature of maximum density TMD . The
first term on the right-hand side, proportional to the square of
the volume fluctuations, is always positive. Thus below TMD
the second term must be negative, which requires anticorre-
lation between the fluctuations in E and V. This kind of an-
ticorrelation exists for the core-softened model when the
fluctuations occur between the states with r'b and the states
with r'a , which have a larger energy but a smaller volume.
We conclude that the core-softened potential is a candidate
for generating the density anomaly.

The paper is organized as follows. In Sec. II we present
the exact solution for the Gibbs potential. Sections III–VI
discuss the anomalies in the density and entropy, and their
response functions compressibility and specific heat. In Sec.
VII we discuss interesting analogies with the Ising model.
Finally, Sec. VIII interprets the anomalies in terms of two
different local structures.

II. EXACT SOLUTION FOR GIBBS POTENTIAL

To derive the Gibbs potential for the model, we choose
c,2a to restrict the interactions to nearest neighbors. The
1D model is then exactly solvable using standard methods
@13,14,16#. The partition function is ~see Appendix A!

Z~T ,P !5

1

~DV !@L~T !#N~bP !2
@V~T ,P !#N21, ~3!

where N is the number of particles, DV is a discretization
factor which is needed for keeping Z dimensionless and does
not enter the equation of state, and L(T) is the De Broglie
wavelength. Here

V~T ,P ![E
0

`

dxe2bPxe2bu(x), ~4!

where u(x) is the interaction potential.
The Gibbs potential G(T ,P)[2kBT ln Z(T,P) is then

G~T ,P !52kBT@~N21 !ln V~T ,P !2N ln L~T !

22 ln P2ln DV# . ~5!

In the thermodynamic limit N→` , the terms 2 ln P and
ln DV are negligible compared to the other extensive ~order
N) terms.

Equation ~3! is valid for any 1D system in which each
particle interacts only with its nearest neighbors. If the inter-
action potential is given by Eq. ~1!, then

V~T ,P !5

1

bP
C~T ,P !, ~6!

where ~see Appendix A!

C~T ,P ![@flua1~f2fl!ub1~12f !uc# ~7!

and ux(P ,T)[e2bPx, f(T)[ebe.

III. DENSITY ANOMALY

We calculate the equation of state using the definition V
[]G(T ,P)/]P . From Eq. ~5! we find that, in the thermody-
namic limit N→` , the average ‘‘volume’’ ~length in 1D! per
particle is

v[V/N52

kBT

V~T ,P !

]V~T ,P !

]P
. ~8!

Using Eqs. ~6! and ~8!, we find the equation of state

v5

kBT

P
2

kBT

C~T ,P !

]C~T ,P !

]P
, ~9!

where

]C~T ,P !

]P
52b@~flaua1~f2fl!bub1~12f !cuc# .

~10!

In the high-temperature limit where f→1 and ux→1, the
equation of state ~9! tends to

v5

kBT

P
1a ~T→` !, ~11!

the equation of state for an ‘‘ideal gas’’ of rods, that is, a
system of noninteracting rods of length a.

At T50, v as a function of P has a discontinuity at

P5Pup[
~12l !e

b2a
, ~12!

which we call the upper transition pressure. At T50,

v5H b , P,Pup

a , P.Pup .
~13!

We will return to this first-order transition in Sec. VIII.
Next we study the equation of state for fixed pressure. For

each value of P, we find the value of v(T) using Eq. ~9! ~Fig.
2!. These isobars separate into two different groups.

~i! For P.Pup , v increases monotonically with T, start-
ing from its minimal value v5a . At these high pressures, the
nearest neighbors are pushed inside the softened core and, as
a result, the density anomaly does not occur.
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~ii! When P is lowered just below Pup , v5b at T50 @Eq.
~13!#, and the v(T) isobars show a maximum at a tempera-
ture of minimum density TmD and a minimum at TMD
@3,6,13,14,17#. For P,Pup , the system starts at T50 from
the bottom of the energy well at v5b . Upon heating, the
particles first start to explore the wider region in the bottom
of the potential well and the system expands. At higher tem-
peratures, the particles penetrate the softened core and the
system shrinks, showing an anomalous temperature-driven
contraction. For even higher temperatures, the particles move
outside of the potential well, causing the system to expand.

The minimum density point TmD is of interest. In real
liquids with TMD , TmD is rarely observed @3#, possibly be-
cause it would be located at a low temperature, where the
liquid phase is not stable. As pressure is lowered further, the
maximum and minimum density points coincide at some
point (T low ,P low), which can be found from the system of
equations (]v/]T)P50 and (]2v/]T2)P50. We have ob-
served this behavior upon changing the parameters of the
interaction potential @see, e.g., Fig. 2~b!#. For P,P low , no
density anomaly is observed, as shown in Fig. 2~b!.

IV. ISOTHERMAL COMPRESSIBILITY ANOMALY

The isothermal compressibility is defined as

KT[2

1

V S ]V

]P D
T

5

1

r
S ]r

]P D
T

. ~14!

KT is thus the response of the volume to its conjugate vari-
able pressure and it is proportional to fluctuations in specific
volume,

KT}^~dV !2& . ~15!

For most materials (]KT /]T)P.0, so fluctuations de-
crease upon cooling. In the case of water, for a wide range of
pressures, KT passes through a minimum and shows an
anomalous increase upon cooling. Along the P51 atm iso-
bar, for example, the minimum compressibility point is
around 46 °C @1#.

From Eq. ~9! and Eq. ~14!, we find

KT5

1

bv F 1

P2
1

1

C~T ,P !

]2C~T ,P !

]P2

2S 1

C~T ,P !

]C~T ,P !

]P D 2G , ~16!

where

]2C~T ,P !

]P2
5b2@fla2ua1~f2fl!b2ub1~12f !c2uc# .

~17!

Figure 3 shows KT as a function of T along isobars from Eq.
~16!. As T→` , KT tends to its ideal gas value 1/P , which is
also predicted by Eq. ~11!. As T→0, using Eq. ~14!, we find

KT→0 ~T→0,PÞPup!. ~18!

FIG. 2. Isobars of v , the average length per particle, for the
discrete 1D core-softened potential showing the conditions under
which a TMD and TmD exist. ~a! The parameter values are a51, b
51.4, c51.7, e52, and l50.5. These values along with setting
kB and the mass of the particles to unity determine the units. From
Eq. ~12!, these values result in Pup52.5. P low is almost zero, so no
P,P low isobar is shown. The TMD point is marked by a filled
ellipse and the TmD point by an open ellipse. ~b! The parameter
values are a51, b51.2, c51.7, e52, l50.5 and thus from Eq.
~12!, Pup55. Now P low'3.3, so a P,P low isobar is shown.

FIG. 3. Isothermal compressibility for the same parameter val-
ues and units as Fig. 2~a!. ~a! Isothermal compressibility along dif-
ferent isobars, with their maxima marked by filled circles. KT along
the isobar Pup diverges as T→0. ~b! Log-log plot of the same
results showing the divergence of KT as 1/T along the critical isobar
P5Pup .
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As T decreases from infinity to zero, KT passes through two
extrema, a minimum and a maximum, between which
(]KT /]T)P,0. Thus the 1D core-softened model generates
a compressibility anomaly.

V. DENSITY AND COMPRESSIBILITY EXTREMA LINES

The locus of the points TMD in the P-T phase diagram is
of special interest. For water, the shape of the TMD line helps
distinguish between different scenarios proposed to explain
water’s anomalies @18–20#. In simulations @21–23#, the TMD
line presents a ‘‘nose,’’ i.e., a point in which as P decreases
the slope changes from negative to positive passing through
an infinite value ~Fig. 4!.

In Fig. 4, we present the TMD and TmD with the same
parameters as in Fig. 2. We observe that both lines originate
at Pup @25# and terminate at P low . Moreover, the TMD line
has a negative slope for large P which is in agreement with
experimental water and for lower P the slope of the TMD line
changes sign and so a nose is present.

As shown in Fig. 4, the locus of extrema in compressibil-
ity intersects the TMD line at its nose, as predicted by Sastry
et al. @19# using thermodynamic relations. Moreover, wher-
ever the TMD line has a negative slope, the compressibility
must increase upon cooling in the region to the left of the
TMD line @19#, resulting in a line of KT maxima which origi-
nates from the point C8(T50,P5Pup).

Noteworthy is the existence of a starting and ending point
for the TMD line. The starting point is the point C8(T50,P
5Pup), and the ending point (T low ,P low), where TmD and
TMD meet. In Fig. 4~b! we show that the overall phase dia-
gram does not change qualitatively upon varying the param-
eters of the potential.

VI. ENTROPY ANOMALY

Since (]S/]P)T52(]V/]T)P , if (]V/]T)P,0, then

S ]S

]P D
T

.0. ~19!

Equation ~19! is anomalous because, contrary to intuition,
compressing the system at constant T increases its entropy
@24#. To calculate the entropy from Eq. ~5!, we use S[
2(]G/]T)P . We obtain

s[
S

NkB
5

3

2
1ln@C~T ,P !/~LbP !#2

b

C~T ,P !

]C~T ,P !

]b
,

~20!

where

]C~T ,P !

]b
5~el2Pa !flua1e~f2lfl!ub

2~f2fl!Pbub2efuc

2~12f !Pcuc . ~21!

Using Eq. ~20!, we plot the entropy for two isotherms
~Fig. 5!. For T50.6, there is no density anomaly @Fig. 5~a!#
and hence no entropy anomaly. For T50.5, there is a density
anomaly and hence an entropy anomaly; Fig. 5~b! shows this
anomalous increase of S as a function of P.

FIG. 4. The loci of the two density extrema (TMD and TmD! and
the two KT extrema (KT

max and KT
min) for the discrete potential of

Fig. 1; ~a! with the same parameter values and units as Fig. 2~a!, so
Pup52.5 and P low'0; the locus of KT extrema has two ‘‘loops,’’
one connected to the point C8(T50,P5Pup) and the second to the
point C(T50,P50), and ~b! with the same parameter values and
units as Fig. 2~b!, for which Pup55 and P low'3.3; the two
‘‘loops’’ now join.

FIG. 5. ~a! The region of the P-T plane where the density and
entropy are anomalous ~gray!, from Fig. 4~a!. ~b! The behavior of
the entropy along two different isotherms. The T50.5 isotherm
intersects the anomalous region and shows the maximum and mini-
mum marked in both figures by the closed circles. The T50.6 iso-
therm is outside the anomalous region and does not show any
anomaly.
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VII. ANALOGIES WITH THE ISING MODEL

A. First critical point

The gas-liquid first-order transition line ending at a criti-
cal point which is present in higher dimensions shrinks to the
point C[(T50,P50) for a 1D fluid in which the particles
interact with an attractive potential. This point C is the rem-
nant of what is a critical point in higher dimensions: for
example, KT diverges for T→0,

KT;1/T ~T→0,P50 !, ~22!

analogous to the divergence of the magnetic susceptibility xT
along the zero field line H50 for the 1D Ising model,

xT;1/T ~T→0,H50 !. ~23!

The constant-pressure specific heat CP[T(]S/]T)P is ob-
tained from Eq. ~20!, with the result

CP

NkB
5

3

2
1b2F 1

C~T ,P !

]2C~T ,P !

]b2

2S 1

C~T ,P !

]C~T ,P !

]b D 2G . ~24!

For small P and T, the specific heat has the form

CP;a01a2~bP !2, ~25!

the analog of the Ising case for small H and T @27#,

CH;a01a2~bH !2. ~26!

These features are common to model 1D fluids with attrac-
tive potentials.

B. Second critical point

Next we will discuss the ‘‘remnant’’ of a second critical
point for our core-softened model. In addition to the diver-
gence along the P50 isobar, we find a divergence along the
P5Pup isobar ~Fig. 3!,

KT;
1

T
@T→0,P5Pup# . ~27!

We also observe from Eq. ~13! and Fig. 2 that there is a
discontinuity in the order parameter v when crossing C8(P
5Pup ,T50) along the T50 axis; this is the analog of what
happens to the magnetization when crossing the H50 point
along the T50 axis for the Ising model.

Next we consider CP . Taking the limit T→0 of Eq. ~24!
and defining H[uP2Pupu, we find

CP5

3

2
1

wA2

~11w !2
~bH !2, ~28!

where we have introduced the parameters A[b2a and w
[exp(2bAH). Equation ~28! is the analog of CH for the
Ising model. Figure 6 shows the anomalous behavior of CP
as a function of T along different isobars.

It is interesting to note that simulations of water using the
ST2 potential display a compressibility anomaly due to the
presence of a second critical point in the metastable region of
the liquid @22,28#, and a line of KT maxima originates from
this second critical point.

VIII. INTERPRETATION IN TERMS OF TWO LOCAL
STRUCTURES

The density and compressibility anomalies can be related
to the interplay between two local structures: an open struc-
ture in which the nearest-neighbor particles are typically at a
distance b, and a denser structure in which the nearest neigh-
bors penetrate into the softened core and are typically at a
smaller distance a. The favored local structure is determined
by the Gibbs potential per particle,

g~T ,P !5min
v

$u1Pv2Ts%, ~29!

which is shown in Fig. 7 as a function of the volume per
particle at T50 for two different values of P. For P,Pup
and T50, the minimum corresponds to the ‘‘open struc-
ture’’ with r'b . Increasing P increases the value of u
1Pv2Ts for the open structure ~Fig. 7!. For P.Pup , the
minimum corresponds to the ‘‘dense structure’’ with r'a .

FIG. 6. Constant-pressure specific heat for the same parameter
values and units as Fig. 2~a!, along different isobars, P52.75Pup

10.2 and P52.35Pup20.2. Near T50, the two curves coincide,
as predicted by Eq. ~28!, since the values of H5uP2Pupu are iden-
tical.

FIG. 7. Schematic plot of the function u1Pv2Ts at T50 for
the core-softened potential of Fig. 1, in arbitrary units equivalent to
that of Fig. 1. The equilibrium value of v(P) is determined as the
absolute minimum, which is located at v5b for P1,Pup and at v
5a for P2.Pup .
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The value of Pup of Eq. ~12! can also be found by equat-
ing u1Pv2Ts ~at T50) for the two local minima, which
results in

Pup52~uopen2udense!/~vopen2vdense!. ~30!

Substituting uopen52e ,udense52le ,vopen5b ,vdense5a re-
sults in the same expression as Eq. ~12!.

For higher dimensions, Eq. ~30! helps to estimate the
pressure region in which a transition between a dense and an
open structure could happen. For d51, the contribution of
the Ts term makes the double-well structure of Fig. 4 disap-
pear when T.0. This may not be true in higher dimensions.
If we assume that the qualitative shape for d.1 changes
little from the d51 case, then for d.1 there can exist a
first-order transition line for small T, eventually terminating
in a critical point C8.

IX. SUMMARY

We used a 1D core-softened potential, which mimics the
effect of hydrogen bonding, to develop a physical picture for
some of the anomalies present in liquid water. We discussed
the relation between the shape of the potential and the
anomalies in density and entropy and their associated re-
sponse functions KT and CP . The form of the potential leads
to the existence at T50 of a low-density phase ~favored at
low pressures! and of a high-density phase ~favored at high
pressures!, and to the appearance of a point C8 at a positive
pressure, which is the analog of the T50 ‘‘critical point’’ in
the 1D Ising model.
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APPENDIX A: DERIVATION OF THE FREE ENERGY
FOR THE 1D CORE-SOFTENED MODEL

We start from the general definition of the partition func-
tion

Z~T ,P ![
1

~DV !N!hNE0

`

dVe2bPV

3E dNpdNxe2bH(p1 , . . . ,pN ,x1 , . . . ,xN),

~A1!

where N is the number of particles, V is the 1D system size,
x i and p i are the position and momentum of particle i, re-
spectively, and H(p1 , . . . ,pN ,x1 , . . . ,xN) is the Hamil-
tonian of the system. DV is a discretization factor for V,
which is needed for keeping Z dimensionless and does not
enter any equation of state. The Hamiltonian can be parti-
tioned into its kinetic and potential parts,

H~p1 , . . . ,pN ,x1 , . . . ,xN![(
i51

N p i
2

2m
1U~x1 , . . . ,xN!.

~A2!

One can separate Eq. ~A1! into a momentum and a configu-
rational integral, where the momentum part is

Zp~T ![
1

hNE dNp expS 2b(
i51

N p i
2

2m D . ~A3!

This integral can be written as the product of N integrals over
momenta, and then using the Gaussian integral formula @29#
we find

Zp~T !5

1

hN S E
2`

`

dp exp~2bp2/2m ! D N

5@L~T !#2N,

~A4!

where L(T), which has the dimension of length, is the
temperature-dependent De Broglie wavelength L(T)
[h/A2pmkBT . Thus the partition function takes the form

Z~T ,P !5

1

~DV !N!L~T !N

3E
0

`

dVe2bPVE dNxe2bU(x1 , . . . ,xN). ~A5!

In order to take further steps, we use the fact that the
range of interaction is less than twice the hard core (c
,2a). As a result, one can think of the particles in the 1D
system as a chain, in which each particle interacts only with
its two nearest neighbors. Thus for each arrangement of the
particles, we can write the interaction potential U as the sum
of N21 terms,

U~x1 , . . . ,xN!5U~xN2xN21!1U~xN212xN22!1•••

1U~x22x1!. ~A6!

Using Eq. ~A6!, we rewrite Eq. ~A5! as

Z~T ,P !5

1

~DV !L~T !NE0

`

dVe2bPVE
0

V

dxNE
0

xN
dxN21

3E~xN2xN21!3E
0

xN21
dxN22

3E~xN212xN22!•••E
0

x2
dx1E~x22x1!,

~A7!

where E is defined as

E~x ![e2bU(x). ~A8!

In Eq. ~A7! we have used the symmetry of Z under permu-
tation of the particles and thus have written Eq. ~A7! only for
a specific order of particles, in which x1,x2,•••,xN . All
other permutations are equivalent to this integral, after re-
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numbering the particles. This results in a permutation factor
N! which has canceled the N! factor in the denominator. We
rewrite Eq. ~A7! as

Z~T ,P !5

1

~DV !L~T !NE0

`

dVe2bPVFN~V !, ~A9!

where we have introduced the function F i(x), defined recur-
sively as

FN~V ![E
0

V

dxNFN21~xN!5~1*FN21!~V !, ~A10!

F i~x i11![E
0

x i11
dx iE~x i112x i!F i21~x i!

5~E*F i21!~x i11!, ~A11!

F0~x1![1. ~A12!

The star operator * represents the binary convolution func-
tional defined as

~ f *g !~x ![E
0

x

dy f ~x2y !g~y !. ~A13!

We further use the notation L@ f # for the Laplace transforma-
tion functional, which is defined as

L@ f #~z ![E
0

`

e2zx f ~x !, ~A14!

to find the following simple form for the partition function:

Z~T ,P !5

1

~DV !L~T !N
L@FN#~bP !. ~A15!

Note that according to Eqs. ~A10!, ~A12!, and ~A15!,

~A16!

Next we use the convolution theorem, which states that the
Laplace transform of the convolution is equal to the product
of the Laplace transforms of each function @29#,

L@ f *g#~z !5L@ f #~z !3L@g#~z !, ~A17!

and also the formula for the Laplace transform of a constant
function @29#,

L@c#~z !5

c

z
, ~A18!

to obtain

Z~T ,P !5

1

~DV !L~T !N~bP !2
@V~T ,P !#N21. ~A19!

Here V(T ,P) is defined in Eq. ~4!.

APPENDIX B: LOW-T LIMIT

In order to derive properties of the free energy at low
temperature approaching the point C8(T50,P5Pup), we
note that in Eq. ~7! as T→0, for small P, the fub term
dominates, while for large P the flua dominates. In order to
find the limit of C(T ,P) and its derivatives, we note that

flua

fub
5exp$b@P~b2a !2~12l !e#%. ~B1!

The value of P where the fub term balances the flua term
follows equating the argument of the exponential to zero in

Eq. ~B1!. The result for Pup is given in Eq. ~12!. Using Eqs.
~12! and ~B1!, Eq. ~7! becomes

C~T ,P !;faux$11exp@2b~b2a !uP2Pupu#%, ~B2!

where

a51, ux5ub ~P,Pup!,
~B3!

a5l , ux5ua ~P.Pup!.

For ]C(T ,P)/]P we use Eq. ~B2! and ]ux /]P52bxux to
find

]C~T ,P !

]P
;2~bx !C~T ,P !, ~B4!

where x5b for b,Pup and x5a for b.Pup . Using Eqs.
~B3!, ~B2!, and ~B4! in Eq. ~9! leads to Eq. ~13!.

To find the scaling form of KT for T→0, we use the
equation for the second derivative of C(T ,P),

]2C~T ,P !

]P2
}~bx !2C~T ,P !. ~B5!

From Eq. ~16!, we find KT for any PÞPup to behave as

KT;~bvP2!21
5~P1bxP2!21 ~T→0,PÞPup!,

~B6!

which is consistent with Eq. ~18!.
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In order to derive the limiting expressions for the entropy
and specific heat, we must differentiate the free energy with
respect to b . We start by rewriting Eq. ~5! as

g~T ,P ![
G

N
5kBT ln~L/V !5kBTS 3

2
ln b2ln C~T ,P !

1ln P1constD . ~B7!

For C(T ,P) we rewrite Eq. ~B2! as

C~T ,P !;E~T ,P !3@11w~T ,P !# , T→0 ~B8!

with the definitions

E~T ,P ![exp@b~ea2Px !# , ~B9!

w~T ,P ![exp~2b !~b2a !uP2Pupu.

Using these definitions, we find

]C~T ,P !/]b}~ea2Px !E@11e~12T !# , ~B10!

]2C~T ,P !/]b2}~ea2Px !2E@11e~12T !2# .

Using the above equations and Eq. ~24!, we find

CP5

3

2
1b2~ea2Px !2S 11w~12t !2

11w
2

@11w~12t !#2

~11w !2 D ,

~B11!

whose leading term is Eq. ~28!.
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