
VOLUME 79, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 27 OCTOBER 1997

Dispersity-Driven Melting Transition in Two-Dimensional Solids
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We perform extensive simulations of 104 Lennard-Jones particles to study the effect of particle size
dispersity on the thermodynamic stability of two-dimensional solids. We find a novel phase diagram in
the dispersity-density parameter space. We observe that for large values of density there is a threshold
value of the size dispersity above which the solid melts to a liquid along a line of first order phase
transitions. For smaller values of density, our results are consistent with the presence of an intermediate
hexatic phase. Further, these findings support the possibility of a multicritical point in the dispersity-
density parameter space. [S0031-9007(97)04407-4]
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Recently there has been considerable interest in what
happens to the liquid-solid transition in a system if the
constituent particles are not all identical but have different
sizes. The question was first raised in the context of
colloidal solutions [1], and subsequently addressed for
other systems [2–5]. These studies focused mainly on the
effect of size dispersity D on the P-r equation of state,
where P and r denote pressure and density, respectively.
On increasing D from zero, the density discontinuity
at the transition decreases, eventually vanishing at a
critical value D ­ Dc above which there is no liquid-solid
density discontinuity. This remarkable phenomenon—
similar to the effect of temperature T on the conventional
liquid-gas phase transition [6]—occurs in both two and
three dimensions, and for various forms of interaction
potentials and size distributions [4].

These seminal studies leave some questions unan-
swered. First, What are the structures of the phases?
Second, Can one pass continuously from solid to liquid
“around the critical point” at Dc, just as one can pass con-
tinuously from liquid to gas around the critical point at
Tc? A “yes” answer would not be consistent with the
common picture of melting as a first order phase transi-
tion (which cannot have a critical point because of the
symmetry mismatch of the two phases [7]). A “no” an-
swer would lead to a natural third question: In the D-r
parameter space, what is the location and nature of the
phase boundary between crystalline and liquid phases?
The third question has not gone unnoticed—indeed,
Ref. [8] simulates a binary mixture of 108 “soft” disks,
and shows that upon increasing D the crystal undergoes a
transition to an amorphous solid at a threshold dispersity
Dth, suggesting that the transition is of first order. In this
Letter, we address all three questions. Our results sug-
gest that, in the D-r parameter space, CsDc, rcd is a mul-
ticritical point at the junction of the liquid, solid, and
hexatic phases. Above rc, solid-to-liquid melting takes
place through a first order phase transition, while below
rc the melting transition is continuous with the signature
of an intermediate hexatic phase.

Our system is comprised of N ­ 104 Lennard-Jones
particles of two different radii in a rectangular box of vol-
ume V and edges Lx and Ly , with periodic boundary con-
dition. With each particle i, we associate a size parameter
si , and define the distance scale for the interaction be-
tween particles i and j to be sij ; si 1 sj . We assign
to half of the particles the value si ­ s0s1 1 Dd, and to
the other half the value si ­ s0s1 2 Dd. If particles i
and j are at a distance rij smaller than a cutoff distance
rc, they interact via a “shifted-force Lennard-Jones” po-
tential [9] Fij ­ 4efssijyrijd12 2 ssijyrijd6g 1 fsrijd.
Here fsrijd is a linear function whose coefficients are cho-
sen such that Fij and its gradient, the force, vanish contin-
uously at rij ­ rc. Since Fij takes its minimum value at
rij ­ Rij ; 21y6 3 sij , we consider this equilibrium dis-
tance to be the sum of the radii of the two particles i and j,
Rij ­ Ri 1 Rj , so the radius of particle i is Ri ­ 21y6 3
si and the average radius is 21y6 3 s0.

We perform molecular dynamics (MD) simulations
using the velocity Verlet integrator method [9]. We
record the results in reduced units in which s0 is 0.5,
and the Lennard-Jones energy scale e, the particle mass,
and Boltzmann constant are all unity. In these units,
we choose rc ­ 2.5 and the length of each MD time
step dt ­ 0.01. Using the Berendsen rescaling method
[9], the system is first thermalized at T ­ 1 for a
period of length t, during which we make sure that it
comes to equilibrium at T . Then we run the system
for an additional period t as a constant NVE system
(microcanonical ensemble) where E is the total energy.
We continuously calculate P, T , and E, the potential
energy U and the total energy E, and we consider the
system to be in equilibrium only when the fluctuations of
all four quantities are less than 1% of their average values.
The thermalization time t is chosen to be more than the
time it takes for the system to equilibrate. t is typically
s5 3 104ddt to s2 3 105ddt.

We define the size dispersity by the ratio of the
standard deviation to the average value of the size
distribution [3], and this is D in our model. We define
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i­1 spR2
i dysLx 3 Lyd as the ratio of the total

area assigned to the disks to the system area. For
each value of D, we start by placing the 104 particles
randomly on the sites of a square lattice of edge L0 ø
150; higher density states are obtained by gradually
compressing the system by reducing L0. Typically, the
starting density is r ­ 0.85, and we increase r to
1.05 through approximately 10 20 intermediate densities,
equilibrating the system at each [10]. For a few state
points near the transition, we have checked our results
for a rectangular lattice with aspect ratio

p
3 y2 sLx ­

s
p

3 y2dLy , with Lx 3 Ly ; L2
0) which accommodates a

triangular lattice perfectly. This eliminates any possible
artificial hindrance in crystallization arising from the
asymmetry imposed by the shape of the square box.

We present our results for the state points with T ­ 1,
r ­ 0.90 1.05, and D ­ 0 0.12. At these densities, the
D ­ 0 system is a 2D solid with a triangular order, but
at large D the system becomes disordered and a liquid.
By probing the translational and orientational order, we
determine the phase of each state point and we locate the
transition between the two phases. To study translational
order, we calculate the total pair correlation function gsrd,
as well as the partial functions g11srd, g22srd and g12srd
[9]. Here gsrd is the probability distribution of finding
two particles at a distance r , and gijsrd is the same for
an si, jd pair (i ­ 1 stands for small and i ­ 2 for large
particles). We find that all three gijsrd display behavior
similar to gsrd, indicating that the system maintains its
substitutionally disordered configuration and does not tend
toward de-mixing [11].

In Fig. 1(a) we show the effect of tuning D on
translational order. We observe that the monodisperse
sD ­ 0d system shows the quasi-long-range translational
order expected for a 2D solid [12], characterized by
a power-law decay of the envelope of gsrd and the
persistence of the solid structure periodicity up to very
large distances. For D , Dthsrd, where Dthsrd is the
threshold value at fixed r, the solid maintains this quasi-

FIG. 1. Effect of D on translational and orientational order
at r ­ 1.0. (a) Total pair correlation function gsrd as a
function of distance r . All curves oscillate around the value
gsrd ­ 1, so we have separated them to facilitate comparison.
(b) Normalized orientational correlation function versus r .

long-range order, although the decay exponent appears to
increase somewhat with D. For D . Dthsrd, we observe
a qualitative change in the structure: The quasi-long-
range translational order disappears, and is replaced by
an exponential decay of the envelope of gsrd, which at
very long distances shows the uniform distribution of
a structureless liquid. We observe this behavior for all
densities between r ­ 0.96 and r ­ 1.05, and find that
0.09 , Dthsrd , 0.10 for all r.

Next we study the local bond orientational order by
calculating for each particle j the sixfold orientational
order parameter [13]

scdj ;
1

z

zX

k­0

ei6ujk . (1)

The sum runs over all z nearest neighbors k of j, and ujk

is the angle of the bond joining particles j and k with
respect to a fixed axis. We identify the nearest neighbors
as the particles that are closer than the location of the
first minimum of gsrd. The modulus of scdj will be
unity if the neighbors form a perfect hexagon around j,
which occurs for all particles in a triangular lattice, the
close-packed configuration of a 2D solid. For a distorted
hexagon or a different polygon, jscdjj , 1—e.g., for a
liquid, the distribution of jscdjj centers around 0.5 [14].

We define the continuous order parameter field csrd as
the value of scdj if the position of particle j is rj ­ r, and
we calculate the orientational correlation function [15]

g6sjr 2 r0jd ; kcsrdcsr0dl , (2)

where k· · ·l denotes an average over r, r0, and time.
Figure 1(b) shows that, if D is small and r is large,
the system displays the long-range orientational order
of a solid in that limr!` g6srd fi 0. Noteworthy is
that, for each value of r, orientational order disappears
upon a small increase in dispersity near Dthsrd. For
D . Dthsrd, g6srd appears to decay exponentially, which
identifies the system as a liquid. Most importantly,
this change in the behavior of g6srd is abrupt and
discontinuous and takes place in a small range of D. Few
runs within this range of D show either a solid phase or
the liquid phase. We do not see the signature of any other
phase with any power-law behavior. Similar plots for
other large values of r suggest that, near r ­ 1.0, there
is a first order phase transition from solid to liquid, driven
by an increase in D. This observation is in agreement
with the results of Ref. [8]. Figure 1 shows that the
small dispersity system has the ordered structure of a
solid while the large dispersity system has the disordered
structure of a liquid—providing an answer to the first of
the three questions.

Since identifying phases relies on the behavior of
the system in the thermodynamic limit, we apply finite
size scaling to the moments of the orientational order
parameter c , which is the average value of csrd. We
use standard techniques originally developed for the Ising
model [16], and recently applied to the 2D melting
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transition [17,18]. In order to calculate the moments of
c at a scale b ; L0yM, we divide the system into M2

rectangular blocks of edges bx and by (bx ­ LxyM, by ­

LyyM) and we define cb for each block as the absolute
value of the average of csrd over the block. Then we find
the moments of cb by averaging over all blocks and all
configurations of the system after equilibration.

To explore the precise location of the phase transition,
we calculate the cumulant [17]

Ub ; 1 2
kc4

bl

3kc2
bl2

. (3)

For a completely ordered (solid) system, Ub ­ 2y3 in
the thermodynamic limit while, for a disordered (liquid)
system, Ub ! 0. For an infinite system, Ub jumps
between these two limiting values at the phase transition
point, and, for finite systems, this jump becomes rounded.
Still, one can determine the location of a phase transition
by finding the point at which the Ub curves for different
system sizes intersect [17]. In Fig. 2, we plot Ub versus
D, for different scales b at a fixed r. We find the
transition from the value 2y3 to lower values upon passing
through the phase transition. Moreover, we estimate
Dthsrd from the crossing point of the curves. In the phase
diagram of Fig. 3, the line Lth is the locus of all such
threshold points separating solid and liquid phases, and
shows that, for r . 0.96, Dthsrd ø 0.097 is essentially
independent of r.

Next we study the finite size scaling of kc2
bl. Because

of the qualitative difference in the form of g6srd between
solid and liquid, the behavior of kc2

bl as a function of
b changes drastically upon melting [18]. In the liquid
for b ¿ j, where j is the correlation length, kc2

bl de-
cays as b22, while for the solid, kc2

bl remains constant.
Figure 4(a) shows that, for r ­ 1.0, the behavior of the
system changes abruptly from solid (given by the line
with zero slope) to liquid (slope 22) at Dth, which is con-

FIG. 2. Cumulant Ub of the bond orientational order
parameter c as a function of dispersity D for r ­ 1.0. Differ-
ent curves correspond to different scales b, where b ; L0yM
is the block size, so smaller M corresponds to larger scale.
The dotted lines connecting the data points are guides to the
eye. We identify the threshold value of D to be the point
where all the curves for different scales intersect.

sistent with our previous studies of gsrd, g6srd, and Ub .
The D ­ 0.10 liquid curve shows a long-range correlation
for b , j, which crosses over to a short-range correlation
for b ¿ j (j ø 0.6L0 for this curve). The correspond-
ing plots for larger D show that j shrinks upon increas-
ing D. For r ­ 0.9 [Fig. 4(b)], we observe both solid
behavior for D , 0.06 and liquid behavior for D . 0.06.
For D ­ 0.06, Fig. 4(b) shows an algebraic decay for the
correlation function, with exponent 21y4. This “interme-
diate” behavior is reminiscent of the hexatic phase [18],
for which the orientational correlation decays algebraically
while the system does not possess quasi-long-range trans-
lational order. The locus of the points showing this inter-
mediate behavior is shaded in Fig. 3.

In summary, we have studied a melting transi-
tion driven not by T but by D. We have simulated
relatively large systems and applied finite size scaling
(Figs. 2 and 4), arriving at a phase diagram for this
dispersity-driven melting (Fig. 3). Melting takes place
from a 2D ordered phase to a disordered liquid phase,
similar to the conventional temperature-driven melting
processes. Moreover, at large values of r, melting is a
first order phase transition at a threshold dispersity value
Dthsrd ­ 0.097 6 0.005. Our study of the mean square
displacement of the particles shows that this melting is
accompanied by a transition from a frozen solid to a
very slowly diffusive liquid, distinguishing it from the
glass transition observed in [8] in the region studied,
although the trend suggests the appearance of a glass
at densities higher than r ­ 1.05. The threshold line
Lth extends almost horizontally down to the point C
with coordinates Dc ø 0.097, rc ø 0.96. Below rc,
finite size scaling of the orientational order parameter
suggests the existence of an intermediate “hexatic”
phase between the solid and liquid phases in the re-
gion of parameter space depicted in Fig. 3. Thus we
hypothesize that point C is a multicritical point,

FIG. 3. Phase diagram in the D-r (dispersity-density)
parameter space. Squares represent solid points and circles
represent liquid points. The threshold line Lth connects the
crosses, which are the first order phase transition points derived
from the cumulant analysis. The triangles are the points of the
intermediate phase (shaded), showing a hexatic behavior. The
large diamond marks the multicritical point C.
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FIG. 4. Log-log plots of kc2
bl versus b for different dispersi-

ties D and for (a) r ­ 1.0 and (b) r ­ 0.9. Both axes are
normalized by their values at system size L0, which causes
the curves to meet at the origin and facilitates comparing their
asymptotic slopes. The dashed lines connecting the data points
are guides to the eye. The solid straight lines are reference
lines with slopes 22 and 21y4.

where two lines of continuous transitions (separating
liquidyhexatic and hexaticysolid phases) meet the line of
first order transitions Lth (separating liquidysolid phases)
as shown in Fig. 3 [19]. Figure 3 provides an answer
to the last two of the three questions: one cannot pass
continuously from solid to liquid around the critical point
C, because the two phases are separated by the line of
first order phase transitions Lth. Although our study is
based on the bidisperse distribution of particle sizes, we
believe our observations will be equally valid for other
forms of distribution as well [4]. It is worth mentioning
that a similar horizontal line of order-disorder transition
has been observed in the study of the effect of quenched
impurities on the structure of 2D solids [20].
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