
Comment on ‘‘Dynamic Opinion Model and Invasion
Percolation’’

In [1], Shao et al. claim, based on low statistics simula-
tions, that a model with majority rule coarsening exhibits
in d ¼ 2 a percolation transition in the universality class of
invasion percolation with trapping (IPT). They report also
that the system reaches its final state rapidly with no
diverging time scale. Since the original configurations are
random and thus in the ordinary percolation (OP) univer-
sality class, it seems unlikely that long range correlations
could develop in a finite time that would change this.
Indeed, it was proved rigorously [2] that similar 2D models
(called ‘‘dependent percolation’’ in [2]) belong to the OP
universality class.

Here, we present high statistics (up to L ¼ 214, >104

realizations) on L" L square lattices and confirm that the
phase transition is in the OP universality class, thus refut-
ing a central tenet of [1]. Initially, each site i is randomly
assigned one of two opinions (or spins): !i ¼ þ1, with
probability f; otherwise, !i ¼ $1. At each time step, all
sites are updated in parallel. If at least three of their four
neighbors disagree with them, they change their opinion;
otherwise, they keep it. As noted in [1], this leads quickly
[within Oð10Þ time steps] to a static state, except for sites
that flip permanently with period 2. The critical probability
fc where a ‘‘þ1’’ cluster percolates depends slightly
on how these flicker sites are treated (we treat them as
‘‘þ,’’ if !i ¼ þ1 at even times), but the universal proper-
ties do not.

We first determine fc by measuring the chance that a
cluster in the final state percolates through lattices with
open boundary conditions. Using finite size scaling [3], we
obtain fc ¼ 0:506 425ð20Þ, in agreement with the less
precise estimate of [1]. After that, we measure the distri-
bution of cluster sizes with ! ¼ þ1 in final states obtained
with helical boundary conditions for f ' fc. Figure 1
confirms the above estimate of fc and shows that the
data are excellently described by a power law PðsÞ ( s$"

with the OP critical exponent " ¼ 187=91 ' 2:055, ruling
out the IPT exponent " ' 1:89. We see also deviations
from this power law at small masses s, as small clusters
are eliminated by the coarsening. This, together with using
open boundary conditions and neglecting finite size cor-
rections, explains why " was underestimated in [1]. A data
collapse of the right-hand side peaks in Fig. 1 gives Df ¼
1:895ð15Þ as for OP, but in disagreement with IPT. Notice
that the exponents obtained in [1] strongly violate the
hyperscaling relation " ¼ d=Df þ 1.

Shao et al. claim that IPT is relevant because local
clusters get trapped. The difference between OP and IPT
is that clusters can grow both outwards and inwards (into
empty holes) in OP, while they can only grow outward in
IPT. In this respect, the model of [1] is exactly as OP.

We also simulated the process on random Erdös-Renyi
networks. For small average degrees, we confirm the claim
of [1] that the percolation transition is in the OP class. But
for large average degrees we find an unexpected first-order
transition [4].
As a model for opinion dynamics, the model is of limited

interest, since the dynamics leaves essentially unchanged
all large clusters present in the initial state—except for
clusters with hubs, in the case of scale-free networks,
which immediately adopt the majority opinion.
We thank a referee for pointing out the violation of

hyperscaling in [1].
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FIG. 1 (color online). Probability distribution of cluster sizes
at f ¼ 0:506 425 for different L on a log-log scale. The straight
lines represent power laws with exponent " ¼ 2:055 (dashed red
line) and " ¼ 1:89 (dotted green line), corresponding to OP and
IPT, respectively. Inset: data for L ¼ 4096 at different values of
f, after multiplication with s2:055. Small changes of f give rise to
deviations from power law behavior. At our estimate of fc
obtained independently from the spanning probability, power
law scaling with the OP exponent " ¼ 2:055 extends over 3
orders of magnitude.
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