PHYSICAL REVIEW A

VOLUME 40, NUMBER 5

Inhomogeneous diffusion-limited aggregation

Robin Blumberg Selinger
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
and Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Johann Nittmann

Digital Equipment Corporation, Campus-based Engineering Center, 7 Favoritenstrasse 7, 1040 Vienna, Austria

H. E. Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 19 September 1988)

In order to simulate viscous fingering in a porous medium with inhomogeneous permeability, we
make use of a generalization of the diffusion-limited aggregation (DLA) model. In this generalized
DLA, the randomly diffusing particles have transition probabilities which depend on the local per-
meability values of the underlying medium. This method is applied to the simulation of unstable
two-fluid displacement in two-dimensional disordered pore-pipe networks. We show that the model
may only be used to simulate flow in media which have inhomogeneous permeability and homo-
geneous porosity. We explore the combined effects of two types of noise: noise in the growth pro-
cess, and disorder in the permeability of the medium; we find a morphology phase diagram which
shows that both types of noise strongly affect morphology selection. In addition, we perform an
analysis of DLA with noise reduction and find that the magnitude of interface velocity fluctuations
is proportional to 1/V’s, where s is the noise-reduction parameter. We show that these fluctuations
are “multiplicative” in character and vanish in the large-noise-reduction limit. Finally, we address
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the potential application of this model to petroleum reservoir simulation.

I. INTRODUCTION

The phenomenon of viscous fingering in porous
media' ™7 has received much attention because it is relat-
ed to the class of fractal growth processes that includes
dielectric breakdown,® dendritic crystal growth,9 and
diffusion-limited aggregation (DLA).'° Viscous fingering
is also of practical interest because it is involved in
enhanced oil recovery. Paterson'! first proposed that
DLA may be used to model two-fluid displacement if the
driving fluid is inviscid, the displaced fluid is Newtonian,
and wetting effects and surface tension are negligible. In
this work we address the problem of flow under these
conditions in an inhomogeneous medium, neglecting the
effects of dispersion.

Paterson'? also showed that two-fluid displacement in a
porous medium with inhomogeneous permeability may be
modeled by DLA if the lattice constant in the DLA sys-
tem is taken to be proportional to the local permeability.
This variant of DLA works only for geometries in which
the permeability varies by blocks or layers, but it does not
work if the permeability is disordered. If the permeabili-
ties of the bonds in a two-dimensional square network are
chosen randomly, the corresponding lattice with random
lattice constants does not generally lie in the plane.
Thus, Paterson’s variant of DLA cannot be used for
simulating viscous fingering in disordered systems.

Meakin! introduced a generalization of DLA in which
an incident diffusing particle has transition probabilities
which depend on the local permeabilities. We refer to
this model as inhomogeneous diffusion-limited aggrega-
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tion, or IDLA. Siddiqui and Sahimi'® considered IDLA
independently and applied it to the simulation of two-
fluid displacement in two-dimensional inhomogeneous
porous media. Here we explore the details of the map-
ping between IDLA and the fluid-flow problem, and in-
troduce a coarse-graining step that dramatically increases
the computational efficiency of the IDLA model. We
also investigate the effects of “noise reduction”!*~!" on
DLA in general, and study the interaction between noise
in the IDLA growth process and disorder in the medium.
We hope that this interaction may share at least some
characteristics with the interaction between the two types
of noise that are important in viscous fingering: fluctua-
tions at the unstable fluid boundary and disorder in the
permeability of the porous medium. In addition, we find
that the magnitude of interface velocity fluctuations is
proportional to 1/V's, where s is the noise-reduction pa-
rameter. We show that these fluctuations are “multipli-
cative” in character and vanish in the large noise-
reduction limit.

It should be noted that the IDLA model is closely re-
lated to the dielectric breakdown model (DBM),® where
the permeability may be interpreted as a local dc conduc-
tivity. Because the IDLA model does not require the re-
peated solution of the governing equations, it is more
efficient computationally than DBM. Nittmann and
Stanley'® simulated viscous fingering in a medium with
permeability that varied in a layered fashion by using the
DBM.

Oxaal et al. and others® have also used the DBM to
study viscous fingering in one special type of porous
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medium, a percolation cluster. In such a medium, a frac-
tion p,. of the medium has permeability k =1, while the
remaining fraction 1 —p, has permeability kK =0. Regions
of the two permeabilities are distributed randomly. Here,
p. is the percolation threshold for the lattice under con-
sideration. In the present work, we consider a more gen-
eral case, in which the permeabilities of the bonds in the
entire network take on arbitrary values, and fluid flow is
not restricted to a percolation cluster. Sahimi and Siddi-
qui’ simulated miscible viscous fingering on percolation
clusters in which the channels of the clusters have ran-
domly distributed radii and pointed out that there may be
important differences between the DLA model and misci-
ble viscous fingering in inhomogeneous media. In the
present work we demonstrate that the DLA model can
only be mapped onto viscous fingering in a medium with
inhomogeneous permeability and homogeneous porosity.
A pore-pipe network is an example of such a medium, as
shown below. Because Sahimi and Siddiqui compared
DLA with a simulation of viscous fingering in a network
of pipes, which has inhomogeneous porosity, our finding
perhaps explains the discrepancies they found between
the two.

In the next section we address the detailed mapping be-
tween the IDLA model and fluid flow in porous media,
and introduce a coarse-graining step. This coarse grain-
ing increases the computational efficiency of the algo-
rithm by allowing walkers to take large steps when far
from the cluster. In Sec. III we discuss the experiments
and simulations of Chen and Wilkinson® on a disordered
network of capillaries. In Sec. IV we present an analysis
of the effects of noise reduction on DLA, or on any other
growth process in general, and explore the combined
effects of noise in the DLA growth process and disorder
in the medium. In Sec. V we summarize our results, and
discuss the possibility of adapting a DLA-based model
further for use in simulating fluid flow in a petroleum
reservoir. In the Appendix we present a more detailed
analysis of the mapping between IDLA and flow in disor-
dered porous media.

II. THE IDLA MODEL
AND THE IDEALIZED POROUS MEDIUM

Consider an idealized porous medium consisting of a
square lattice of pores of uniform volume, connected by
narrow cylindrical channels, or pipes. The pipes are of
uniform length L, but their radii vary in size, as shown in
Fig. 1. We assume that the volume of the pipes is negligi-
ble compared to that of the pores. In a pipe of radius r,
incompressible viscous fluid flows according to the
Poiseuille law,

77'}‘4

Q=— VP . 2.1)
8

Here, Q is the volume flow rate, u the viscosity, and VP
is the pressure gradient along the pipe. If incompressible
fluid is flowing through the medium, then

V-Q=0. (2.2)
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FIG. 1. An example of a pore-pipe network.
Substituting (2.1) into (2.2) produces
V-(KVP)=0, (2.3)
where the conductance K has the form
4
k=1 2.4)
8

In our discretized description, P is defined on the pore
sites, which are at the vertices of the lattice, while K is
defined on the pipes, which are the bonds of the lattice.
We take continuum differential operators to represent
their discretized analogs.

Darcy’s law states that

v=—kVP, (2.5a)

where v is fluid velocity and k is permeability, also
defined on the bonds of the lattice. For flow in a cylindri-
cal pipe, v=Q/mr2~r2VP and thus k ~r>.

However, in the case of the pipe and pore network as
described above, the magnitude of the effective fluid ve-
locity v is

v=Qa/V, (2.5b)

where a is the lattice spacing between pores and V is the
uniform volume of each pore. That is, the velocity is pro-
portional to the flow rate, and thus the effective permea-
bility of the medium is k ~r* Note that according to
Eq. (2.4) the conductance K ~r* also. This proportional-
ity between k and K is necessary in order to map the
fluid-flow problem onto the IDLA model. That is, the K
in Eq. (2.3) must be proportional to the k in Darcy’s law,
Eq. (2.5a), and this is only possible if the fluid velocity is
proportional to the flow rate. For many systems, there is
no such equivalence, e.g., a system of pipes without
pores, for which v=Q /7r? and thus K ~r* and k ~r2
For such a system, there is no simple map onto a DLA-
based model. Thus, the IDLA model is applicable to
two-fluid displacement only in media such as the pipe-
pore network; that is, media which have constant porosi-
ty and inhomogeneous permeability.

This important detail of the mapping between IDLA
and fluid flow in porous media perhaps explains the
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disagreement found by Sahimi and Siddiqui’ between the
fractal dimension of DLA on a percolation cluster and
that of simulated viscous fingering patterns in a porous
medium which consists of a percolation cluster in which
the channels of the cluster have randomly distributed ra-
dii. Since there is no mapping between the two systems,
there is no reason for the fractal dimensions to be the
same.

Now consider a viscous fingering experiment with
infinite viscosity ratio and no surface tension. At the
outset, the entire pipe and pore network is filled with
viscous fluid. The inviscid (£ =0) fluid is then injected at
one pore site. Within the injected fluid, the pressure P is
constant, while the pressure in the displaced fluid obeys
Eq. (2.3). In the absence of surface tension, the interface
between the fluids is at constant pressure. Boundary con-
ditions at the edge of the pore-pipe system are, (i) for an
open boundary, P=P, . neres and (i) for a closed
boundary, VP-n=0, where n is the unit normal to the
boundary.

The fluid interface proceeds according to Eq. (2.5a),
with the normal velocity

v,=—kVP-n . (2.6)

In the case of a homogeneous system, where all pipes
have the same radius, Eq. (2.3) reduces to the Laplace
equation

viP=0. 2.7)

The pressure in a smooth Hele-Shaw cell also obeys Eq.
(2.7).

Now we turn to the mapping between viscous fingering
and DLA. The DLA model begins with a *“seed” cluster
of one particle placed at the center of a circle. Another
particle is released from a randomly chosen location on
the circle and performs a random walk. If it returns to
the circle, the particle is destroyed. If it arrives at the
cluster, it sticks at the point of contact and becomes part
of the cluster. In either case, another particle is then
released from a newly chosen random position on the cir-
cle. In this way the cluster grows as particles aggregate
one by one.

The analogy between viscous fingering in smooth
Hele-Shaw cells and DLA was first pointed out by Pater-
son,'' who showed that Eq. (2.7) is identical to the
diffusion equation for random walkers in steady state,

Viu=0. (2.8)

Here, u is the particle probability density, and it plays the
role of pressure. The probability p,;, that a particle will
hit the cluster at a given point along its perimeter is

Phii~VPn . (2.9
This equation is analogous to that for the finger interface
normal velocity, Eq. (2.6). A discussion of this analogy is
given in the Appendix.

To find a generalization of DLA which models flow in
inhomogeneous media, it is necessary to find a random-
walk process which yields a diffusion equation in steady
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state identical in form to (2.3). One such randon-walk
process is a generalized form of the “blind ant” walk.'®
For simplicity, we begin by discussing a one-dimensional
system; the extension to two or more dimensions is
straightforward. Consider a one-dimensional lattice of
sites connected by bonds, where k; is the permeability of
bond i (see Fig. 2). We may consider any set of values of
k; that we wish. In order to study a disordered medium,
one might choose the values of the k; randomly accord-
ing to some probability distribution. In order to choose
an appropriate time unit, the k; are normalized such that
0=k; =1/z, where z is the coordination number of the
lattice. The walk process is discretized in both time and
space. Let w;; be the probability per unit time for a
walker at site i to step to site j. The generalized blind ant
rules are

;i +1=k; ,

@1 =ki—y, (2.10)
and

o, =1—k;—k;,_,.

That is, the random walker is biased toward high-
permeability bonds, and the probability to step along a
bond is equal to the permeability of that bond. The nor-
malization of the k; ensures that the probabilities are
non-negative.
From (2.10), the discrete diffusion equation for this
walk process is
u(i, t+D)=uli+1, )k;+uli—1, )k; _,
Fuli,t)(1—k;—k;_,) . (2.11)

Here u(i,t) is the probability density of a diffusing parti-
cle. Equation (2.11) may be rearranged as follows:

uli, t+D)—uli,t)=[uli+1,t)—(i,t)]k;
—lui, ) —uli—1, 01k _, ,

(2.12)
which is a discretized form of
du _ d |, d
dt dx |“ax"|" (2.13)

If these rules are generalized to two or three dimensions,
then the diffusion equation becomes

du _

dt =V-(kVu), (2.14)

[
<

i ]
[ ]
[

FIG. 2. The one-dimensional system of sites connected by
bonds, where k; is the permeability of the bond between sites i
and /i +1.
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which in steady state reduces to (2.3). Thus, to simulate
flow in a medium with spatially varying permeability, it is
sufficient to carry out a DLA simulation where the
diffusing particles obey the generalized blind ant rules.
That is, in IDLA we begin by assigning a permeability to
every bond in a lattice according to any rule we wish.
Then we place a one-site seed cluster in the center of a
large circle on the lattice. A random walker is released at
a randomly chosen position on the circle and diffuses ac-
cording to the rule that the transition probability from
one site to another is equal to the normalized permeabili-
ty of the bond between. If the walker returns to the cir-
cle, it is destroyed and a new walker is launched from a
new random location on the circle. If a walker reaches
the cluster, it sticks at the point of arrival and a new
walker is launched from a new random location on the
circle. These rules define the IDLA model. A more com-
plete discussion of the mapping between IDLA and the
fluid-flow problem is given in the Appendix.

We introduce two important alterations to the IDLA
model which greatly increase its efficiency. First, we
change the transition probabilities slightly in order to ac-
celerate each walker’s progress along its trajectory. Ac-
cording to the generalized blind ant rules, a walker can
be temporarily trapped in any area of very low permeabil-
ity, as it can wait at the same site for many time steps.
Because the only important attribute of each walker’s tra-
jectory is its endpoint, it is possible to speed up the deter-
mination of the trajectory by setting the probability for a
walker to stay at the same site to 0, and then normalizing
the probabilities to step to the neighbor sites. Thus walk-
ers move more efficiently through low-permeability areas.
Referring again to Fig. 2 for the one-dimensional case, we
see that the accelerated rule is

_ kK
Dii+1— kK +k
and (2.15)
ki
ki +k;

Wij—1—

This set of rules corresponds to a generalized myopic ant
walk.!® The generalization to two dimensions is straight-
forward: the transition probability from site i to site j is
equal to the permeability of the bond between, divided by
the sum of the permeabilities of the four bonds touching
site i. Using these accelerated transition probabilities is
not an approximation, but simply a convenient way to in-
crease the efficiency of the simulation. (Note: the bound-
ary condition at the outer circle implies that a walker’s
first step from the boundary must be made according to
the original rule, not the accelerated rule, as it has a finite
probability of staying on the circle and thus being des-
troyed.)

The second alteration to the model to increase its
efficiency is a coarse graining of the permeabilities. This
approximation makes it possible for random walkers to
take steps of a size larger than the lattice constant. Such
a coarse graining is only appropriate if the underlying
permeabilities do not have any special spatial correlations

which might be destroyed by a coarse graining. We begin
with a realization of an n X n square lattice of bonds. The
permeability of each bond is assigned by a rule of our
choice. Now we cut the lattice into (m Xm)-sized
squares, where m is much smaller than n. We numerical-
ly solve Eq. (2.3) on each m Xm square with P=1 on the
top boundary, P=0 on the bottom boundary, and
VP-n=0 on the side boundaries. The current kVP is
summed along the top boundary of each square, and this
current is taken to be the permeability of a vertical bond
in the (n/m)X(n/m) coarse-grained permeability lat-
tice. Thus each m Xm square is reduced to a single verti-
cal bond in the coarse lattice. The original lattice is again
partitioned into m X m squares (displaced by m /2 to the
right from the first set) and the process is repeated, ex-
cept that the boundary conditions are rotated by 90°, so
that horizontal permeabilities are calculated. The dis-
placement of the second partitioning to the right ensures
that the horizontal bonds join with the vertical bonds to
form a square lattice of coarse-grained permeabilities.

With this coarse graining, each walker is released at
the outer circle and walks according to the usual IDLA
rules on the coarse lattice, thus making steps of length m
lattice constants. When it comes to a site near—within
3m lattice constants—to any cluster site, then it switches
to walking on the original lattice, starting at a randomly
chosen position in the m X m square enclosing the coarse
lattice site. If it returns to a region far from any cluster
site, then it returns to walking on the coarse lattice.

This technique tremendously increases the efficiency of
the IDLA algorithm and thus allows us to produce clus-
ters of 10 000-20 000 particles in 5—10 min of IBM 3090
CPU time. However, there is the danger that the approx-
imation will wash out some important details of the medi-
um, as some paths through the permeability lattice are al-
ways neglected in the coarse graining. In this work we
have mostly studied lattices of size approximately
500X 500 partitioned into 10X 10 units, such that the
coarse lattice is of size 50X50. No differences were
found between clusters made with and without the
coarse-graining procedure at this level. If the coarse-
graining length were too large, then the medium would
appear to be uniform regardless of the permeability
configuration.

In “DBM”-type boundary conditions, a random walk-
er must step onto a cluster site before ‘“‘sticking” to the
aggregate. Kadanoff'® concluded that DBM-type bound-
ary conditions® are better suited to simulations of viscous
fingering than DLA-type boundary conditions.!® This is
the boundary condition used in all the simulations
presented here.

To demonstrate that IDLA is equivalent to the related
models discussed above, we have generated clusters under
conditions similar to those in the references for compar-
ison, and find good agreement. One example of an IDLA
simulation carried out in the quarter-five-spot geometry
considered by Paterson'? is shown in Fig. 3. The middle
section has a permeability half that of the surrounding
area. Comparison with Fig. 5 of Ref. 12 shows that the
IDLA model appears to be equivalent to Paterson’s vari-
ant of DLA for this simple geometry.
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FIG. 3. An IDLA simulation with no noise reduction (s =1)
for a two-dimensional 390X 390 square lattice in the quarter-
five-spot geometry. The inner region has permeability half that
of the outer region. This figure may be compared with Fig. 5 of
Ref. 12. The cluster perimeter shown here corresponds to the
boundary of filled pores in a pipe-pore network.

III. VISCOUS FINGERING IN TWO-DIMENSIONAL
DISORDERED PIPE NETWORKS

Chen and Wilkinson® (CW) studied viscous fingering in
two-dimensional disordered pipe networks both experi-
mentally and theoretically. In their simulations, they
treat a system consisting of a square lattice of cylindrical
pipes with fixed length L, but with radii r distributed uni-
formly in the interval [1—A, 1+A]. Here, L >>1+A and
0=A=1. The adjustable parameter A controls the disor-
der of the network: A =0 corresponds to a homogeneous
system, while A >0 corresponds to an inhomogeneous
system.

In their experiments, CW found a transition from a
dendritic morphology for small A to a more DLA-like
morphology for large A. While the pipe network studied
by CW is not identical to the pipe-pore system modeled
by IDLA, it seems likely that they will at least share
qualitative features.

Siddiqui'® simulated IDLA on such a system without
noting that the mapping to the CW system was not exact.
Because of the lack of a coarse-graining step, the simula-
tions were limited to a few clusters on a relatively small
grid of size 100X 100. Here we repeat Siddiqui’s simula-
tions on a much larger grid of size 490X 490 and investi-
gate the effects of noise reduction in some detail.

The model CW presented to simulate flow in a pipe
network is basically deterministic: for any particular
configuration of the radii in the network and initial con-
ditions for the position of fluid-fluid interface, the model
predicts a unique viscous fingering pattern. In the CW
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model, the pipe network is initially filled with viscous
fluid, with an inviscid fluid entering at one vertex. The
initial position of the fluid-fluid interface within the
neighboring pipes is chosen randomly. The pressure is
fixed at Py, inside the invading fluid. The circumfer-
ence of the circular cell is held at P=0. The equation for
the pressure, (2.3), is solved numerically. The fluid-fluid
interface advances simultaneously in every pipe it occu-
pies, with flow rate determined by Eq. (2.1) and velocity
v=Q/mr’. A time increment dt is chosen such that the
interface closest to reaching a vertex arrives there. With
the new boundary condition P=P; . on the fluid-fluid
interface, Eq. (2.3) is solved again, and the interface
moves forward again. This process continues until the
inviscid fluid reaches the outer boundary of the network.

Because numerical solutions of Eq. (2.3) introduce
computational errors, there is some amount of noise in-
herent in simulations of the CW model. This numerical
noise can cause a symmetry breaking in the flow pattern,
much the same way fluctuations in the real system do.
However, the noise enters in an uncontrolled fashion, and
therefore its magnitude cannot be adjusted.

In DLA, tip splitting is caused by disorder in the
growth process, and not by any disorder in the medium.
It may be that in some sense the same is true of viscous
fingering in a smooth Hele-Shaw cell.* It seems plausible
that tip splitting is caused by some kind of noise or spon-
taneous fluctuations of the fluid-fluid interface, and not
only by the microscopic roughness of the plates, especial-
ly because repeated experiments under virtually identical
conditions in the same cell produce fingering patterns
that appear to be uncorrelated.

It is also true that repeated viscous fingering experi-
ments in the same porous medium produce different
fingering patterns. That is, tip splitting and side branch-
ing seem to depend not only on the inhomogeneity of the
medium, but also on some kind of symmetry-breaking
noise at the fluid-fluid interface. Regardless of the actual
source of this noise, it seems appropriate to consider a
simulation which explicitly includes tunable noise terms.

One way to modify the CW model to include the effects
of noise in a controlled fashion would be to add stochas-
tic terms to Darcy’s law. For example, we could choose
one of two forms

v=—kVP(1+af), (3.1a)

or

v=—kVP+a§ . (3.1b)
Here, a is an adjustable parameter and £ a Gaussian ran-
dom variable whose mean is 0 and whose standard devia-
tion is unity. Noise of type (3.1a) might be called multi-
plicative noise, and noise of type (3.1b) additive noise.
The parameter a tunes the noise in either case.

Instead of adding these noise terms to the CW model,
we choose rather to use the more efficient IDLA model,
with the addition of the noise-reduction technique. We
then attempt to determine which type of noise, additive,
or multiplicative, is the result.

One other important reason to investigate other ap-
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proaches to simulation is computational efficiency. Be-
cause the CW model requires repeated solution of a
partial-differential equation, it is computationally slow.
A DLA-based model is by contrast much more efficient.

IV. NOISE REDUCTION

In DLA with noise reduction,'*"!7 a perimeter site be-
comes a cluster site only after it has been hit by s random
walkers, where s is an adjustable parameter. The original
DLA model corresponds to s=1. Increasing s has a
smoothing effect on the interface. We show here that
noise reduction effectively controls interface velocity fluc-
tuations according to the form in (3.1a), multiplicative
noise. Noise reduction may be used with IDLA, but the
argument given here applies equally to DLA or to other
growth processes, i.e., the Eden model.?°

Let p be the probability that a random walker will hit a
given perimeter site i. Assume that p does not change
very much over the time scale s /p, where time increases
by one unit whenever a walker hits the cluster. The prob-
ability distribution ? for the time ¢ this site must wait be-
fore it is hit s times is

P(t)= [l;:}]ps—l(l_p)(hn—(sﬂ)]p ] @.1)

That is, there are s — 1 hits in ¢z —1 tries, then one hit on
the rth try. In the Poisson limit that p is small and s is
large, we obtain the approximation

[(1—1)2](S_l)e[<z~1>p]

Py(t)= —1)!

p - (4.2a)

If we define the velocity of the interface at site i as
v=1/t, then we can change variables and calculate prop-
erties of the distribution for v. That is,

s e“p/u

—p - (4.2b)
(s—1) v(s+1)

Py(v)=

Taking the first two moments of this distribution, we find

2
()= |—L—|+0 |& |=p/s, 4.3)
s—1 S
and
(w—(u)y)2=—L_ 4.4)
s

If we do not consider higher moments of v, we can ap-
proximate 7 (v) as a Gaussian:

1 —= (V5 /2(0) 4.5)

That is, the probability distribution for v is approximate-
ly a Gaussian centered at {v)=p/s, with width
(v)/V's. To demonstrate that Eq. (4.2b) may be approx-
imated by the Gaussian of Eq. (4.5), a comparison of the
two distributions is shown in Fig. 4.

It is interesting to note that the fluctuations of v may
be described by a stochastic equation,

S3/2

=(v)

1
1+ ‘Gg] . (4.6)

Equation (4.6) is similar in form to Eq. (3.1a), and corre-
sponds to multiplicative noise. Thus adjusting the noise-
reduction parameter s is roughly equivalent to adjusting
the size of typical fluctuations of the interface velocity
away from its mean value, which corresponds to the pa-
rameter « in (3.1a). The limit of s large corresponds to
the no-noise limit because the size of a typical fluctuation
goes to 0. Also, note that with multiplicative noise terms,
fluctuations in the velocity are large where the velocity is
large and small where the velocity is small.

The initial assumption that the hit probability p for a
given site does not change much over time is, of course,
not strictly valid. Rather, p is a function of time. As the
cluster evolves, a perimeter site that was once at the
outer tip of the cluster can become more and more
screened, such that its p decreases and may even vanish.
That means that the small-velocity (long-waiting-time)
part of the velocity distribution is inflated by the approxi-
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FIG. 4. A comparison of the functions defined in Egs. (4.2b)
(solid line) and (4.5) (dashed line). In (a), p=0.001 and s =20,
and in (b) p =0.001 and s =40. To the extent that the solid and
dashed curves overlap, the approximation discussed in the text
is correct.
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mation that p is constant. We expect that this approxi-
mation does not change the scaling properties of the
mean and width of the distribution.

V. RESULTS

Shown in Fig. 5 are three IDLA clusters which were
generated with noise reduction s =50 and A=0, 0.5, and
0.99. Small clusters (mass of 1000) are shown here for
comparison with the CW experimental and simulation re-
sults. The A=0 cluster is strongly cross shaped, with a
gradual transition to more DLA-like clusters for larger A.
This result is in qualitative agreement with the CW ex-
periments and simulations. Because IDLA models flow
in a pore-pipe network, and CW’s experiments are with a
pipe network, detailed quantitative comparison would be
inappropriate.

In Fig. 6 are displayed two clusters generated by the
IDLA algorithm on the same inhomogeneous pipe net-
work, which has A=0.25. The clusters were grown with
no noise reduction, that is, s=1, and are different from

(a)

FIG. 5. IDLA simulations for (a) A=0, (b) A=0.5, and (c)
A=0.99, all with s=50. For comparison, these clusters are of
approximately the same mass (1000) as those produced by the
CW model in Fig. 1 of Ref. 3. The similarity between these
clusters and those produced by the CW model suggests that the
CW model is roughly equivalent to IDLA in the large- s limit.
Note that part (a), homogeneous DLA, is equivalent to the mod-
el studied in Ref. 4.
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each other only because different random-number seeds
were used to start the random walks. Although the two
clusters appear somewhat similar in overall shape, their
detailed forms differ from the earliest stages of growth.
Tip splitting and the formation of side branches are clear-
ly influenced both by the disorder in the permeability of
the medium and by the noise associated with the growth
process.

How do these two sources of noise interact? In Fig. 7
we show two pairs of IDLA clusters where each pair was
grown on the same disordered pipe network. The first
cluster in each pair [7(a) and 7(c)] has s =1, while the

T T T T T T T T T
0.0 60.0 100.0 160.0 200.0 260.0 300.0 360.0 400.0 460.0 600.0

FIG. 6. Two IDLA simulations for A=0.25, s =1, made with
the identical disordered pipe network, but with random walks
initiated with different random number seeds. These two clus-
ters represent two different outcomes of a viscous fingering ex-
periment in the same porous medium.
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second cluster in each pair [7(b) and 7(d)] has s =10. For
a low value of the disorder parameter A, noise reduction
has much the same effect as it does in regular DLA on a
square lattice. The finger width increases, and the fingers
grow predominantly along straight lines, giving rise to a
dendritic morphology. But for a higher value of A we
find an entirely different result. Even with noise reduc-
tion, the cluster appears to take on a shape much like
that of regular DLA.

The IDLA model is unique in that it probes systems
with noise or fluctuations in both the permeability and in
the growth process itself. Thus we can use it to map out

J T U T T T 1
0.0 60.0 10|0.0 15b.0 200.0 250.0 300.0 360.0 400.0 460.0 600.0

T L T T 1 T i
0.0 60.0 100.0 160.0 200.0 260.0 300.0 360.0 4OIO.O 460.0 600.0

a “morphology phase diagram,” which is shown in
schematic form in Fig. 8. On the horizontal axis we plot
A, which measures the disorder in the permeability. On
the vertical axis we plot 1/V's, the quantity that gives
the magnitude of typical fluctuations in the velocity. For
instance, if s =100, then 1/V's =0.1, and the interface
velocity has fluctuations which are typically 10% of the
average velocity. Thus 1/V's is a quantity which charac-
terizes the noise in the growth process. The CW model,
in principle, corresponds to the s— oo limit; that is, to
the points along the horizontal axis of Fig. 8. Points
along the vertical axis have A=0 and correspond to DLA

T T T T T T i T T
00 600 1000 160.0 200.0 260.0 3000 360.0 400.0 460.0 600.0

FIG. 7. IDLA simulations of two very weakly inhomogeneous systems—(a) A=0.1, s = 1; (b) A=0. 1, s =10—and of two strongly
inhomogeneous systems—(c) A=0.9, s =1; and (d) A=0.9, s =10. Note that only the weakly inhomogeneous system with large noise

reduction s [case (b)] displays dendritic morphology.
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V274 CW Model
DLA (on lattice)

with noise reduction

FIG. 8. A “morphology phase diagram.” The horizontal
axis variable A controls the strength of the inhomogeneity in the
permeability, while the vertical axis variable 1/V’s controls the
noise in the growth process. Several special points on the dia-
gram are A=0, 1/Vs =1 (normal homogeneous DLA); A=0,
0<1/V’s <1 (DLA with noise reduction, shown in dotted area
along y axis); 0 <A <1, 1/V's =0 (CW model, shown in hatched
area along x axis); A=0, 1/V’s =0 (fourfold-symmetric den-
drite). The position of the transition line is based on data from
finite clusters and therefore is schematic.

with DBM boundary conditions and noise reduction.
The special point (A=0, 1/V's =0) corresponds to a
growth process with no noise in a perfectly homogeneous
square lattice, which at least, in principle, would produce
a fourfold-symmetric dendritic structure.

Moving away from the special points at the origin, we
find clusters which appear to be disordered dendrites;
that is, dendritic shapes with side branches of random
lengths. At points yet further from the origin, we find
dendrites which are more disordered with fingerlike side
branches, and finally at a greater distance we find clusters
which are DLA-like. The transition from dendritic to
DLA-like morphology appears to be smooth. For this
reason, the transition line plotted in Fig. 8 is schematic.

How can we quantify the transition from dendritic to
DLA-like morphology? To try to answer this question,
we generated a large number of clusters with noise reduc-
tion s =4 and A in the range 0.3-0.7, with 30 clusters at
each A value. These clusters fall along a horizontal line
across the morphology phase diagram, such that for
small A the clusters appear dendritic, and for large A they
appear DLA-like.

One way to quantify the transition from dendritic to
DLA-like would be to measure the fractal dimensions of
the clusters. One might expect that the dendritic clusters
should have fractal dimension d, of about 1.5,* while the
DLA-like clusters should have d, closer to 1.7.1° Unfor-
tunately, evaluation of the limiting fractal dimension of
our IDLA clusters is somewhat problematic because the
clusters are probably not large enough to be in the
asymptotic regime, as their typical mass is
15000-20000. An even greater difficulty, however, is
that there are extremely important edge effects from the
circular outer boundary. We calculate the function
M(r), the mass in a circle of radius », and from log-log
plots of M(r) versus r we find the slope d, in the range
1.6—1.7 for all our clusters, both DLA-like and dendritic.
It is not clear whether this finding reflects something im-
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portant about the morphology transition or if it is just an
artifact of the boundary conditions.

Perhaps a better way to characterize the transition is to
look at the properties of the angular mass distribution
function m(6), where m(6)d 0 is the fraction of the total
mass of the cluster in the angular wedge between 6 and
6+d6. Here angles are figured from the center of the
cluster, which we take to be the position of the seed, with
6=0 along one of the axes of the square lattice. One ex-
pects that for a dendritic cluster, m (6) should be sharply
peaked at the four angles which correspond to the pro-
truding arms of the cluster. Consider the Fourier series
for m(0),

o < . - .
7+ jzl a;cos(j0)+ ? b;sin(j6) .
We take ¢, =7[(a,)*+(b,)*]'/? as a measure of the den-
dritic nature of a cluster. In practice, it is not necessary
to calculate the function m(60) explicitly. Rather, we can
calculate directly:

m(6)= (5.1

a4=~71;fd0m(9)cos(49)

M
S 5(0—6,)

i=1

cos(40) . (5.2)

1
—M—ﬁfde

Here, M is the total number of particles (mass) in the
cluster and 6, refers to the angular position of the ith par-
ticle.

We calculated ¢, for 30 DLA (that is, A=0) clusters of
mass 15000-20000 and found an average value
{c,)=0.19. (This value probably depends on cluster
size.) A plot of ¢, versus A for fixed noise reduction s =4
is shown in Fig. 9. As the clusters cross from dendritic to
DLA-like, ¢, drops dramatically towards its DLA value.
Thus we conjecture that ¢4 could be an order parameter
for the transition.

One important worry is that our data are based on rel-
atively small clusters. For larger clusters, the position of
the transition in the morphology phase diagram would be

0.4

o
|

0.1

T T T

0.3 0.4 0.5 0.6 0.7
A

FIG. 9. A plot of ¢, vs A, where ¢, is a measure of the four-
fold symmetry of the cluster. We conjecture that ¢, may be a
suitable order parameter for the morphology phase transition.
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altered since the lattice anisotropy gains importance with
lattice size. In fact, there is evidence that DLA on a
square lattice looks somewhat dendritic on a large scale
for clusters of mass larger than 10°2' That is, in the
infinite-mass limit, IDLA might always produce dendritic
clusters, regardless of the values of s and A. However,
given the data we have, we conclude that for finite-mass
clusters both noise associated with the growth process
and noise associated with the disordered medium can
drive the growth process towards a DLA-like structure.
One other measurement of viscous fingering systems is
their area-sweep efficiency (ASE), which is the ratio at
breakthrough of the volume of displacing fluid over the
total volume of viscous fluid which was originally in the
system at time 0. The ASE is a measure of the efficiency
of the oil-recovery process, and is normally determined
from a quarter-five-spot simulation. This quantity is
commonly used by petroleum engineers. Because it is a

(o) g
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0 0.5 1

A

FIG. 10. (a) An inhomogeneous DLA cluster with A=0.5,
s=1, in the quarter-five-spot geometry. (b) The area-sweep
efficiency (ASE) as a function of A with s=1, determined from
clusters such as (a). Each point represents an average over 10
clusters.
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measurement of the density of a fractal structure, the
ASE is not constant but decreases with increasing system
size. However, by holding the system size fixed, we can
determine the ASE’s general dependence on A. We gen-
erated quarter-five-spot clusters with s=1 and several
values of A; one such cluster is shown in Fig. 10(a). In
Fig. 10(b) the ASE is shown as a function of A. Each
point on the graph represents an average over 10 clusters.
It appears that the ASE increases weakly and monotoni-
cally with A for s =1. This qualitative result of our mod-
el could be compared with viscous fingering experiments
in two-dimensional porous-medium Plexiglas® models.

VI. SUMMARY

We have demonstrated that the IDLA model can be
used to simulate viscous fingering in a medium with inho-
mogeneous permeability and homogeneous porosity. We
determined that fluctuations in a DLA-based growth pro-
cess may be tuned by means of noise reduction, and that
fluctuations in the velocity of the moving interface are
multiplicative in form. That is, deviations from the mean
velocity are proportional to the mean velocity with pro-
portionality factor 1/V's, where s is the noise-reduction
parameter.

We used the IDLA model to simulate viscous fingering
in a medium which consists of a pipe-pore square-lattice
network in which all pores have equal volume and the
pipes have negligible volume. The pipe radii are chosen
randomly from a probability distribution function with
tunable width A. By varying both A and s, we mapped
out a morphology phase diagram which shows a gradual
transition from dendritic to DLA-like cluster shapes. A
possible order parameter for this transition was defined
and calculated. In future work, we hope to find experi-
mental data which might allow us to determine the actual
source of interface velocity fluctuations in viscous finger-
ing.

Siddiqui and Sahimi'? recently proposed a DLA-based
algorithm for modeling viscous fingering of fluids with
finite-mobility ratio, and methods have been proposed for
including the effects of surface tension.!'”?? With the
IDLA model we can add inhomogeneous permeability,
and noise reduction allows us to adjust the magnitude of
interface velocity fluctuations. With all these tools, it ap-
pears likely that DLA-based simulations for realistic
fluid-flow problems involving immiscible fluid flow—
including those encountered in petroleum-reservoir
simulation—may soon be a reality.

We also hope to apply DLA-based methods to simulat-
ing dendritic crystal growth. Here, in particular, there
may be a need for large-scale three-dimensional simula-
tions which might not be feasible with non-DLA-based
methods. Such simulations might be used to predict mor-
phology as a function of the physical parameters-in the
crystal growth process.
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APPENDIX: THE CONNECTION
BETWEEN IDLA AND TWO-FLUID DISPLACEMENT

In this appendix we trace the connection between
IDLA and viscous fingering in inhomogeneous media in
two dimensions.!!"1%23

First, we review the connection between the original
DLA model and two-fluid displacement in homogeneous
media in two dimensions. Consider a DLA system where
a random walker is released from a random point on a
circular boundary far from the cluster and is allowed to
diffuse until it either returns to the boundary (and is des-
troyed) or hits a cluster site (and sticks). Here we are
considering DBM-type boundary conditions.® Let p(x,t)
be the probability density of a walk released from an un-
known point on the circular boundary at time ¢t =0. The
diffusion equation for p(x,?) is

S _, v2
a4 ’
where the walker makes one step per unit time. In this
appendix, continuum operators represent their discre-
tized analogs. Boundary conditions on p(x,¢) are

(A1)

const for x Ecircular boundary,

p(x,0)= 0 otherwise, (A2a)
p(x,t)=0 for x Ecircular boundary; t >0, (A2b)
p(x,t)=0 on cluster sites for all ¢ . (A2¢)
Let G(x) be defined as the time integral of p(x,?),
G(x)= ép(x,t). (A3)
Boundary tcj)(;lditions on G(x ) follow from (A2):
const for x Ecircular boundary,
Glx)= kO for x € cluster . (A4)

Taking the Laplacian of G(x), we find

)

> plx,t)

t=0

ViG(x)=V?

at

=4 [“92(x.t)ar
o Ot

=4[p(x, 0 )—p(x,0)]

-5 4%2x, 1)
t=0

=0 for x not on cluster or outer boundary .
(AS)
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Thus G(x) plays the role of the pressure in obeying the
Laplace equation.

It remains to show that the cluster boundary advances
according to Darcy’s law (2.1). Take x; to be a site adja-
cent to a cluster site x;. The probability for a walker to
land on x; at time ¢ and then step onto x; at time # +1 is

the growth probability p,,,, of x; at time ¢,

pgrow(x[)t):%p(xiyt) . (A6a)

Integrating over all time, we find the total growth proba-
bility §,.ow»

Perow(X;)= 3, 1p(x;,t)=+G(x;) . (A6b)
t=0

From (A4), G(xj )=0 because x; is a cluster site; thus we

may write

p'grow(xi):?lt_G(xi) (A7)
We may interpret P, (x;) as the analog of the interface
velocity at site x;; then Eq. (A7) takes the same form as
Darcy’s law.

Thus we have shown that the DLA model is like
viscous fingering in that there is a function G(x) which
plays the role of P in obeying the Laplace equation and
Dirichlet boundary conditions. The growth probability
Dgrow Plays the role of an interface velocity in obeying
Darcy’s law.

Now we turn to IDLA and demonstrate its connection
to viscous fingering in inhomogeneous media in two di-
mensions. For our system the permeability k has been ar-
bitrarily fixed on each bond of a square lattice, normal-
ized such that the largest k is 1/z. Everything is the
same as in DLA, except that the random walker is biased
toward high-permeability bonds and chooses its steps ac-
cording to Eq. (2.10). The probability density p(x,t) and
the time-integrated probability density G(x) both obey
the same boundary conditions as in the original DLA sys-
tem described above. However, p(x,f) now obeys a
different diffusion equation,

P _v.(kvp), (A8)
ot
instead of (A1). Now we form the quantity
V- [kVG(x)]=V- | 3 kVp(x,t)
t=0
= w‘a—ﬂ
o Ot dt
=p(x, 0 )—p(x,0)
=0, (A9)

for x neither a cluster nor a boundary site. Thus, G(x)
plays the role of the pressure P in the sense that (A9) has
the form of (2.3).

If x; is a cluster site and x; is an adjacent empty site,
then the growth probability at x; at time ¢ is

Pgrow(Xi 1) =p(x;,0)k;; (A10)
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where k;; is the normalized permeability of the bond be-
tween sites i and j. Integrated over the lifetime of the
walker, the growth probability is

Pgrow(Xi)= Eop(xw’ )k
=

=G(x,)k;
=k;[G(x;)—G(x;,)]

=kVG(x) . (A11)

We again interpret p,,,, as the analog of the interface ve-
locity at x; and we see that it has the same form as Eq.
(2.1).

Hence the IDLA model is like viscous fingering in in-
homogeneous media in that G(x) plays the role of P in
obeying Eq. (2.4), and the growth probability p,, plays
the role of the interface velocity in obeying Darcy’s law.
Thus IDLA may be used to model fluid flow in inhomo-
geneous media.
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