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We calculate the minimum growth probability for diffusion-limited aggregation (DLA) as a function
of the cluster mass M, and find a novel singularity of the form —Inpmn(M)~ (InM)” with y =2. We
interpret this result in terms of a simple model for DLA structure, which is characterized by a hierarchy
of self-similar voids separated by channels whose diameter increases slower than the cluster diameter.
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Since its introduction a decade ago,' diffusion-limited
aggregation (DLA) has attracted tremendous attention. >
On the one hand, it has been found to describe a vast
wealth of experimental situations and, on the other hand,
a true theoretical understanding has been elusive. Ini-
tially, it was imagined that the growing tips of the DLA
structure held the key to a complete theoretical under-
standing. However, it was found that DLA is a multi-
fractal—i.e., the quantities p; (M) giving the probability
that site i of the DLA perimeter is the next to grow do
not depend on cluster mass M in the same fashion—so if
one knows only the p; for the tips, one knows essentially
nothing about the interior structure of DLA.? A great
deal is known about how the maximum p;(M) (on the
tips) scale, while almost nothing is known about the
minimum growth probabilities (deep in the fjords).
However, if one could learn about the p; for the bottom
of the fjords, one would have important information
about the entire structure of DLA (not just the tip
region)—since an incoming random walker must “find
its way through the entire DLA structure” in order to
reach the fjord bottom.

There exist two recently proposed forms** for the
dependence on M of pnin, the smallest of all the growth
probabilities. (i) Blumenfeld and Aharony® (BA) pro-
posed pmin decreases exponentially with cluster mass M,

Pmin(M) ~exp(—AM™) . (1a)

(ii) Mandelbrot and Vicsek*® (MV) and Harris and
Cohen*® (HC) proposed the power-law form

Prin (M) ~M ~ =l (1b)
where d; is the fractal dimension of DLA.

In this work we carry out the first simulations® for

Pmin- We find a surprising result for how pni, depends
on cluster mass, .

—Inpmin(M)~UnM)? (y=2). (1c)

We also construct a simple model for DLA structure,
which predicts the form (1c) with y =2 exactly.

To calculate p; for each of the perimeter sites, we em-
ploy an algorithm® to enumerate exactly all random
walks which start from an outer circle of radius R, and

are trapped either at the perimeter sites or at an outer
circle of radius R;> R,.” The growth probability can be
calculated using p; =1;/2:t;, where ¢; is the probability
that the walker is trapped at perimeter site i. For small
clusters we confirmed the validity of this approach using
a Green’s-function technique,® which is accepted to be
accurate.

For each cluster, we calculate pmin(M) and the ex-
ponent F(B) defined from the “partition function”

Z(M)=X pP=m O 0

In order to reduce the sample-to-sample fluctuation, we
form a “quenched”® average over all the samples stud-
ied,
po (M) =expl{Inpmin (M1,
3)
Zo(B,M)=explInZ(B,M))] .

We first test the possibility of an exponential decay, Eq.
(1a). Figure 1(a) shows Inllnpo(M)] vs InM for clus-
ters grown on the triangular lattice, where pp is normal-
ized with respect to the pg of M=1. We note that the
slope is decreasing as M increases (see the successive
slopes, plotted in the inset), which implies that py decays
slower than exponential—even slower than a “stretched
exponential.”

We next try the second possibility, a power-law decay
of (1b). Figure 1(b) shows a log-log plot of po(M) vs
M. The slight curvature implies a weak deviation from
power-law behavior, which becomes more apparent from
the graph of successive slopes (inset). Since the succes-
sive slopes show an increasing trend as M increases, we
conclude py (M) decays faster than power law. Indeed,
the successive slopes increase almost linearly, which is
consistent with the possibility (1c).

Since Inpg (M) decays faster than M but slower than
M~ [cf. Egs. (1a) and (1b)], we considered the possibili-
ty (InM)”. Figure 1(c) shows Inllnpy (M)] vs In(InM),
and displays a straight-line part for a wide range of M.
The least-squares fit for this part has slope y =1.97.
Since y =2, we show in Fig. 1(d), a plot of Inpy vs
(InM)?, and find a remarkably large region of straight
line (roughly two decades). One can also see from the
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FIG. 1. (a) A Inllnpo(M)] vs InM plot (triangular lattice) made to test for the exponential behavior of Eq. (1a). One can see the
deviation from a straight-line behavior. The successive slopes, plotted in the inset, are monotonically decreasing. Here successive
slopes are obtained by drawing line segments between successive points of the graph. (b) A log-log plot of pg(M) vs M made to test
for the power-law behavior of Eq. (1b). The successive slopes, plotted in the inset, are almost linearly increasing. (c) A Inllnpg(M)]
vs In(InM) plot made to test the logarithmic singularity of Eq. (1c). One can identify a region of straight-line behavior. The least-
squares slope is y=1.97 (~2). (d) The Inlpo(M)] vs (InM)? plot. One can see quite a large linear region in the graph. Also the

successive slopes, plotted in the inset, show no systematic trend.

successive slope plot (inset) that there is no systematic
deviation from this straight-line behavior.

Strong evidence supporting this novel possibility is
found from the behavior of the ‘“partition function.”
Figure 2(a) is a log-log plot of Zy(B,M) vs M for four
different values of B (—3,—2,—1,0). One sees a clear
deviation from power-law behavior as f decreases from
0. Furthermore, a plot of Zp(B=—3,M) vs (InM)?
[Fig. 2(b)] shows a large portion of straight-line behav-
jor.” This is consistent with po, since the smallest
growth probability dominates the behavior of Zy(8,M)
for large negative 8 values.

We also made similar plots for 55 clusters grown on
the square lattice. Comparing these with Figs. 1 and 2
suggests that our results are universal (inherent to
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DLA), and not artifacts of the special anisotropy of the
triangular lattice.

A physical interpretation of our result (Ic) follows
from the observation that (1¢) implies the inequality

Z(B,M)=3 p! = pP~expl—Bp(InM)?].

Combining this with the definition (2), we find '°
F(B)/d;=—InZ(B,M)/InM < BBInM . 4)

Thus for any value of B <0, F(B) diverges logarithmic-
ally as M — oo, resulting in a phase transition in the
multifractal spectrum of typical DLA aggregates at
Bc =0 between two “phases” characterized by finite and
infinite F(B).'" Futhermore, a singularity in typical
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FIG. 2. (a) The fth moment Z(B,M) (B=—3,—2,—1,0)
for the triangular lattice. As B is decreased from O, they show
clear deviation from power-law behavior. (b) InZ(8,M) vs
(InM)? plot (triangular lattice). One can clearly see the wide
region of straight line, which supports (InM)? behavior.

DLA implies a transition in the mutifractal spectrum ob-
tained by averaging all the possible clusters.'?

Next we argue that the form of pni, enables one to
construct models for the structure of DLA, which in turn
serves to justify the significance of focusing attention of
the pmin function. It is our thesis that the problem of
DLA structure is strongly connected to the problem of
the structure of a fjord.

Perhaps the simplest model of a DLA fjord is that of a
“tunnel” [Fig. 3(a)], which leads immediately to the pre-
dicted form of Eq. (1a). A second model is that of a
wedge-shaped fjord (not to be confused with a wedge-
shaped tip'3). This model predicts pmi, should be of the
form of Eq. (1b). We have demonstrated [e.g., in Figs.
1(a) and 1(b)] that neither Eq. (1a) nor Eq. (1b) is sup-

\

FIG. 3. (a) “Tunnel” model of a DLA fjord, which is con-
sistent with the prediction of Eq. (1a). (b) “Wedge” model of
a DLA fjord, which is consistent with the prediction of Eq.
(1b). (c) “‘Hierarchical wedge” model of a DLA fjord, which
is shown here to lead to Eq. (1¢).

ported by our calculations, suggesting that both the tun-
nel model and the wedge model of Figs. 3(a) and 3(b)
are oversimplifications.

We now introduce a new model, characterized by a
hierarchical distribution of open spaces of linear dimen-
sion L; =a‘L in which the incoming random walker can
diffuse [Fig. 3(c)]. The key fact is that in order for a
random walker to reach the end of the fjord, it must suc-
cessively move from one open space to another open
space through a succession of relatively narrow regions
or “channels.” The plausibility of such a model is evi-
dent upon examination of photographs of off-lattice
DLA structures. Pictorial resemblance cannot justify a
model, but a straightforward heuristic calculation of the
predictions of a model can be compared directly with the
simulation results for DLA itself. Specifically, we can
estimate pniq as follows. The probability IT(i,i +1) for a
random walker at channel N, to reach channel N, 4,
scales*® as a power —a of the distance L; separating
the two channels, [TG,i+1)=L,”% We can now calcu-
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late pmin recursively,

—a
n

I1L

i=1

Pin =IT(0, DIT(1,2) - - - M(n—1,n) = (52)

For a finite value of L, the hierarchy of open spaces con-
tinues only down to a length scale L, =1. Substituting
MG,i+1)=L;,”%into (5a), we find

Pmin=a _"("+”"/2L_""~cxp(—A'n2—A"n1nL). (5b)

Since n = —InL/Ina, we recover Eq. (1c). Thus the con-
cept of a fractal distribution of open spaces in which
diffusion takes place seems to capture the essential
features of DLA structure. The only assumptions in our
derivation are that the hierarchy of voids connecting the
growth site with minimum growth probability to the out-
side of the cluster are self-similar and are connected to
each other by narrow channels whose diameter is not
self-similar. Hence the result y =2 is possibly more gen-
eral than the model used to derive it. In particular, it
should hold even when the channel width increases with
M so long as the exponent is smaller than 1/d,.

In summary, we calculated the minimum growth prob-
ability for DLA as a function of the cluster mass M, and
found a singularity of the form (1c). We interpreted this
result in terms of a simple model for DLA structure.
The form of (1c) shows that F(B) diverges very slowly,
hence explaining why previous work had difficulty seeing
the singularity in the multifractal spectrum of a “typi-
cal” DLA aggregate. The form of (lc) is consistent with
the idea that the natural scaling variables are —Inp and
InM exactly as in random multiplicative processes; in
terms of these natural variables, the logarithmic singu-
larity of (1c) becomes a power law with ‘“critical ex-
ponent” y.

We are grateful for discussions with A. Aharony, P.
Alstrgm, R. Blumenfeld, A. B. Harris, D. Stauffer, and
T. Vicsek, and for support from NATO, Minerva
Gesellschaft fiir die Forschung m.b.H., ONR, and the
NSF-Germany program. We especially thank C. Ami-
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Note added — After this work was submitted, we
learned of several related works bearing on the results of
this work: (i) Wolf'* confirmed the behavior of Fig.
1(a) for M < 65, and (ii) Barabasi and Vicsek '’ studied
the channel-size distribution function.
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