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Abstract

We study the transition between the strong and weak disorder regimes in the scaling

properties of the average optimal path ‘opt in a disordered Erd +os–Rényi (ER) random network

and scale-free (SF) network. Each link i is associated with a weight ti � expðariÞ; where ri is a

random number taken from a uniform distribution between 0 and 1 and the parameter a

controls the strength of the disorder. We find that for any finite a, there is a crossover network

size N�ðaÞ such that for N5N�ðaÞ the scaling behavior of ‘opt is in the strong disorder regime,

while for NbN�ðaÞ the scaling behavior is in the weak disorder regime. We derive the scaling

relation between N�ðaÞ and a with the help of simulations and also present an analytic

derivation of the relation.
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1. Introduction

In a real-world network, whether it be a communication network or transport

network, the time ti taken to traverse a link i may not be the same for all the links. In

other words, there is a ‘‘cost’’ or a ‘‘weight’’ ti associated with each link, and the

larger the weight on a link, the harder it is to traverse this link. In such a case, the

network is said to be disordered. Consider two nodes A and B on such a disordered

network. In general, there will be a large number of paths connecting A and B.

Among these paths, there is usually a single path for which the sum of the costs
P

ti
along the path is minimum and this path is called the ‘‘optimal path.’’ When most of

the links on the path contribute to the sum, the system is said to be ‘‘weakly

disordered’’ (WD). In some cases, however, the cost of a single link along the path

dominates the sum. In this case each path between two nodes can be characterized by

a value equal to the maximum cost along that path, and the path with the minimal

value of the maximum cost is the optimal path between the two nodes. This limit of

disorder is called the strong disorder (SD) limit (‘‘ultrametric’’ limit) [1] and we refer

to the optimal path in this limit as the min–max path. We implement disorder on a

network as follows [2–4]. We assign to each link i of the network a random number

ri; uniformly distributed between 0 and 1. The cost associated with link i is then

ti � expðariÞ; where a is the parameter which controls the breadth of the distribution

of link costs. The parameter a represents the strength of disorder. The limit a ! 1 is

the strong disorder limit, since for this case only one link dominates the cost of the

path. The parameter a can be regarded as an inverse temperature. There are distinct

scaling relationships between the length of the average optimal path ‘opt and the

network size (number of nodes) N depending on whether the network is strongly or

weakly disordered [4]. For SD [4], ‘opt � Nnopt ; where nopt ¼
1
3

for Erd +os–Rényi (ER)

random networks [5] and for scale-free (SF) [6] networks with l44; where l is the

exponent characterizing the power law decay of the degree distribution. For SF

networks with 3olo4; nopt ¼ ðl	 3Þ=ðl	 1Þ: For WD ER networks and for SF

networks with l43; ‘opt � lnN : Here we show that similar to regular lattices [2],

there exists for any finite a, a crossover network size N�ðaÞ such that for N5N�ðaÞ;
the scaling properties of the optimal path are in the SD regime while for NbN�ðaÞ;
the network is in the WD regime. We obtain the functional dependence of N�ðaÞon a:

2. Scaling approach

In general, the average optimal path length ‘optðaÞ in a disordered network

depends on a as well as on N. In the following, we use instead of N the min–max path

length ‘1 which is related to N as ‘1 � ‘optð1Þ � Nnopt and hence N � ‘1=nopt
1 : Thus,

for finite a, ‘optðaÞ depends on both a and ‘1: We expect that there exists a crossover

length ‘�ðaÞ; corresponding to the crossover network size N�ðaÞ; such that (i) for

‘15‘�ðaÞ; the scaling properties of ‘optðaÞ are those of the strong disorder regime,

and (ii) for ‘1b‘�ðaÞ; the scaling properties of ‘optðaÞ are those of the weak disorder

regime.
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We propose the following scaling Ansatz for ‘optðaÞ:

‘optðaÞ ¼ ‘1 F
‘1
‘�ðaÞ

� �

; (1)

where

F ðuÞ �
const:; u51 ;

lnðuÞ=u; ub1 :

�

(2)

3. Discussion

We now develop arguments to obtain the dependence of the crossover length ‘�ðaÞ
on the disorder strength a. We begin by making a few observations about the

min–max path. In Fig. 1 we plot the average value of the random numbers rn on the

min–max path as a function of their rank n (1pnp‘1) for ER networks and SF

networks. This can be done for a min–max path of any length but in order to get

good statistics we use the most probable min–max path length. We call links with

rppc ‘‘black’’ links, and links with r4pc ‘‘gray’’ links, following the terminology of

Ioselevich and Lyubshin [7] where pc is the percolation threshold of the network [8].

We make the following observations regarding the min–max path:

(i) For rnopc; the values of rn decrease linearly with rank n, implying that the

values of r for black links are uniformly distributed between 0 and pc; consistent

with the results of Ref. [9]. This is shown in Fig. 1.

(ii) The average number of black links, h‘bi; along the min–max path increases

linearly with the average path length ‘1: This is shown in Fig. 2a.

(iii) The average number of gray links h‘gi along the min–max path increases

logarithmically with the average path length ‘1 or, equivalently, with the

network size N. This is shown in Fig. 2b.

The simulation results presented in Fig. 2 pertain to ER networks; however, we

have confirmed that observations (ii) and (iii) also hold for SF networks.

Observations (ii) and (iii) indicate that the dominant portion of the min–max path

lies along the giant component of the network at percolation [10].

Now we will discuss the implications of our findings for the crossover from strong

to weak disorder. From observations (i) and (ii), it follows that for the portion of the

path belonging to the giant component, the distribution of random values r is

uniform. Hence we can approximate the sum of weights by an integral.

X

‘b

k¼1

expðarkÞ �
‘b
pc

Z pc

0

expðarÞdr ¼
‘b
apc

expðapcÞ 	 1
� �

� expðar�Þ ; (3)

where r� � pc þ ð1=aÞ lnð‘1=apcÞ since h‘bi � ‘1: Thus, restoring a short-cut link

between two nodes on the optimal path with pcoror� may drastically reduce the

length of the optimal path. When apcb‘1; r�opc and such a link does not exist, but

ARTICLE IN PRESS

S. Sreenivasan et al. / Physica A ] (]]]]) ]]]–]]] 3



there begins to be a finite probability for such a link to exist if ‘14apc: Hence when

the min–max path is of length ‘1 � apc; the optimal path starts deviating from the

min–max path. The length of the min–max path at which the deviation first occurs is

precisely the crossover length ‘�ðaÞ; and therefore ‘�ðaÞ � apc: Note that in the case

of SF networks, as l ! 3þ; pc approaches zero and consequently ‘�ðaÞ ! 0: This

suggests that for any finite value of disorder strength a, a SF network with lp3 is in

the weak disorder regime.

We perform numerical simulations and show that the results agree with our

theoretical predictions. The details of our simulation methods are published

elsewhere [10]. From our theoretical arguments, ‘�ðaÞ � a and therefore, from Eq.

(1), ‘optðaÞ=‘1 must be a function of ‘1=a: In Fig. 3 we show the ratio ‘optðaÞ=‘1 for

different values of a plotted against ‘1=‘�ðaÞ � ‘1=a for ER networks and SF

networks. The excellent data collapse is consistent with the scaling relations Eq. (1)

(see also [10]).
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Fig. 1. Dependence on rank n of the average values of the random numbers rn along the most probable

optimal path for (a) ER random networks with hki ¼ 4 of two different sizes N ¼ 4096 (&) and N ¼

16384 (�) and, (b) SF random networks with l ¼ 3:5 for the same network sizes as in (a).
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4. Analytic derivation

An analytic derivation for obtaining the crossover length ‘�ðaÞ is as follows.

Consider a disordered network with disorder strength a. Let us define for its
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Fig. 2. The average number of links (a)h‘bi with random number values rppc on the min–max path

plotted as a function of its length ‘1 for an ER network, showing that h‘bi grows linearly with ‘1: (b) h‘gi

with random number values r4pc on the min–max path versus lnN for an ER network, showing that

h‘gi � lnN: The inset shows the successive slopes, indicating that in the asymptotic limit h‘gi � 1:55 lnN:
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min–max path of average length ‘1;

R�ða; ‘1Þ ¼ log

P

iti

tmax

� �	 


; (4)

where tmax is the maximal weight encountered along the path,
P

iti is the total

weight of the path and h i denotes an average over network configurations and
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Fig. 3. Test of Eqs. (1) and (2). (a) ‘optðaÞ=‘1 plotted as a function of ‘1=a for different values of a for ER

networks with hki ¼ 4: The different symbols represent different a values: 8(�), 16(&), 22(B), 32(4),

45(þ), and 64(�). (b) Same for SF networks with l ¼ 3:5: The symbols correspond to the same values of

disorder as in (a). The insets show ‘optðaÞ=‘1 plotted against logðl1=aÞ; and indicate for ‘15a; ‘optðaÞ=‘1
approaches a constant in agreement with Eq. (2).
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disorder realizations. R�ða; ‘1Þ serves as a measure of the disorder because when we

are in the ultrametric limit,
P

iti=tmax ¼ 1; and therefore R�ða; ‘1Þ ¼ 0; and as the

disorder becomes weak, R�ða; ‘1Þ takes non-zero positive values. In the vicinity of

strong disorder R�ða; ‘1Þ is determined significantly by t2; the second highest link

weight on the path. Let the random numbers corresponding to tmax and t2 be rmax

and r2; respectively. We now use the result of the previous section that the min–max

path (for the dominant portion of its length) can be identified as a path along the

giant component of the network at percolation [11]. The probability distribution

rðrmaxÞ of the maximal random number rmax on a path of length ‘1 on the giant

component [12], takes significant values only in an interval Dpc ¼ jp	 pcj � ‘	1=n
1

around pc [13], where n is the correlation length critical exponent for percolation. The

probability distribution of the second highest random number r2 given a maximal

random number rmax obeys the same distribution but the distribution is truncated at

rmax: By a similar reasoning the probability distribution of the remaining random

numbers can also be obtained from rðrmaxÞ: We can write [13]

R�ða; ‘1Þ � log

P

ie
ari

earmax

	 


� logð1 þ eaðri	rmaxÞÞ
� �

� eaðri	rmaxÞ
� �

� Pð rmax 	 r2j jo1=aÞ ; ð5Þ

where Pðjrmax 	 r2jo1=aÞ is the probability that the highest and the second highest

random numbers on the path (within the giant component) differ at least by 1=a:
Since, the distributions of rmax and r2 take significant values only within an interval

Dpc of pc; we have (see Fig. 4)

Pðjrmax 	 r2jo1=aÞ ¼
1; 1

a
4Dpc;

ð1=aÞ
Dpc

; 1
a
oDpc:

(

(6)

In the context of the transition, Eq. (6) can be interpreted as follows. When the

average min–max path length of the network ‘1 is such that 1=a4‘	1=n
1 ; we have

aDro1; where Dr ¼ rmax 	 r2: This means that the maximal link cost and the second

highest link cost along the min–max path are comparable in order of magnitude. In

ARTICLE IN PRESS

1
a

1
a

∆p ∆pc c

r( (r
m

ax

m
ax

))

ρρ

r r
max max

∆pc < 1/a ∆pc < 1/a

Fig. 4. Schematic representation of the probability distribution for the maximal random number rmax

along a path of length ‘1 along the percolation cluster. Relations between Dpc and 1=a are the same as the

cases presented in Eq. (6).
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general, this will hold for any two consecutive link costs along the min–max path

when the costs are ranked in descending order. This comes from the fact the

probability distributions of all the random numbers along the path are of a similar

form as the rðrmaxÞ; but with the distribution truncated at a certain value. Thus when

1=a4‘	1=n
1 ; all link costs are typically the same order of magnitude and therefore

contribute equally to the total cost of the path. Hence, the total cost of the path is

proportional to its length. In such a case, it is not advantageous to follow the long

min–max path to optimize the cost, and we can find a shortcut or deviation which

reduces the cost. Therefore when ‘1oan � ‘�ðaÞ; the optimal path deviates from the

min–max path and this deviation causes the scaling of the optimal path to crossover

from the strong disorder regime into the weak disorder regime. Thus the crossover

length at which the transition occurs is ‘�ðaÞ � a; since for infinite dimensional

networks n ¼ 1 [14]. A justification of the scaling ansatz proposed in Section 2 using

this approach will be discussed elsewhere [15].

In summary, for both ER random networks and SF networks we obtain a scaling

function for the crossover from weak disorder characteristics to strong disorder

characteristics. We show that the crossover occurs when the min–max path reaches a

crossover length ‘�ðaÞ with ‘�ðaÞ � a: Equivalently, the crossover occurs when the

network size N reaches a crossover size N�ðaÞ; where N�ðaÞ � a3 for ER networks

and for SF networks with lX4 and N�ðaÞ � aðl	1Þ=ðl	3Þ for SF networks with

3olo4: A theory for the transition in the case of SF networks with lp3 is still

pending [16–18].
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