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We point out that the existence of a phase transition—as indicated by extrapolation from
high-temperature expansions—is as well-founded for two-dimensional lattices with near-
est-neighbor ferromagnetic Heisenberg interactions as for three-dimensional lattices,
and that the “well-known result” that there exists no phase transition in two dimensions
is not a valid conclusion from the standard spin-wave argument.

It has commonly been supposed that the two-
dimensional Heisenberg model with nearest-
neighbor ferromagnetic interactions will not
undergo a phase transition. In this Letter,
we present evidence based on high-temperature
extrapolation methods which indicates the pres-
ence of a phase transition just as convincingly
for two-dimensional Heisenberg models (with
S>3%) as for three-dimensional cases.! Further-
more, we show that the “well-known result”
that the two-dimensional critical temperature
T‘®’ vanishes is not a valid conclusion from
the standard spin-wave argument.? We also
observe that the high-temperature methods
suggest a simple power-law divergence of the
zero-field susceptibility at T, x~(T-T¢)77,
with y 28/3 in two dimensions, and that T,®
depends on spin and lattice in a fashion analo-
gous to the dependence found for three-dimen-
sional cubic lattices.

The basic idea behind the extrapolation meth-
od of determining T, is that one seeks the ra-
dius of convergence of the power series rep-
resentation of the susceptibility, y «?ja;(J/
kT)l, given only the first several q;. An ex-
trapolation procedure frequently used involves
plotting the ratios of successive terms aj vs
1/1. Curve (a) of Fig. 1 is a plot for a three-
dimensional example, the simple cubic lattice
(z =6) with S=3. The observation that this plot
appears to approach a straight line for large
! motivates the extrapolation to [ =« (dashed
line) and the identification of the intercept with
the reciprocal of the radius of convergence,
i.e., with T.. (Since aj «T)y, the ordering
temperature predicted by the Weiss molecular
field approximation, we have plotted aj/aja;—1
in order that the intercept be T./Ty;.) More-
over, if x is to diverge as T - T % with a pow-

er law, x~(T'=T.)~7, then for large I, aj/ajaj-1
= (T./Tp)[1+(-1)/1]. Indeed, the slope of

the plot in Fig. 1(a) corresponds to y =1.38,
consistent with the results of a Padé-approxi-
mant analysis.?

We have calculated the a;, /<6, for three
different two-dimensional lattices. Curve (a)
of Fig. 2 shows aj/ajaj—1 vs 1/1 for the plane
triangular lattice (z =6) with S=3. We notice
at once that the ratios of successive terms
seem to approach a straight line for large I
in a manner which is actually more regular
than that of our three-dimensional example;
hence, the extrapolation [ -« can be made with
an even greater degree of credibility than in
the three-dimensional case. For the example
of Fig. 2, we estimate T /Ty =0.435+ 0.01;
the slope of the straight line corresponds to
y=2.15+£0.05.*
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FIG. 1. The simple cubic lattice (z=6) with S =%.
(a) The ratios gqj/a1aj—1 of successive terms in the sus-
ceptibility series are known only for I< 6. Extrapolat-
ing to I —~=, one estimates T./Tp;= 0.68. (b) The func-
tion £7(y’ :é).
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FIG. 2. The plane triangular lattice (z=6) with S=3.
(a) The ratios a;/aja;_q approach T¢/Tpr= 0.435.
(b) The function ¢;(y’ =2.75). As in Fig. 1, the coeffi-
cients a; were obtained from the general expressions
of Rushbrooke and Wood,! valid for any spin and lattice.

Curves (b) in Figs. 1 and 2 represent an ap-
plication of the Domb-Sykes® criterion for de-
termining y. If y does diverge with a power
law, then for y’=y the plot of ¢;(y’) = (a;/a1a7-1)
X[1+(y’=1)/1]7* vs 1/1 should approach T /Ty
with zero slope. We used many “trial values”
¥y’ and again found y =2.75+ 0.05 for the two-
dimensional example of Fig. 2.

We performed the above analyses for S=1%,

1, 3, 2, 3, 3, 5, 10, « for the plane triangu-
lar (z =6), the plane square (z =4), and the
honeycomb (z =3) lattices with nearest-neigh-
bor ferromagnetic interactions. We found, for

all but the S =3 case, a well-defined T,®~T,,/2.

(For S =% the ajy do not behave sufficiently reg-
ularly to estimate T, ®’.) As in three dimen-

sions, the estimated T.‘* vary regularly with
z and S (for S> %), fitting, to within a few per-
cent, the simple formula®

kT P/I= 4 E-1)[25(S+1)-1]. 1)

Equation (1) is completely analogous to the for-
mula given by Rushbrooke and Wood* for three-
dimensional cubic lattices. Also, just as for
the three-dimensional case,” there is a slow
but nevertheless clear variation of y with S.
For §>% and 2>3, we find y®(S) =3 +2/(352),
as compared with y©®(S) =4 +1/(20S).” In sum-
mary, the coefficients aj behave regularly with
! for a given S>3} and lattice—at least as reg-
ularly for two- as for three-dimensional lat-
tices; also, the extrapolated values of T, and
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y vary smoothly with S and z —just as smooth-
ly for two- as for three-dimensional lattices.
We conclude that the existence of a phase tran-
sition, as indicated by extrapolation from high-
temperature expansions, is as well founded

in two as it is in three dimensions.

Let us now review the standard spin-wave
argument?® against the existence of a phase tran-
sition for the two-dimensional Heisenberg fer-
romagnet. It consists of a “proof” that the
spontaneous magnetization is zero for all pos-
itive temperatures. The essential physical as-
sumption is that at sufficiently small T the
spins are nearly 25, the x and y components
being small. This assumption leads to vari-
ous mathematical approximations which in

turn lead to the well-known result® that the change
in average spin per particle 65=5-(S, ), al-
though small for three-dimensional lattices
(at small T), is infinite in one and two dimen-
sions (at any 7>0). Thus there appears to be
a contradiction, implying that the original as-
sumption of the smallness of 8S is incorrect.
The very common “physical” interpretation
of this result is that the true value of (S;)
is really zero in one and two dimensions (rath-
er than the literal value, —e). That is, there
is no spontaneous magnetization at positive T
this is generally taken to imply that there ex-
ists no phase transition in one or two dimen-
sions. We wish to point out that this standard
spin-wave argument is not a valid proof that
there exists no phase transition, there being
two errors: (i) The nonexistence of a sponta-
neous magnetization at positive T does not im-
ply that no phase transition exists (the spin
correlations may be of a qualitatively much
longer range below some nonzero critical tem-
perature T.‘® than above —this possibility is
discussed in detail in the next paragraph).
(ii) The spin-wave argument as it stands does
not imply the vanishing of the spontaneous mag-
netization because the mathematical approxi-
mations made have not been rigorously shown
to be consequences of the physical assumption
that 6S is small.®

What, then, happens for T<7T.‘*’? Here we
can only discuss various possibilities.® Qur
result that y(7) (which is proportional to
ER<§O'§R>T) diverges as T approaches T, ®
definitely means that at 7'.® the spin-corre-
lation function I'(R) = (So*Sp) becomes very
long range. For example, if we assume I'(R)
<R~ for large R, our result means that x <2
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at T=T,%. Intuitively, we expect that®® y(T)
will not decrease with decreasing T (although
we could not prove it). If so, then x = for all
T<T.®, sothat x(T) <2 for T <T.®. This
clearly includes the case of “ordinary” ferro-
magnetism, for whichx=0 (T'<T.). It also
includes the possibility that A >0, in which case
the saturation magnetization would be zero
and the curve of M vs H would have an infinite
derivative at H =0 without having a finite dis-
continuity.!!

In summary, then, the evidence from high-
temperature expansions indicates the presence
of a phase transition just as clearly in two di-
mensions as in three and, although there exist
various!? nonrigorous “proofs” that M =0 for
all positive T, there are no arguments (so far
as we know) which preclude the possibility of
a phase transition. The nature of the suggest-
ed low-temperature phase is being investigated.

*QOperated with support from the U. S. Air Force.

In their monumental work on high-temperature ex-
pansions G. S. Rushbrooke and P. J. Wood, Mol. Phys.
1, 257 (1958), observed that “there is no evidence that
the two-dimensional lattices do not have Curie temper-
atures.” However, they mitigated the strength of their
observation by adding that “firm conclusions are more
difficult to draw from the coefficients” in the two-di-
mensional cases they considered than in the three-di-
mensional cases. They gave no reason for this mitiga-
tion; in the present Letter, we show that it is unwar-
ranted.

’See, for example, F. Bloch, Z. Physik 61, 206
(1930); J. Van Kranendonk and J. H. Van Vleck, Rev.
Mod. Phys. 30, 1 (1958); and F. Keffer, “Spin Waves”
(to be published).

37. Gammel, W. Marshall, and L. Morgan, Proc.
Roy. Soc. (London) 275, 257 (1963), Table III.

4The errors indicated are, as usual, the results of
a subjective judgment, and are not meant to be pre-
cise. No matter how one judges “where the coefficients

are going” as I increases, it is clear from curves (a)
in Figs. 1 and 2 that for consistency, the errors on
T should be no greater than those on T¢‘®.

5C. Domb and M. F. Sykes, Phys. Rev. 128, 168
(1962).

6Comparison of (1) with Rushbrooke and Wood’s cor-
responding mnemonic formula for the three-dimension-
al cubic lattices kT ¢®/J =(5/96)(z—1)[11S S + 1)—1] sug-
gests that the classical or “infinite-spin” approxima-
tion is better in three than in two dimensions.

"H. E. Stanley and T. A. Kaplan, to be published.

8More precisely, the mathematical approximations
consist basically of replacing the operator sz by the
operator |[S(S + 1)—S]-x2—S]~y2]1/2 |, which in turn is re-
placed by its formal expansion in powers of ij2 +S_7'y2
up to the first power of ijz +S]‘y2 in the energy and the
zeroth power in the relation [Sjy,Sjyl=;z. The “justi-
fication” is essentially the statement that as T —0, the
approach of 6S to zero implies that the matrix ele-
ments of S, +S; 2 hetween the states which are statis-
tically important approach zero. That much more is
needed in the way of justification can be seen striking-
ly for the case S =%: then S]-x2 =Sjy2 =é, which, being
constant for all states (including even the ground state),
obviously is no smaller for states important at low
temperature than for any other states.

%0ne should not forget that the high-T extrapolation
method is not rigorous. Thus the indicated transition
could be spurious, a possibility which we, however,
feel is unlikely.

Vour

- 1% .M
Xx= lim lim °H
N—x H—0
is useful for conceptual reasons. It differs from an-
other ¥, commonly used, in which the order of the lim-
its is reversed. Our y is given for all T by (g2uBZ/
3kT)2RT (R).

e have used the relationship I'(R) —Sp? as R—»,
where ST is the average spin per site. [See L. Van
Hove, Phys. Rev. 95, 1374 (1954), Eq. (27).]

12 Another “proof” that M =0 for T >0 is given in G. H.
Wannier, Elements of Solid State Theory (Cambridge
University Press, London, England, 1959), pp. 111-
113.
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