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We study various properties of the surface of diffusion-limited aggregation (DLA) and invasion
percolation clusters using a “glove algorithm.” Specifically, we define the £-perimeter to be the set of
nonfractal sites with a chemical distance ¢ from a fractal with M sites. We argue that P(M,¢), the
number of sites of the {-perimeter, should obey a scaling law of the form P(M,£)/{ ~ f(£/M/%s),
where f(u) ~ u~% for v — 0 and f(u) — const for u — co. Simulations of two-dimensional
off-lattice DLA clusters, invasion percolation clusters, and percolation hulls—as well as an exact
treatment of the Sierpinski gasket—support this scaling form. We find that an analogous scaling
form holds for G(M, £), the number of sites in the “f-glove,” which is composed of the sites of the
{-perimeter accessible to particles of radius £ from the exterior. Moreover, we define a hierarchy of
“lagoons” for the case of loopless fractals as regions that are inaccessible to particles of different
sizes. We apply this definition to DLA and find that the lagoon-size distribution in DLA is consistent
with a self-similar structure of the aggregate. However, we find even for large lagoons a surprisingly
small most probable width of the necks that separate the lagoons from the exterior of the cluster.
Small neck widths of large lagoons are consistent with a recently proposed void-neck model for the
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geometric structure of DLA.

PACS number(s): 05.40.+j, 61.50.Cj, 64.60.Ak, 81.10.Jt

I. INTRODUCTION

Unlike the points of a compact object, a large fraction
of the sites of a fractal are “exposed” to points that do
not belong to the fractal itself. In other words, a fractal
is almost entirely composed of “surface” [1]. This ob-
servation explains why fractals are of great importance
in a wide range of disciplines. In biology, matter ex-
change takes place across membranes and often requires
large contact areas of the participating systems: oxygen
diffuses into the blood in lung tissue and trees absorb nu-
trients through their widely branched root network. In
chemistry, reaction rates depend on the surfaces that the
reacting species expose to one another. The surface of
a catalyst plays a central role in catalytically controlled
reactions. The use of porous media as electrodes for bat-
teries [2,3] is also important for applications.

In particular, the present study addresses surface prop-
erties of diffusion-limited aggregation (DLA) [3-9], inva-
sion percolation (IP) [10,11], and percolation hull (PH)
[12] clusters. In the DLA model a seed particle is placed
in the center of a coordinate system and a random walk
is released from “infinity.” On contact, the walker sticks
to the growing aggregate, whereupon a new particle is
released. This procedure is repeated until an aggregate
of the desired size is formed. As the cluster grows, its in-
terior is increasingly screened from the exterior, because
incoming particles are more likely to stick to the tips
of the aggregate. A complex, branched, random fractal
is formed, which displays rich scaling properties [13-17]
that are still not fully understood [18]. To improve the
simple structural models of DLA [19-21], a better un-
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derstanding of the geometry of DLA is required. In par-
ticular, the importance of “almost closed loops” in the
structure of the aggregate is debated in conjunction with
highly screened sites [22-25] in parts of the cluster [26].
Since DLA grows by addition of particles approaching
from infinity, only the “exterior” (accessible) cluster sur-
face supports growth and its characterization merits at-
tention.

Similar to the DLA case, IP clusters also only grow on
their “external” surface [10]. As DLA, IP is also used as a
model for fluid displacement in a random medium. The
medium is modeled by a lattice occupied with random
numbers of uniform distribution. The invasion process
starts on a central seed site [10,11,27] and continues by
always replacing the smallest accessible random number
on the surface of the invasion front by a new IP clus-
ter site. If the invasion process forms a loop such that
“defender” fluid is trapped, no more invasion into the
trapped region takes place. Two-dimensional (2D) IP
clusters have been found to be fractals with dimension of
about df ~ 1.82 [10,11].

Motivated by these two examples, we develop an algo-
rithm — the “glove” algorithm — to measure the follow-
ing quantities, defined in Sec. II.

(i) The total perimeter of a fractal [cf. Fig. 1(a)], the
set of all nearest-neighbor sites of the fractal, and a gen-
eralization thereof ({-perimeter) to neighboring sites of
higher order. For DLA, IP, and PH we find scaling rela-
tions which also suggest a method for the determination
of the fractal dimension of an object.

(ii) The accessible perimeter of a fractal [cf. Fig.
1(a)], which is the set of the perimeter sites that can
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FIG. 1. This figure is designed to illustrate the definitions
used throughout the text for the various types of cluster and
perimeter sites. We denote the 39 cluster sites by square sym-
bols, the subset of 37 cluster sites that belong to the hull by
filled squares, and the remaining two internal cluster sites by
hatched squares. (a) The perimeter sites which are nearest
neighbors to cluster sites fall into three categories, (i) internal
perimeter sites, shown as open circles, (ii) external perimeter
sites that are accessible from the exterior only if one can walk
on second neighbors, shown as hatched circles, and (iii) the
remaining external perimeter sites, called accessible perime-
ter and shown as filled circles. (b) The 1l-perimeter of the
same object is the set of all nearest-neighbor sites, denoted
by the symbol (. (c) The second step in the construction of
the {-perimeter. The 2-perimeter sites are nearest-neighbor
sites to the 1-perimeter and denoted by . (d) 1-glove (bold-
face ). Only 1-perimeter sites that are nearest neighbors to
vacant external sites constitute the 1-glove. (e¢) Empty acces-
sible nearest-neighbor sites of the 1-glove form the 2-glove.

be reached from the exterior of the object, and a gen-
eralization thereof ({-gloves) to neighbor sites of higher
order. The accessible perimeter has been studied experi-
mentally, e.g., for porous media and fresh fractures (3,28],
and theoretically for percolation clusters [29-32]. For the
{-gloves of DLA, IP, and PH we find scaling relations sim-
ilar to those describing the ¢-perimeter.

(iii) The “lagoon”-size distribution, where “lagoons”
are generalizations of the notion of voids to the case of
loopless fractals [Sec. IV A]. Lagoons are the regions of
a fractal which are inaccessible to probe particles with a
given size [33]. They are important in connected objects
like IP and DLA, where they are delineated by almost
closed loops in the geometrical structure.

Our study is organized as follows. First, we intro-
duce the glove algorithm and give precise definitions of
the quantities (i) and (ii) in Sec. II. Second, we pro-
pose scaling relations for the ¢-perimeter and the £-gloves
which we apply to the case of DLA (Secs. IIIB 2, IIIC 2).
We analytically calculate the scaling functions for the
Sierpiniski gasket (Appendix A) and obtain numerical
scaling forms for PH (Appendix B) and IP clusters (Ap-

pendix C). Third, we define “lagoons” and study their
distribution in DLA in detail (Sec. IV). Finally, we sum-
marize our results in Sec. V.

II. THE “GLOVE” ALGORITHM

In this section we present an operational definition of
the /-perimeter and the ¢-glove. For the remainder of this
paper, we will assume — as is the case in many computer
simulations — that the object studied is specified as a set
of discrete points on a square lattice.

A. The £-perimeter

Suppose that we attach a label 0 to all the sites of the
investigated object [square-shaped sites in Figs. 1(a)-
1(f)]. Here, we follow the notation of Grossman and
Aharony [30] introduced for percolation, and use the term
“perimeter” to refer to sites that do not belong to the
object itself [circular sites in Figs. 1(a)-1(e)]. To define
the 1-perimeter, we find the nearest-neighbor sites of the
object and label them £ = 1, as shown in Fig. 1(b). Sim-
ilarly, the sites that are nearest neighbors of sites with
£ =1, and not already labeled in the previous step, are
identified as £ = 2 sites and form the 2-perimeter [Fig.
1(c)]. We iterate the procedure and thereby label all
sites surrounding the object [34]. The number £ asso-
ciated with every lattice site is also called the chemical
distance [35] of the site to the object. In general, we will
use the term “/-perimeter” to refer to the set of sites with
the same label ¢, and denote their number by P(M,¥¢).
Here M is the mass or the total number of lattice sites
occupied by the object.

B. The £-gloves

Next we describe the procedure to determine the “/-
gloves” of the object. In the first step, instead of labeling
all the neighbor sites of the object as done for the ¢-
perimeter, we place a flexible “glove,” one lattice unit
thick, on the object.

The 1-glove [boldface symbols @ in Fig. 1(d)] consists
of all nearest-neighbor sites of the object which are also
nearest neighbors to vacant lattice sites with ¢ = 2.

To determine the 2-glove, we iterate the process leading
to the 1-glove. To this end, we consider the union of the
injtial fractal and its 1-glove as the object to place the
2-glove on [Figs. 1(d,e)]. We iterate the covering process
to obtain ¢-gloves up to any desired order.

In Fig. 1(d) we display the 1-glove and in Fig. 1(e) the
2-glove for a small object. The £-glove is always a subset
of the £-perimeter and as the £-perimeter, the subsequent
gloves explore fewer and fewer details of the surface of the
object. For large £, greater than half the diameter of the
largest “lagoon” (see below), the ¢-perimeter and the £-

glove become identical. We denote the number of sites
in the /-glove as G(M, £).
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C. Related notions and possible generalizations

Before continuing, we remark on related mathemat-
ical work. There exist continuum quantities to which
{-perimeter and f-glove are closely related. For exam-
ple, a useful quantity, which can also be successfully em-
ployed to determine fractal dimensions, is the Minkowski
sausage. The Minkowski sausage, or r-neighborhood of
an object, is the set of all points x with distance < r to
the object (for mathematically oriented work introduc-
ing novel methods to determine the fractal dimension of
curves and profiles, see, e.g., [36,37]; for application of
the Minkowski sausage concept in physics and chemistry,
see, e.g., [38]).

If we replace the Euclidean distance in the continuum
by the chemical distance on the lattice and consider (r =
£)-neighborhoods of the fractal on the lattice, then these
{-neighborhoods can be regarded as the lattice versions
of the Minkowski sausages. The f{-neighborhood is the
union of ¢'-perimeters with ¢/ < /. Similarly, one can
construct the £-neighborhoods by “dilation” of the fractal
with a diamond-shaped “structure element” [39]. That is
one places a diamond-shaped object of “diameter” 2/ + 1
on all lattice sites occupied by the fractal and forms the
union of all sites covered by this structure element.

Apparently, the £ + 1 and the ¢-neighborhoods differ
by the sites occupied by the (£ + 1)-perimeter. We note
that only the ezternal sites of the (£ + 1)-perimeter con-
stitute the £ + 1-glove. For further illustration, we ana-
lytically calculate the Minkowski sausage and continuum
analogues of the /-perimeter and ¢-glove for the Sierpinski
gasket in Appendix A.

The numbers £ assigned to the sites of a square lattice
by the glove algorithm constitute a distance transform
of the set of lattice sites occupied by the fractal. A dis-
tance transform is an array of numbers representing the
shortest distances to occupied lattice sites in a particular
metric. In this context, the glove algorithm can be clas-
sified as the 4-neighbor distance transform [40]. More so-
phisticated transforms approximate Euclidean distances
more closely and have been used, e.g., in [36] to determine
Minkowski sausages. Although we have defined {-glove
and {-perimeter for two dimensions, these could be gener-
alized to higher dimensions, as done for the ¢-perimeter,
e.g., in [40].

III. SCALING LAWS FOR PERIMETERS
AND GLOVES

A. General remarks

Scaling arguments have successfully been applied in
physics to describe a host of phenomena in a variety of
fields, most notably critical phenomena. The shortest
route to scaling makes use of properties of generalized
homogeneous functions [41]. A generalized homogeneous
function f(z,y) of two variables z and y obeys the rela-
tion

f(X*z, \Py) = Af(z,y). (3.1)

Elementary considerations [41] show that (3.1) is equiv-
alent to writing

F(z,y) = y"/*F(z/y*/®,1) = y*/* f (z/y*/*).

Here f(u) is called the scaling function and u = z/y
the scaling variable. The functional form of the scaling
function f(z/y*/?) and the exponents a and b in this
relation are universal, i.e., they are not sensitive to model
“details,” such as the lattice on which a specific model is
studied. Model-dependent “details” enter the amplitude
of the scaling function.

The rather strong assumption that the studied quan-
tity F'(z,y) is a homogeneous function can in general
only be justified a posteriori, by the empirical success in
extracting invariant, universal features from data sets.

In the following sections, we will discuss scaling rela-
tions of the above form for the /-perimeter and the ¢-glove
of DLA, PH, and IP. To this end, we will assume that
the scaling variable is an appropriate combination of the
chemical distance ¢ and the number M of occupied lat-
tice sites. We relate the exponents of the encountered
scaling relations to known exponents of these models, in
particular, the fractal dimension of the object itself and
the fractal dimension of its external perimeter, respec-
tively. Moreover, some features of the functional form of
the scaling functions will be explained.

(3.2)

a/b

B. Scaling of the £-perimeter P(M, ¢)
1. Scaling arguments

We first analyze the f-perimeter in detail and derive a
scaling form for the behavior of P(M,¥).

For small but fixed values of ¢ (much smaller than a
crossover value £, on the order of the linear extension
of the cluster), we expect that P(M,{) is asymptotically
proportional to M [42],

P(M,¢) ~b(O)M

[ < Ly (M))]. (3.3a)

To study the ¢ dependence of b({), we note that if
¢ increases, P(M,¢) will initially decrease due to the
smoothening process as the ragged perimeter of the
fractal is successively filled in [Figs. 1(b,c)]. We next
argue that the fractal dimension dj characterizes this
smoothening process. If we cover the fractal by boxes
of linear size €, then the number of boxes containing
points of the fractal is N(e) ~ ¢~%/. The perimeter of
the boxes is an approximation to the £(= ¢/2)-perimeter
of the fractal. Thus, for fixed M, P(M,£) is proportional
to N(20)¢ ~ £74+1; s0 we expect

[£ < £x(M)).

For £ > £, (M) details of the cluster structure are no
longer important. Since voids in fractals occur on all
length scales, up to the size of the fractal, we expect
£, (M) to be of the size of the linear extension of the
fractal. Thus, for large ¢, the f-perimeter behaves like
the perimeter of a nonfractal object,

b(£) ~ %+ (3.3b)
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P(M, )~ ¢ [€> £, (M)]. (3.3¢)
The relations (3.3a)—(3.3c) can be cast into a single scal-
ing form [cf. Eq. (3.2)],
P(M,£) ~ £2f(u), u=£/MP, (3.4)
where the scaling function f(u) and the exponents a, 3
are constrained by Egs. (3.3a)—(3.3c) The exponents «
and (3 are determined as follows. (i) Since for large values
of u, when £>> £, (M), P(M,£) does not depend on M,
we expect that f(u) approaches a constant. Comparison
of Eq. (3.4) with (3.3c) shows that a = 1. (ii) For small
arguments, f(u) must display a power-law singularity in
order to recover Eqs. (3.3a) and (3.3b). If we assume
that f(u) ~u™¥, then
P(M,£) ~ 7Y /MY (3.5)
and we obtain ¢ = dy and § = 1/y = 1/ds. The con-
stant crossover value uy between these two regimes is
determined by £y;
ux = £y (M) /MY, (3.6)
Thus ¢4 (M) has a power-law. dependence on M, £, ~
M?'/4s  and is proportional to the linear extension M1/%s
of the cluster.
Finally, the scaling relation (3.4) takes the form

P(M,£) ~ £f(£/MY/41), (3.7a)

1185

where

const, u — oo. (3.7b)

s~ { o 50

We note that a scaling plot of f(u) as in Fig. 2(a)
can be used to determine dy. The unknown value of
ds should be considered as a parameter that must be
adjusted in order to obtain the best possible data col-
lapse. The exponent characterizing f(u) for small u can
be used to test the value of df. For growth models such
as DLA, the scaling of the ¢-perimeter combines informa-
tion about the growth dynamics — the increasing linear
extension of the cluster as a function of cluster mass —
with information about the static structure of a fixed size
cluster — here, dy.

2. Diffusion-limited aggregation

We study the ¢-perimeter of PH and IP as test cases
in Appendixes B and C while here we concentrate on the
determination of the scaling function fppa(u) for the £-
perimeter of DLA.

Even rather small on-lattice DLA is known to display
lattice effects that lead to anisotropic cluster growth [43],
since growth occurs preferably in the direction of the lat-
tice axes. Consequently, we base our analysis of DLA
on clusters grown off lattice. The coordinates of 2D off-
lattice DLA clusters are discretized such that the clus-
ter is a connected object of nearest- and next-nearest-
neighbor lattice sites.

(T;DLA'(M;‘)' / ,t

10° . 10° ——— l
a b
10° @ ] ® ]
10 1 10 1
10° 1 10 .
10? 1 10 1
10! %‘%%n T %ﬁ% «
o To o
1 A Y B B 10° P S S B
0.001  0.01 0.1 1 10 0.001 0.01 0.1 1 10
L) M/ () W
FIG. 2. (a) The scaling function fpLa(u) = Ppra(M,£)/f vs u = £/MY*™ for the DLA case. M
refers to the number of particles in the aggregate, ranging from 50 to 120000. The data are obtained
by averaging over 21 2D off-lattice DLA clusters. The £ values are 1 (A), 3 (M), 7 (e), 15 (&), 23

(v), 31 (O), and 43 (O). Results obtained for £-perimeters determined using nezt-nearest neighbors are not displayed; however,
they differ only in the amplitude of Ppra(M,£). (b) gora(v) = GoLa(M,£€)/¢ vs u = £/M*/*™ for DLA. The (scheme B)
1-glove is a subset of the 1-surface, the set of nearest-neighbor sites of the cluster, comprising the sites that are still susceptible
for further growth. Displayed {-values are 1 (A), 2 (W), 3 (o), 5 (V), 7 (4A), 15 (O), and 31 (O). The data are averaged
over 21 DLA clusters of mass M = 50,...,120000. We obtain similar results that only differ in the amplitude of Gpra(M,¥£)
if nearest-neighbor connectivity in scheme B is replaced by next-nearest-neighbor (NNN) connectivity or if the £-gloves are
calculated as subsets of £-perimeters based on NNN connectivity.
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In Fig. 2(a) we display our calculation of the scaling
function

fora(u) = Pora(M,0)/¢

for DLA, where u = £/M?'/%s is the scaling variable. We
analyze 21 off-lattice DLA clusters for a sequence of val-
ues of M up to 120 000.

For small u, we find straight line behavior of fpra(u)
with a slope of ~ 1.73£0.03, which is close to the fractal
dimension dy = 1.715 + 0.004 [44] of DLA as obtained
from analyses of the scaling of cluster mass as a function
of its radius of gyration. For large u, fpra(u) converges
towards a constant value [Eq. (3.7b)] equal to 4, as ex-
pected for off-lattice DLA discretized on a square lattice.

(3.8)

C. Scaling of the £-glove G(M,¢£)
1. Scaling arguments

In general, since the {-glove is a subset of the /-

perimeter, we know that

G(M,¢) < P(M,?). (3.9)
Therefore, if we consider the £-glove and the ¢-perimeter
of a fractal for equal but arbitrary £ as fractals in their
own right, we obtain the relation dperimeter > dglove;
where dperimeter and dglove are the fractal dimensions of
{-perimeter and ¢-glove for fixed, but arbitrary ¢. In Sec.
III B, we have argued that in fact dperimeter = dy, inde-
pendent of £, provided £ < £.

A similarly strong statement cannot be made for the
{-glove. For example, in Appendix B we show that the 1-
glove and the 2-glove of percolation have different fractal
dimensions.

We will ask whether a similar effect, viz., a difference
in the fractal dimension of {-perimeter and ¢-glove for
specific £, occurs also in other fractals, e.g., DLA. To
this end we will assume that the scaling relations (3.7a)
and (3.7b) also hold for the scaling of the length of the
{-gloves G(M, £),

G(M, €) ~ Lg(£/ M), (3.10a)
where
u %, u—0
g(u) ~ { const, u — o0. (3.10b)

Here, we use the symbol g to denote the scaling functions
associated with the /-gloves.

Different fractal dimensions of ¢-gloves for different ¢
— as in the percolation case — will be heralded by a
breakdown of Egs. (3.10a) and (3.10b).

2. Diffusion-limited aggregation

The motivation to study the £-gloves of DLA originates
in the quest for a structural model of the cluster structure
[20-24,26]. DLA fjords display pronounced sidebranch-

ing and as a result of the growth process, two of these
branches may approach each other from opposite sides of
the fjord to form a “neck.” If such neck formation is an
essential feature of DLA structure, then it can possibly
be detected in the scaling behavior of the ¢-gloves, since,
if £ increases, narrow necks are no longer penetrated by
the f-glove. As a consequence, for £ > 1, the /-glove may
have a smaller fractal dimension than the DLA cluster
itself.

The mass dependence of the number of perimeter
sites susceptible to further growth in 2D on-lattice DLA,
which is identical to the 1-glove of the cluster, has been
studied in [45] in a different context and found to be
proportional to the cluster mass, in agreement with the
scaling relations Egs. (3.10a) and (3.10b). We display a
scaling plot [Fig. 2(b)] of

gDLA(u) = GDLA(M,E)/K

for £ > 1, where the scaling variable is u = £/M*/7L.
Here, the exponent 1.71 yields the best data collapse. We
find the exponent of the singularity of gppa (u) for small
u to be 1.73 + 0.05. Both numbers, 1.71 and 1.73 £ 0.05,
agree with the fractal dimension of DLA determined in
Sec. IIIB. The data collapse implies that all the ¢-gloves
of DLA, with { € £y (M) ~ M?'/45 have the same fractal
dimension as the cluster itself.

Thus we do not find evidence for a different scaling of
narrow necks in the DLA structure from a study of the
{-gloves. Also, unlike the percolation models, DLA does
not display different fractal dimensions of ¢-perimeters
and £-gloves.

(3.11)

IV. DISTRIBUTION OF LAGOON SIZES
AND NECK WIDTHS FOR DLA

Next, we will describe another attempt made to iden-
tify effects of neck formation in DLA fjords. We first
introduce the notion of “lagoons” to generalize the no-
tion of voids in regular fractals to the case of loopless
fractals (or any collection of points).

A. Definition of “necks” and ‘“lagoons”

Consider, e.g., a circle with a small opening of width
w = 24y, a simple example of a loopless object [other
examples with various openings are given in Figs. 3(a)-
3(c)]. Cover the surface with gloves, one after the other.
When the number of gloves equals £y, the glove cannot
penetrate into the opening, leaving some interior sites va-
cant. For a general connected object, after having placed
a sufficient number of gloves, we recognize several distinct
connected patches of vacant sites isolated from each other
by gloves. Each of these patches identifies what we call
a “lagoon.” We define the lagoon size to be the number
s of sites in each patch. Thus we exzclude ¢-perimeter
sites with £ < ¢, from contributing to the lagoon size [for
illustration, see Figs. 3(e)-3(f)].

The sites where glove £y “touches itself” identify a
“neck” of width w = 2¢, [46] — see Figs. 3(a)-3(c).




































