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We propose a ‘‘nonconsensus’’ opinion model that allows for stable coexistence of two opinions by

forming clusters of agents holding the same opinion. We study this nonconsensus model on lattices,

several model complex networks, and a real-life social network. We find that the model displays a phase

transition behavior characterized by a large spanning cluster of nodes holding the same opinion appearing

when the concentration of nodes holding the same opinion (even minority) is above a certain threshold.

Because of the clustering (community support) of agents holding the same opinion, these clusters cannot

be invaded by the other opinion (similar to incompressible fluids). Our extensive simulations show that the

nonconsensus opinion model appears to belong to the same universality class as invasion percolation.
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Social dynamics has been studied extensively in recent
years using concepts and methods based on ideas from
statistical physics. An important approach is complex net-
works, where the nodes represent agents and the links
represent the interactions between them. There is consid-
erable current interest in the problem of how two compet-
ing opinions evolve in populations [1]. Various versions of
the opinion model have been proposed [1], among which
are the Sznajd model [2], the voter model [3], the majority
rule model [4], and the social impact model [5]. Models
incorporating the evolution of two competing states can be
mapped into spin models and can be applied in a much
broader range of disciplines from chemistry, physics, and
biology to social science [1].

The main models which are based on spin systems with
short range interactions lead to a steady state with either
consensus of a single opinion or equal concentrations of
the two opinions [3,4]. In real life, however, a stable
coexistence with unequal concentrations of two opinions
is commonly seen.

In this Letter, we propose a spin-type nonconsensus
opinion (NCO) model, which demonstrates novel nontri-
vial stable states in which stable coexistence of minority
and majority opinions occurs. This stable state is reached
from a random initial configuration after a dynamical
process in a relatively short time. Further, we find that,
when the population of one opinion is above a certain
critical threshold, even still minority, a large spanning
cluster of a size proportional to the total population forms.
Using extensive simulations, we find that the phase tran-
sition in the NCO model belongs to the same universality
class as invasion percolation with trapping (TIP) [6,7].
Once agents holding the same opinion form a cluster,
where each member of the cluster gets enough commu-
nity support to hold its opinion, the cluster becomes stable
and cannot be penetrated by the other opinion such as
incompressible fluids in TIP. This is the first time that an
opinion model as well as clustering behavior in opinion

formation can be mapped to a known physics percolation
problem.
The structure of clusters formed by agents holding the

same opinion is relevant in many real-life scenarios, such
as the propagation of ideas in human populations and
communications among people holding the same opinion.
Thus, it is of interest to identify and understand the topo-
logical properties of the formed clusters, as well as the
distribution of the sizes of clusters and the average distance
between agents belonging to the same cluster.
The basic assumption of the NCO model is that opinion

formation is a process where an agent’s opinion is influ-
enced both by his own current opinion and that of his
friends represented as nearest neighbors in the network.
This assumption implies that a person is influenced by the
majority opinion of the group which includes his friends
and himself. The idea of incorporating the role played by
the current state of an agent on its future state has been
considered elsewhere [8]. The two opinions are denoted by
�� and�þ. At time t ¼ 0, opinions are randomly assigned
to all nodes: With probability f a node will be assigned
opinion �� and with probability 1� f opinion �þ. For a
randomly chosen node i, the node and its nearest neighbors
form a set of nodes Ai. At each time step, node i will
convert to its opposite opinion, if it is in the local minority
opinion. If the two opinions are equally represented in Ai, i
will have probability p to convert to its opposite opinion
and probability 1� p to remain unchanged. For simplicity,
we present here results only for p ¼ 0 [9]. At each simu-
lation step, every node is tested to see whether its opinion
needs to be changed. All of the updates are made simulta-
neously at each simulation step. The system is considered
to reach a stable state if no more changes occur.
The NCO model shares features with the majority-voter

model [3]. The difference is that the majority-voter model,
which converges to consensus in its stable state, takes into
account only the opinion of neighbors of a selected node i.
Here we include the opinion of node i itself into consid-
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eration, which makes the formation of stable clusters pos-
sible even for nonzero p.

A demonstration of the dynamics in the NCO model is
shown in Fig. 1. At time t ¼ 0, nodes C, D, and E form a
stable cluster. No matter what the opinion is of the nodes
outside the cluster, the community support inside the clus-
ter is enough for nodes C, D, and E to keep their opinions
and not to be invaded by the opposite opinion, which is like
a trapped liquid (pore) in TIP. In the stable state, all clusters
formed by both opinions are stable clusters. Unlike TIP,
one opinion in the NCOmodel can behave at the same time
both as an invading liquid and as an invaded liquid, as
expected for opinion dynamics, so the NCO model can
demonstrate several unique properties, as we discuss later.

We perform simulations of the NCO model in network
models and in a real-life network. The network models
include Erdős-Rényi (ER) networks, scale-free (SF) net-
works [10], and also two-dimensional (2D) regular lattices
[including hexagonal (HX), square (SQ), and triangular
(TR) lattices]. As an example of real-life networks, we
analyze the high energy physics (HEP) citations network
[11]. ER networks are characterized by a Poisson degree
distribution with average degree hki. SF networks are
characterized by a power-law degree distribution PðkÞ �
k��, with kmin � k < kmax. To ensure network compact-
ness, we choose kmin ¼ 2. We use the known natural cutoff
for kmax [12]. Simulations on the SF network with � ¼ 2:5
[13] are reported here.

Next, we show the emergence of a phase transition in the
stable state as the minority opinion �� becomes more and
more influential (increasing concentration), even well be-
fore becoming the majority. We denote by F the fraction of
�� nodes and S the sizes of the clusters formed by the ��
nodes in the stable state. The size of the largest and second
largest clusters are denoted by S1 and S2, respectively, and
we define s1 � S1=N and s2 � S2=N. The system reaches
a stable state after a few simulation steps [14]. In Fig. 2, we
show F, s1, and s2 as a function of f for four different

networks. We find that F is a monotonically increasing
function of f with symmetry around ðf; FÞ ¼ ð0:5; 0:5Þ—
as expected, since the two opinion states are symmetrical.
At a certain critical value f ¼ f�, s1 shows a sharp increase
from a very small value to a finite fraction of the entire
system, while s2 displays a sharp peak, a characteristic of a
second-order phase transition [15].
The values of f� and Fðf�Þ depend only on the type of

the network and are almost independent of N. As can be
seen in Fig. 2, in the stable state, if the final concentration
of �� opinion node is above the threshold Fðf�Þ, the ��
nodes will be able to form a large spanning cluster of the
order of the system size N. Below this threshold only
isolated small clusters can form. Note that f� for ER, SF,
and HEP networks are all less than 0.5, implying that a
phase transition occurs for nodes holding the minority
opinion. Only for the HX lattice, f� � 0:567 [16].
Note that for the NCO model—in contrast to the social

impact model [5]—stable clusters of nodes holding the
minority opinion can persistently survive without assum-
ing influential or strong-willed nodes residing inside the
clusters.
Next, we present results indicating that the NCO model

is in the same universality class as TIP. For regular (site and
bond) percolation at criticality, the probability density
function of the cluster size S follows a power law PðSÞ �
S��, where � ¼ 2:055 for 2D lattices and � ¼ 2:5 for
higher dimensional networks such as ER and SF [17]. In
contrast, the TIP model shows a power-law distribution of

FIG. 1. Dynamics of the NCO model showing the approach to
a stable state on a network with N ¼ 9 nodes. For simplicity, we
assume p ¼ 0. (a) At t ¼ 0, five nodes are randomly assigned to
be �þ (filled circle). The remaining four nodes are assigned ��
(open circle). In the set comprising of node A and its 4 neighbor-
ing nodes (dashed box), node A is in a local minority opinion (2
�þ nodes and 3 �� nodes), while the remaining nodes are not.
At the end of simulation step t ¼ 0, node A is converted into ��.
(b) At t ¼ 1, in the set of nodes comprising node B and its
6 neighboring nodes (dotted box), node B becomes in a local
minority opinion (3 �þ nodes and 4 �� nodes), while the
remaining nodes are not. Node B is converted into �� at the
end of simulation step t ¼ 1. (c) At t ¼ 2, the nine-nodes system
reaches a stable state.
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FIG. 2 (color online). Plot of the normalized size of the largest
cluster s1 (dotted line), the second largest cluster s2 (full line),
and the fraction of �� nodes F (dashed line) in the stable state as
a function of f for (a) a SF network with � ¼ 2:5 and N ¼ 105,
(b) an ER network with hki ¼ 4 and N ¼ 105, (c) a HEP network
with ��2:9, and (d) a HX lattice of size 1000�1000 [20]. Each
curve represents an average over 100 realizations. The sharp
increase of s1 and the peak of s2 at f� indicate a second-order
phase transition. The insets in (a) and (d) show gðS1; NÞ [Eq. (1)]
as a function of N at the critical threshold f� (d), f� þ� (e),
and f� �� (h), where � ¼ 0:01 for SF and � ¼ 0:005 for HX.
At f�, gðS1; NÞ approaches a constant, indicating the size of the
largest cluster S1 proportional to N� at f� [Eq. (1)], which is
another characteristic of a second-order phase transition.
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the sizes of pores [see Fig. 3(a)] with a cumulative distri-
bution function having the form PðS0 > SÞ � S1��, with
� � 1:90� 0:01 for 2D lattices, different from regular
percolation.

We find that, for the NCO model in 2D lattices, the
cumulative distribution function of cluster sizes at critical-
ity [see Fig. 3(a)] is PðS0 > SÞ � S1��, with � � 1:89�
0:01, which is close to the � from the distribution of pore
sizes in the TIP model. This fact leads us to hypothesize
that for a 2D lattice the NCO model belongs to the same
universality class as TIP.

To further test this hypothesis, we study the fractal
dimensions of the stable clusters formed by the NCO at
criticality. For regular percolation in 2D lattices, the fractal
dimensions of the clusters at criticality can be calculated
from the power-law relation between S and the cluster
diameter, which is represented by either the radius of
gyration Rg or the average hopping distances between all

pairs of nodes ‘: S� R
df
g and S� ‘d‘ , where df ¼

91=48 ¼ 1:896 and d‘ � 1:678� 0:003 [17]. For TIP in
2D lattices, the invading liquid has fractal dimensions of
df � 1:83� 0:01 and d‘ � 1:51� 0:01 [6].

Our simulations for 2D lattices show that the stable
clusters of the NCO model at criticality are also fractals.
To test whether they have the same fractal dimensions as

TIP (as our hypothesis), we plot Rg=S
1=df and ‘=S1=d‘ as a

function of S in Figs. 3(b) and 3(c). We test different trial
values of df and d‘ to find the best power-law fits for the

simulation results. We find that for df ¼ 1:84, for both SQ

and TR, Rg=S
1=df approaches asymptotically a constant. In

contrast, when we choose df ¼ 1:896 (regular percolation

fractal dimension), for Rg=S
1=df we observe an increasing

function with S. On the other hand, when d‘ ¼ 1:54,

‘=S1=d‘ approaches a constant. In contrast, when d‘ ¼
1:678 (as regular percolation), ‘=S1=d‘ is an increasing
function of S. We conclude that, for the NCO model, df �

1:84� 0:01 and d‘ � 1:54� 0:02, in close agreement
with the fractal dimensions of invading fluid in TIP.
These results provide further supports for the NCO
model belonging to the same universality class as the TIP
model.
It is known that for 3D or higher dimensional systems,

which include ER and SF, trapping becomes not effective
and TIP falls into the same universality class of regular
percolation [6]. Our simulations of the NCO model on ER
(not shown) and SF networks indeed show the same PðS0 >
SÞ [see Fig. 3(a)] and the same fractal dimension (not
shown) as for regular percolation. For the NCO model,
�� nodes serve as both invading liquid and replaced liquid
(similarly for the �þ nodes), which is the reason why at
criticality �� nodes have both the df and d‘ of the invad-

ing fluid and the � of the pores.
To further support the existence of a second-order phase

transition, in the insets in Figs. 2(a) and 2(d), we plot
gðS1; NÞ as a function of N at f� and f� � �, where

gðS1; NÞ � S1=N
�: (1)

Here � ¼ 0:667 for high-dimensional networks like SF and
ER, and � ¼ df=2 for 2D lattices [17]. It is another char-

acteristic of a second-order phase transition that at criti-
cality gðS1; NÞ approaches a constant. Indeed, for SF with
� ¼ 2:5 (f� � 0:450), when � ¼ 0:667, gðS1; NÞ ap-
proaches a constant. For HX (f� � 0:567), when � ¼
0:92, gðS1; NÞ also approaches a constant. The fact that
the theoretically predicted values of � fit well the simula-
tion results provides further evidence for our findings.
To understand why, in contrast to regular percolation

[13], the NCO model in the SF network with � < 3 and
HEP (which is approximately SF) displays a critical per-
colation behavior at nonzero Fðf�Þ, we study the average
degree hkðfÞi and the cumulative degree distribution
Pfðk0 > kÞ of the �� nodes in the stable state. Fig-

ure 4(a) shows hkðfÞi for SF networks with � ¼ 2:5 and
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FIG. 3 (color online). (a) The cumulative distribution function of cluster sizes PðS0 > SÞ at f� for a NCO model on a SQ lattice with
N ¼ 9� 106 (3000� 3000) and a SF network with � ¼ 2:5 and N ¼ 105. PðS0 > SÞ � S1�� for both SQ and SF, where � � 1:89
(SQ) and � � 2:5 (SF). PðS0 > SÞ of the sizes of pores of TIP on SQ with N ¼ 9� 106 is also shown, which also takes the form
PðS0 > SÞ � S1�� with � � 1:90. Averages over 100 realizations are shown for all curves. (b) For the NCO model, at criticality,
Rg=S

1=df as functions of S for SQ and TR with N ¼ 9� 106. For the trial value df ¼ 1:84, Rg=S
1=df approaches a constant. For

df ¼ 1:896 (regular percolation fractal dimension), Rg=S
1=df is an increasing function of S. (c) For the NCO model, at criticality,

‘=S1=d‘ as a function of S for SQ and TR with N ¼ 9� 106. For the trial value d‘ ¼ 1:54, ‘=S1=d‘ approaches a constant. For d‘ ¼
1:678 (regular percolation fractal dimension), ‘=S1=d‘ is an increasing function of S. In (b) and (c), each curve is averaged over
1000 realizations.
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for the HEP network (� � 2:9). Note that hkðfÞi shows a
significant increase at f ¼ 0:5, which demonstrates that
the minority opinion nodes have a significantly lower
degree compared to those of the majority opinion. We
also show Pfðk0 > kÞ for different values of f in

Fig. 4(b), which provides further evidence for lower de-
grees and the appearance of significantly fewer high de-
gree nodes in the minority opinion [18]. This explains why,
for SF networks with � ¼ 2:5 and for HEP, we observe a
phase transition in the NCO model. The minority opinion
nodes do not include high degree nodes which are respon-
sible for the formation of large spanning cluster for pc ! 0
in regular percolation. This process is analogous to remov-
ing the hubs from a SF network, for which pc becomes
finite [19].

In summary, we propose a nonconsensus opinion model,
which allows the stable coexistence of minority and ma-
jority opinions. In the stable state, nodes holding the same
opinion demonstrate a phase transition from small clusters
to large spanning clusters when the concentration of that
opinion increases. Our simulations suggest that the phase
transition belongs to the same universality class as invasion
percolation, which is physically reasonable because, due to
the clustering (‘‘community support’’) of agents holding
the same opinion, stable clusters cannot be invaded by the
other opinion (similar to incompressible fluids). Thus, an
opinion model can be mapped to a known physics perco-
lation problem.
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FIG. 4 (color online). (a) The average degree hkðfÞi of ��
nodes in the stable state as a function of f for a SF network with
� ¼ 2:5 and N ¼ 105 and the HEP network. It is seen that, for
f < 0:5, hkðfÞi is significantly smaller than that for f > 0:5,
since the high degree nodes join the majority opinion [18].
(b) The cumulative degree distribution Pfðk0 > kÞ of �� nodes

in the stable state for a SF network with � ¼ 2:5 and N ¼ 105.
Pfðk0 > kÞ for f ¼ 0:450 and 0.5 are plotted. Notice that f� �
0:450. The absence of high degree �� nodes in a stable state for
f < 0:5 is again confirmed.
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