
..............................................................

Self-similarity of complex networks

Chaoming Song1, Shlomo Havlin2 & Hernán A. Makse1

1Levich Institute and Physics Department, City College of New York, New York,
New York 10031, USA
2Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan
52900, Israel
.............................................................................................................................................................................

Complex networks have been studied extensively owing to their
relevance to many real systems such as the world-wide web, the
Internet, energy landscapes and biological and social networks1–5.
A large number of real networks are referred to as ‘scale-free’
because they show a power-law distribution of the number of
links per node1,6,7. However, it is widely believed that complex
networks are not invariant or self-similar under a length-scale
transformation. This conclusion originates from the ‘small-
world’ property of these networks, which implies that the
number of nodes increases exponentially with the ‘diameter’ of
the network8–11, rather than the power-law relation expected for a
self-similar structure. Here we analyse a variety of real complex
networks and find that, on the contrary, they consist of self-
repeating patterns on all length scales. This result is achieved by
the application of a renormalization procedure that coarse-
grains the system into boxes containing nodes within a given
‘size’. We identify a power-law relation between the number of
boxes needed to cover the network and the size of the box,
defining a finite self-similar exponent. These fundamental prop-
erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
Two fundamental properties of real complex networks have

attracted much attention recently: the small-world and the scale-
free properties.Many naturally occurring networks are ‘small world’
because we can reach a given node from another one, following the
path with the smallest number of links between the nodes, in a very
small number of steps. This corresponds to the so-called ‘six degrees
of separation’ in social networks10. It is mathematically expressed by
the slow (logarithmic) increase of the average diameter of the
network, �l; with the total number of nodes N, �l< lnN; where l
is the shortest distance between two nodes and defines the distance
metric in complex networks6,8,9,11. Equivalently, we obtain:

N < e
�l=l0 ð1Þ

where l0 is a characteristic length.
A second fundamental property in the study of complex networks

arises with the discovery that the probability distribution of
the number of links per node, P(k) (also known as the degree
distribution), can be represented by a power-law (‘scale-free’) with a
degree exponent g that is usually in the range 2 ,g , 3 (ref. 6):

PðkÞ< k2g ð2Þ
These discoveries have been confirmed in many empirical studies of
diverse networks1–4,6,7.
With the aim of providing a deeper understanding of the

underlying mechanism that leads to these common features, we
need to probe the patterns within the network structure in more
detail. The question of connectivity between groups of intercon-
nected nodes on different length scales has received less attention.
But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
web (WWW), social, protein–protein interaction networks (PIN)
and cellular networks are invariant or self-similar under a length-
scale transformation.

This result comes as a surprise, because the exponential increase
in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
that we show to be valid for dissimilar complex networks.

To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration

of the method for different lB. The first column depicts the original network. We tile the

system with boxes of size lB (different colours correspond to different boxes). All nodes in

a box are connected by a minimum distance smaller than the given lB. For instance, in the

case of lB ¼ 2, we identify four boxes that contain the nodes depicted with colours red,

orange, white and blue, each containing 3, 2, 1 and 2 nodes, respectively. Then we

replace each box by a single node; two renormalized nodes are connected if there is at

least one link between the unrenormalized boxes. Thus we obtain the network shown in

the second column. The resulting number of boxes needed to tile the network, N B(lB), is

plotted in Fig. 2 versus lB to obtain d B as in equation (3). The renormalization procedure is

applied again and repeated until the network is reduced to a single node (third and fourth

columns for different lB). b, The stages in the renormalization scheme applied to the

entire WWW. We fix the box size to lB ¼ 3 and apply the renormalization for four stages.

This corresponds, for instance, to the sequence for the network demonstration depicted in

the second row in panel a. We colour the nodes in the web according to the boxes to which

they belong. The network is invariant under this renormalization, as explained in the

legend of Fig. 2d and the Supplementary Information.
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network embedded in euclidean space, of which a classical example
would be a fractal percolation cluster at criticality12. To unfold the
self-similar properties of such clusters we calculate the fractal
dimension using a ‘box-counting’ method and a ‘cluster-growing’
method13.

In the firstmethodwe cover the percolation cluster withNB boxes
of linear size lB. The fractal dimension or box dimension dB is then
given by14:

NB < l
2dB
B ð3Þ

In the second method, the network is not covered with boxes.
Instead one seed node is chosen at random and a cluster of nodes
centred at the seed and separated by a minimum distance l is
calculated. The procedure is then repeated by choosing many seed
nodes at random and the average ‘mass’ of the resulting clusters
(kMcl, defined as the number of nodes in the cluster) is calculated as
a function of l to obtain the following scaling:

kMcl < l
df ð4Þ

defining the fractal cluster dimension d f
14. Comparing equations

(4) and (1) implies that d f ¼ 1 for complex small-world
networks.

For a homogeneous network characterized by a narrow degree
distribution (such as a fractal percolation cluster) the box-counting
method of equation (3) and the cluster-growing method of
equation (4) are equivalent, because every node typically has the

same number of links or neighbours. Equation (4) can then be
derived from equation (3) and dB ¼ d f, and this relation has been
regularly used.
The crux of the matter is to understand how we can calculate a

self-similar exponent (analogous to the fractal dimension in eucli-
dean space) in complex inhomogeneous networks with a broad
degree distribution such as equation (2). Under these conditions
equation (3) and (4) are not equivalent, as will be shown below. The
application of the proper covering procedure in the box-counting
method (equation (3)) for complex networks unveils a set of self-
similar properties such as a finite self-similar exponent and a new set
of critical exponents for the scale-invariant topology.
Figure 1a illustrates the box-covering method using a schematic

network composed of eight nodes. For each value of the box size lB,
we search for the number of boxes needed to tile the entire network
such that each box contains nodes separated by a distance l , lB.
This procedure is applied to several different real networks: (1) a

part of the WWW composed of 325,729 web pages that are
connected if there is a URL link from one page to another6

(http://www.nd.edu/,networks); (2) a social network where the
nodes are 392,340 actors linked if they were cast together in at least
one film15; (3) the biological networks of protein–protein inter-
actions found in Escherichia coli (429 proteins) and Homo sapiens
(946 proteins) linked if there is a physical binding between them
(database available via the Database of Interacting Proteins16,17,
other PINs are discussed in the Supplementary Information), and

Figure 2 Self-similar scaling in complex networks. a, The upper panel shows a log-log

plot of N B versus lB, revealing the self-similarity of the WWW and actor network

according to equation (3). The lower panel shows the scaling of s(lB) versus lB according

to equation (9). The error bars are of the order of the symbol size. b, Same as a but for two

PINs: H. sapiens and E. coli. Results are analogous to b but with different scaling

exponents. c, Same as a for the cellular networks of A. fulgidus, E. coli and C. elegans.

d, Invariance of the degree distribution of the WWWunder the renormalization for different

box sizes, lB. We show the data collapse of the degree distributions, demonstrating the

self-similarity at different scales. The inset shows the scaling of k
0 ¼ s(lB)k for different

lB, whence we obtain the scaling factor s(lB). Moreover, we also apply the

renormalization for a fixed box size, for instance lB ¼ 3 as shown in Fig. 1b for the WWW,

until the network is reduced to a few nodes, and find that P(k) is invariant under these

multiple renormalizations as well, for several iterations (see Supplementary Information).
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(4) the cellular networks compiled by ref. 18 using a graph-
theoretical representation of all the biochemical pathways based
on the WIT integrated-pathway genome database19 (http://igweb.
integratedgenomics.com/IGwit) of 43 species from Archaea, Bac-
teria and Eukarya. Here we show the results for Archaeoglobus
fulgidus, E. coli and Caenorhabditis elegans18; the full database is
analysed in the Supplementary Information. It has been previously
determined that theWWWand actor networks are small-world and
scale-free, characterized by equation (2) with g ¼ 2.6 and 2.2,
respectively1. For the PINs of E. coli and H. sapiens we find
g ¼ 2.2 and 2.1, respectively. All cellular networks are scale-free
with average exponent g ¼ 2.2 (ref. 18). We confirm these values
and show the results for the WWW in Fig. 2.
Figure 2a and b shows the results ofNB(lB) according to equation

(3). They reveal the existence of self-similarity in the WWW, actors
and E. coli andH. sapiens PINswith self-similar exponents dB ¼ 4.1,
dB ¼ 6.3, and dB ¼ 2.3 and dB ¼ 2.3, respectively. The cellular
networks are shown in Fig. 2c and have dB ¼ 3.5.
We now elaborate on the apparent contradiction between the two

definitions of self-similar exponents in complex networks. After
performing a renormalization at a given lB, we calculate the mean
mass of the boxes covering the network, kMB(lB)l, to obtain:

kMBðlBÞl ;N=NBðlBÞ< l
dB
B ð5Þ

which is corroborated by direct measurements for all the networks,
and shown in Fig. 3a for the WWW.

On the other hand, the average obtained from the cluster-
growing method (for this calculation we average over single boxes
without tiling the system) gives rise to an exponential growth of the
mass:

kMcðlBÞl < elB=l1 ð6Þ
with l1 < 0.78 in accordance with the small-world effect equation
(1), as seen in Fig. 3a.

The topology of scale-free networks is dominated by several
highly connected hubs—the nodes with the largest degree—imply-
ing that most of the nodes are connected to the hubs via one or very
few steps. Therefore the average obtained in the cluster-growing
method is biased; the hubs are overrepresented in equation (6)
because almost every node is a neighbour of a hub. By choosing the
seed of the clusters at random, there is a very large probability of
including the hubs in the clusters. On the other hand, the box-
covering method is a global tiling of the system, providing a flat
average over all the nodes: that is, each part of the network is covered
with an equal probability. Once a hub (or any node) is covered, it
cannot be covered again. We conclude that equations (3) and (4)
are not equivalent for inhomogeneous networks with topologies
dominated by hubs with a large degree.

The biased sampling of the randomly chosen nodes is clearly
demonstrated in Fig. 3b. We find that the probability distribution of
the mass of the boxes for a given lB is very broad and can be
approximated by a power-law: PðMBÞ<M22:2

B in the case of the
WWWand lB ¼ 4. On the other hand, the probability distribution
ofMc is very narrow and can be fitted by a log-normal distribution
(see Fig. 3b). In the box-coveringmethod there are many boxes with
very large and very small masses, in contrast to the peaked
distribution in the cluster-growingmethod, thus showing the biased
nature of the latter method in inhomogeneous networks. This
biased average leads to the exponential growth of the mass in
equation (6) and it also explains why the average distance is
logarithmic with N, as in equation (1).

The box-counting method provides a powerful tool for further
investigations of network properties because it enables a renorma-
lization procedure, revealing that the self-similar properties and the
scale-free degree distribution persist irrespectively of the amount of
coarse-graining of the network.

Subsequent to the first step of assigning the nodes to the boxes we
create a new renormalized network by replacing each box by a single
node. Two boxes are then connected, provided that there was at least
one link between their constituent nodes. The second column of the
panels in Fig. 1a shows this step in the renormalization procedure
for the schematic network, while Fig. 1b shows the results for the
same procedure applied to the entire WWW for lB ¼ 3.

The renormalized network gives rise to a new probability distri-
bution of links, P(k 0), which is invariant under the renormalization:

PðkÞ! Pðk 0 Þ< ðk 0 Þ2g ð7Þ
Figure 2d supports the validity of this scale transformation by
showing a data collapse of all distributions with the same g
according to equation (7) for the WWW.

Further insight arises from relating the scale-invariant properties
(equation (3)) to the scale-free degree distribution (equation (2)).
Plotting (see inset in Fig. 2d for the WWW) the number of links k 0

of each node in the renormalized network versus the maximum
number of links k in each box of the unrenormalized network
exhibits a scaling law:

k! k
0 ¼ sðlBÞk ð8Þ

This equation defines the scaling transformation in the connectivity
distribution. Empirically we find that the scaling factor s (,1) scales
with lB with a new exponent d k:

sðlBÞ< l
2dk
B ð9Þ

Figure 3 Different averaging techniques lead to qualitatively different results. a, Mean

value of the box mass in the box-counting method, kM Bl, and the cluster mass in the

cluster growing method, kM cl, for the WWW. The solid lines represent the power-law fit

for kM Bl and the exponential fit for kM cl according to equations (5) and (6), respectively.

b, Probability distribution ofM B andM c for lB ¼ 4 for the WWW. The curves are fitted by

a power-law and a log-normal distribution, respectively.
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as shown in Fig. 2a for theWWWand actor networks (with dk ¼ 2.5
and dk ¼ 5.3, respectively), in Fig. 2b for the protein networks
(dk ¼ 2.1 for E. coli and dk ¼ 2.2 for H. sapiens) and in Fig. 2c for
the cellular networks with dk ¼ 3.2.

Equations (8) and (9) shed light on how families of hierarchical
sizes are linked together. The larger the families, the fewer links exist.
Surprisingly, the same power-law relation exists for large and small
families represented by equation (2).

From equation (7) we obtain n(k)dk ¼ n
0(k 0)dk 0 , where

n(k) ¼ NP(k) is the number of nodes with links k and n
0 ðk 0 Þ ¼

N
0
Pðk 0 Þ is the number of nodes with links k 0 after the renormaliza-

tion (N 0 is the total number of nodes in the renormalized network).
Using equation (8), we obtain n(k) ¼ s 12gn

0(k). Then, upon
renormalizing a network with N total nodes we obtain a smaller
number of nodesN 0 according toN 0 ¼ sg21N. The total number of
nodes in the renormalized network is the number of boxes needed to
cover the unrenormalized network at any given lB, so we have
N

0 ¼ NB(lB). Then, from equations (3) and (9) we obtain the
relation between the three indexes:

g¼ 1þ dB=dk ð10Þ

Equation (10) is confirmed for all the networks analysed here (see
Supplementary Information). In all cases the calculation of dB and
dk and equation (10) gives rise to the same g exponent as that
obtained in the direct calculation of the degree distribution. The
significance of this result is that the scale-free properties character-
ized by g can be related to a more fundamental length-scale
invariant property, characterized by the two new indexes dB and
dk. A
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Theoretical predictions—motivated by recent advances in epi-
taxial engineering—indicate a wealth of complex behaviour
arising in superlattices of perovskite-type metal oxides. These
include the enhancement of polarization by strain1,2 and the
possibility of asymmetric properties in three-component super-
lattices3. Here we fabricate superlattices consisting of barium
titanate (BaTiO3), strontium titanate (SrTiO3) and calcium
titanate (CaTiO3) with atomic-scale control by high-pressure
pulsed laser deposition on conducting, atomically flat strontium
ruthenate (SrRuO3) layers. The strain in BaTiO3 layers is fully
maintained as long as the BaTiO3 thickness does not exceed the
combined thicknesses of the CaTiO3 and SrTiO3 layers. By
preserving full strain and combining heterointerfacial couplings,
we find an overall 50% enhancement of the superlattice global
polarizationwith respect to similarly grown pure BaTiO3, despite
the fact that half the layers in the superlattice are nominally non-
ferroelectric. We further show that even superlattices containing
only single-unit-cell layers of BaTiO3 in a paraelectric matrix
remain ferroelectric. Our data reveal that the specific interface
structure and local asymmetries play an unexpected role in the
polarization enhancement.
Oxide heterostructures with atomically abrupt interfaces, defined

by atomically flat surface terraces and single-unit-cell steps, can now
be grown on well-prepared single-stepped substrates4–7. This
advance has encouraged theoretical investigations that have led
to predictions of new artificial materials1–3,8–10. The atomic-scale
control of the combining of dissimilar materials is expected to
produce striking property enhancements as well as new combi-
nations of desired properties. Here we discuss the experimental
realization of one of these predictions, the strain enhancement of
ferroelectric polarization. The challenge associated with fabricating
such strained structures—the deliberate and controlled deposition
of up to hundreds of individual layers—remains a formidable task,
for which the principal technique used has been high-vacuum
molecular beam epitaxy5,11. However, many insulators do not
yield the correct oxide stoichiometry (or expected resulting physical
properties) when grown bymolecular beam epitaxy. Furthermore, a
shortage of electrically conducting oxide substrates and our still-
limited understanding of the stability and growth mechanisms
of conducting-film electrodes have hindered the electrical charac-
terization of oxide superlattices.
To address these challenges, we have recently shown that atom-

ically flat, electrically conducting SrRuO3 electrodes can be grown
with a surface quality that mimics that of the substrate (Fig. 1a)7.
Pulsed laser deposition (PLD) has long been regarded as an effective
method for synthesizing various oxide heterostructures12–15, but
obtaining atomically sharp interfaces has been difficult in the
comparatively high-pressure processes needed to maintain oxygen
stoichiometry. Here we demonstrate the growth by a high-pressure
PLD technique of hundreds of individual perovskite layers of
BaTiO3, SrTiO3 and CaTiO3. These superlattices were grown with
layer-by-layer control, yielding as-grown samples with compo-
sitionally abrupt interfaces, atomically smooth surfaces, and excel-
lent ferroelectric behaviour that indicated oxygen stoichiometry.
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