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Abstract

The emerging sub�eld of econophysics explores the degree to which certain concepts and

methods from statistical physics can be appropriately modi�ed and adapted to provide new

insights into questions that have been the focus of interest in the economics community. Here

we give a brief overview of two examples of research topics that are receiving recent attention.

A �rst topic is the characterization of the dynamics of stock price 
uctuations. For example,

we investigate the relation between trading activity – measured by the number of transactions

N�t – and the price change G�t for a given stock, over a time interval [t; t + �t]. We relate

the time-dependent standard deviation of price 
uctuations – volatility – to two microscopic

quantities: the number of transactions N�t in �t and the variance W 2
�t of the price changes for all

transactions in �t. Our work indicates that while the pronounced tails in the distribution of price


uctuations arise from W�t , the long-range correlations found in |G�t | are largely due to N�t . We

also investigate the relation between price 
uctuations and the number of shares Q�t traded in

�t. We �nd that the distribution of Q�t is consistent with a stable L�evy distribution, suggesting

a L�evy scaling relationship between Q�t and N�t , which would provide one explanation for

volume-volatility co-movement. A second topic concerns cross-correlations between the price


uctuations of di�erent stocks. We adapt a conceptual framework, random matrix theory (RMT),

�rst used in physics to interpret statistical properties of nuclear energy spectra. RMT makes

predictions for the statistical properties of matrices that are universal, that is, do not depend

on the interactions between the elements comprising the system. In physics systems, deviations

from the predictions of RMT provide clues regarding the mechanisms controlling the dynamics

of a given system, so this framework can be of potential value if applied to economic systems.

We discuss a systematic comparison between the statistics of the cross-correlation matrix C –

whose elements Cij are the correlation-coe�cients between the returns of stock i and j – and

that of a random matrix having the same symmetry properties. Our work suggests that RMT can

be used to distinguish random and non-random parts of C; the non-random part of C, which

deviates from RMT results provides information regarding genuine cross-correlations between

stocks. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The interest of physicists in economic systems has roots that date back at least as

far as 1936, when the Italian physicist Majorana wrote a paper on the analogy between

statistical laws in physics and in the social sciences [1]. Majorana’s intriguing point

of view was initially considered of marginal interest since, until recently, not many

professional physicists performed research associated with social or economic systems

(for exceptions see, e.g., Refs. [2–13]).

Physics research activity in this �eld has become less episodic and a research com-

munity is beginning to emerge (see Refs. [14–18] for details). The hope of physicists is

that their e�orts could in time provide an approach complementary to the approaches

in economics, particularly since a number of economists are working along parallel

lines [5,13,15,19–23].

Our group’s recent econophysics research focuses broadly on two lines of study.

The �rst focus relates to the statistical characterization of the “microscopic” dynamics

of stock returns [2,24–54]. The second focus relates to the study of cross-correlations

between the returns of stocks [55–72].

2. Scaling and universality: two concepts of modern statistical physics

Statistical physics deals with systems comprising a very large number of interacting

subunits, for which predicting the exact behavior of the individual subunit would be

impossible. Hence, one is limited to making statistical predictions regarding the collec-

tive behavior of the subunits. Recently, it has come to be appreciated that many such

systems which consist of a large number of interacting subunits obey universal laws

that are independent of the microscopic details. The �nding, in physical systems, of

universal properties that do not depend on the speci�c form of the interactions gives

rise to the intriguing hypothesis that universal laws or results may also be present in

economic and social systems [2,14]. 1

2.1. Background

Suppose we have a small bar magnet made up of, say, 1012 strongly interacting

subunits called “spins”. We know it is a magnet because it is capable of picking up

thumbtacks, the number of which is called the order parameter M . As we heat this

system, M decreases and eventually, at a certain critical temperature Tc, it reaches

zero. In fact, the transition is remarkably sharp, since M approaches zero at Tc with

1 An often-expressed concern regarding the application of physics methods to the social sciences is that

physical laws are said to apply to systems with a very large number of subunits (of order of ≈1020)

while social systems comprise a much smaller number of elements. However, the “thermodynamic limit” is

reached in practice for rather small systems. For example, in early computer simulations of gases or liquids

reasonable results are already obtained for systems with 20–30 atoms.
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in�nite slope and hence M is not an analytic function. Such singular behavior is an

example of a “critical phenomenon”. Recently, the �eld of critical phenomena has been

characterized by several important conceptual advances, two of which are scaling and

universality.

2.1.1. Scaling

The scaling hypothesis has two categories of predictions, both of which have been

remarkably well veri�ed by a wealth of experimental data on diverse systems. The

�rst category is a set of relations, called scaling laws, that serve to relate the various

critical-point exponents characterizing the singular behavior of functions such as M .

The second category is a sort of data collapse, which is perhaps best explained

in terms of our simple example of a uniaxial magnet. We may write the equation

of state as a functional relationship of the form M =M (H; �), where M is the order

parameter, H is the magnetic �eld, and � ≡ (T − Tc)=Tc is a dimensionless measure

of the deviation of the temperature T from the critical temperature Tc. Since M (H; �)

is a function of two variables, it can be represented graphically and M vs. � for a

sequence of di�erent values of H . The scaling hypothesis predicts that all the curves

of this family can be “collapsed” onto a single curve provided one plots not M vs. �

but rather a scaled M (M divided by H to some power) vs. a scaled � (� divided by

H to some di�erent power).

The predictions of the scaling hypothesis are supported by a wide range of exper-

imental work, and also by numerous calculations on model systems. Moreover, the

general principles of scale invariance used here have proved useful in interpreting a

number of other phenomena, ranging from elementary particle physics [73] and galaxy

structure [74] to �nance [2,75,76].

2.1.2. Universality

The second theme goes by the name “universality”. It was found empirically that

one could form an analog of the Mendeleev table if one partitions all critical systems

into “universality classes”. Consider, e.g., experimental MHT data on �ve diverse mag-

netic materials near their respective critical points. The fact that data for each material

collapse onto a scaling function supports the scaling hypotheses, while the fact that the

scaling function is the same (apart from two material-dependent scale factors) for all

�ve diverse materials is truly remarkable. This apparent universality of critical behav-

ior motivates the following question: “Which features of this microscopic interparticle

force are important for determining critical-point exponents and scaling functions;

and which are unimportant?”

Two systems with the same values of critical point exponents and scaling functions

are said to belong to the same universality class. Thus, the fact that the exponents and

scaling functions are the same for all �ve materials implies they all belong to the same

universality class. Hence, we can pick a tractable system to study and the results we

obtain will hold for all other systems in the same universality class.
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2.2. Scaling and universality in systems outside of physics

At one time, many imagined that the “scale-free” phenomena are relevant to only

a fairly narrow slice of physical phenomena [77–79]. However, the range of systems

that apparently display power law and hence scale-invariant correlations has increased

dramatically in recent years, ranging from base pair correlations in noncoding DNA

[80,81], lung in
ation [82] and interbeat intervals of the human heart [83–87] to com-

plex systems involving large numbers of interacting subunits that display “free will”,

such as city growth [88–91], business �rm growth [92–98], and even populations of

birds [99].

Moreover, recent studies report evidence for scaling and universality in price 
uctua-

tions of �nancial assets [2,27–32,100–105]. Speci�cally, it appears that the cumulative

distribution of returns for both individual companies and the S&P 500 index can be

well described by a power law asymptotic behavior, characterized by an exponent �≈3,
well outside the stable L�evy regime 0¡�¡ 2 [12,27,32,101,103–105]. We have also

found evidence for scaling: the distribution of returns, although not a stable distribu-

tion, retains its functional form for time scales from 5 min up to approximately 16

days for individual stocks [103–105].

These results were found for 1000 US stocks during the 1994–1995 period, sug-

gesting universality in the dynamics of the return. Also suggestive of universality is

the fact that identical results were found for the returns of the 30 German stocks

comprising the DAX index [101], and similar results are found for currency exchange

data [12].

3. Databases analyzed

Our empirical results are based on the analysis of di�erent databases covering secu-

rities traded in the three major US stock exchanges, namely (i) the New York Stock

Exchange (NYSE), (ii) the American Stock Exchange (AMEX), and (iii) the National

Association of Securities Dealers Automated Quotation (Nasdaq).

For studying short time-scale dynamics, we are analyzing the Trades and Quotes

(TAQ) database, from which we select the 4-year period January 1994 to December

1997. Nasdaq and AMEX have merged on October 1998, after the end of the period

studied in this work. The TAQ database, which is published by NYSE since 1993,

covers all trades at the three major US stock markets. This huge database is available

in the form of CD-ROMs. The rate of publication was 1 CD-ROM per month for

the period studied, but recently has increased to 2–4 CD-ROMs per month. The total

number of transactions for the largest 1000 stocks is of the order of 109 in the 4-year

period studied. We analyze the largest 1000 stocks, by capitalization on January 3,

1994, which survived through December 31, 1995. From the set of these 1000 stocks,

we select a subset consisting of 880 stocks which survive through the further two years

1996–1997.
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The data are adjusted for stock splits and dividends. The data are also �ltered to

remove spurious events, such as occur due to the inevitable recording errors. The most

common error is missing digits which appears as a large spike in the time series of

returns. These are much larger than usual 
uctuations and can be removed by choosing

an appropriate threshold. We tested a range of thresholds and found no e�ect on the

results.

To study the dynamics at longer time horizons, we analyze the Center for Research

and Security Prices (CRSP) database. The CRSP Stock Files cover common stocks

listed on NYSE beginning in 1925, the AMEX beginning in 1962, and the Nasdaq

Stock Market beginning in 1972. The �les provide complete historical descriptive in-

formation and market data including comprehensive distribution information, high, low

and closing prices, trading volumes, shares outstanding, and total returns. In addition to

adjusting for stock splits and dividends, we have also detrended the data for in
ation.

The CRSP Stock Files provide monthly data for NYSE beginning December 1925

and daily data beginning July 1962. For the AMEX, both monthly and daily data begin

in July 1962. For the Nasdaq Stock Market, both monthly and daily data begin in July

1972.

We also analyze the S&P 500 index, which comprises 500 stocks chosen for market

size, liquidity, and industry group representation in the US. In our study, we �rst

analyze high-frequency data that covers the 13-year period 1984–1996, with a recording

frequency of less than 1 min. The total number of records in this database exceeds

4:5×106. To investigate longer time scales, we also study daily records of the S&P 500
index for the 35-year period 1962–1996, and monthly records for the 71-year period

1926–1996.

4. The distribution of stock price 
uctuations

The nature of the distribution of price 
uctuations in �nancial time series has been a

topic of interest for over 100 years [24]. A reasonable a priori assumption, motivated

by the central limit theorem, is that the returns are independent, identically Gaussian

distributed (i.i.d.) random variables, which results in a Gaussian random walk in the

logarithm of price [25].

Empirical studies [2,75,27,101–104,106–110] show that the distribution of returns

has pronounced tails, in striking contrast to that of a Gaussian. In addition to being

non-Gaussian, the process of returns shows another interesting property: “time scaling”

– that is, the distributions of returns for various choices of �t, ranging from 1 day up

to 1 month have similar functional forms [2]. These results together would suggest that

the distribution of returns is consistent with a L�evy stable distribution [2,106,111–113],

the rationale for which arises from the generalization of the central limit theorem to

random variables which do not have a �nite second moment. Empirical studies suggest,

however, that the tails of the return distribution are inconsistent with the stable Paretian

hypothesis [29–33,75,101–105]. In particular, alternative hypotheses for modeling the
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return distribution were proposed, which include a log-normal mixture of Gaussiansg

[33], Student t-distributions [29–31], and exponentially truncated L�evy distributions

[75,114,115].

4.1. “Universality” of the distribution of returns

Conclusive results on the distribution of returns are di�cult to obtain, and require

a large amount of data to study the rare events that give rise to the tails. We analyze

approximately 40 million records of stock prices sampled at 5 min intervals for the

1000 leading US stocks for the 2-year period 1994–1995 and 30 million records of

daily returns for 6000 US stocks for the 35-year period 1962–1996.

The basic quantity studied for individual companies is the price Si(t). The time t

runs over the working hours of the stock exchange – removing nights, weekends and

holidays. For each company, we calculate the return

Gi ≡ Gi(t;�t) ≡ ln Si(t +�t)− ln Si(t) : (1)

For small changes in Si(t), the return Gi(t;�t) is approximately the forward relative

change, Gi(t;�t) ≈ [Si(t + �t) − Si(t)]=Si(t). For time scales shorter than 1 day, we

analyze the data from the TAQ database.

We then calculate the cumulative distributions – the probability of a return larger than

or equal to a threshold – of returns Gi for �t=5 min. For each stock i=1; : : : ; 1000, the

asymptotic behavior of the functional form of the cumulative distribution is consistent

with a power-law,

P{Gi ¿x} ∼ 1

x�i
; (2)

where �i is the exponent characterizing the power-law decay. In order to compare the

returns of di�erent stocks with di�erent volatilities, we de�ne the normalized return

gi ≡ (Gi − 〈Gi〉T )=vi, where 〈: : :〉T denotes a time average over the 40 000 data points
of each time series, for the 2-year period studied, and the time-averaged volatility vi
of company i is the standard deviation of the returns over the 2-year period v2i ≡
〈G2i 〉T − 〈Gi〉2T . Values of the exponent �i can be estimated by a power-law regression

on each of these distributions P{g¿x} ∼ x−�, whereby we obtain the average value

for the 1000 stocks,

�=

{

3:10± 0:03 (positive tail) ;

2:84± 0:12 (negative tail) ;
(3)

where the �ts are performed in the region 26g680. In Fig. 1(a) we show the

histogram for �i, obtained from power-law regression-�ts to the positive tails of the

individual cumulative distributions of all 1000 companies studied, which shows an ap-

proximate Gaussian spread around the mean value �= 3:10± 0:03. These estimates of
the exponent � are well outside the stable L�evy range, which requires 0¡�¡ 2, and

is therefore consistent with a �nite variance for returns. However, moments larger than

3, in particular the kurtosis, seem to be divergent [27,32]. Our results are consistent
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Fig. 1. (a) The histogram of the power-law exponents obtained by power-law regressions to the individual

cumulative distribution functions, where the �t is for all x larger than 2 standard deviations. This histogram

is not normalized – the y-axis indicates the number of occurrences of the exponent. (b) The values of the

exponent � characterizing the asymptotic power-law behavior of the distribution of returns as a function

of the time scale �t obtained using Hill’s estimator. The values of � for �t ¡1 day are calculated from

the TAQ database while for �t¿1 day they are calculated from the CRSP database. The unshaded region,

corresponding to time scales larger than (�t)×≈16 days (6240 min), indicates the range of time scales

where we �nd results consistent with slow convergence to Gaussian behavior.

with the results of the analysis of the daily returns of 30 German stocks comprising

the DAX index [101], daily CRSP returns [27], and foreign exchange rates [102].

In order to obtain an alternative estimate for �, we are using the methods of

Hill [27,101,103,104,116]. We calculate the inverse local slope of the cumulative

distribution function P(g), 
 ≡ −(d logP(g)=d log g)−1 for the negative and the
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positive tail. We obtain an estimator for 
, by sorting the normalized increments by

their size, g(1)¿g(2)¿ · · ·¿g(N ). The cumulative distribution can then be written as

P(g(k)) = k=N , and we obtain for the local slope


=

[

(N − 1)
N−1
∑

i=1

log g(i)

]

− log g(N ) ; (4)

where N is the number of tail events used. We use the criterion that N does not exceed

10% of the sample size, simultaneously ensuring that the sample is restricted to the

tail events [27]. We thereby obtain the average estimates for 1000 stocks,

�=

{

2:84± 0:12 (positive tail) ;

2:73± 0:13 (negative tail) :
(5)

Removing overnight events yield the average values of �=3:11± 0:15 for the positive
tail and � = 3:03 ± 0:21 for the negative tail. Currently, we are also investigating the
dependence of the exponent � on the time of day, by splitting a trading day into

three equal parts of 130 min each. A parallel analysis on the S&P 500 index shows

consistent asymptotic behavior [105], although the central part of the distribution seems

to display L�evy behavior for short time scales (¡ 30 min) [75]. One reason for a

di�erent behavior at the central part of the distribution of S&P 500 returns is the

discreteness [25,28] of the prices of individual stocks (which causes a cut-o� for low

values of returns) that comprise the S&P 500 index.

4.2. Scaling of the distributions of returns and correlations in the volatility

Since the values of � we �nd are inconsistent with a statistically stable law, we ex-

pect the distribution of returns P(G) on larger time scales to converge to Gaussian. In

contrast, our analysis of daily returns from the CRSP database suggests that the distri-

butions of returns retain the same functional form for a wide range of time scales �t,

varying over 3 orders of magnitude, 5 min6�t66240 min=16 days [Fig. 1(b)]. The

onset of convergence to a Gaussian starts to occur only for �t ¿ 16 days [104,105].

In contrast, n-partial sums of computer-simulated time series of the same length and

probability distribution display Gaussian behavior for n¿256 [17,105]. Thus, the rate

of convergence of P(G) to a Gaussian is remarkably slow, indicative of time depen-

dencies [25,52] which violate the conditions necessary for the central limit theorem to

apply.

To test for time dependencies, we analyzed the autocorrelation function of returns,

which we denote 〈G(t)G(t+ �)〉, using 5 min returns of 1000 stocks. Our results show
pronounced short-time (¡ 30 min) anti-correlations, consistent with the bid-ask bounce

[25,117]. For larger time scales, the correlation function is at the level of noise (for

some portfolios of common stocks Lo [54] has reported long memory), consistent with

the e�cient market hypothesis [25,107,118,119]. Lack of linear correlation does not

imply independent returns, since there may exist higher-order correlations. Our recent
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studies [120] show that the amplitude of the returns measured by the absolute value or

the square has long-range correlations with persistence [121–123] up to several months,

〈|G(t)‖G(t + �)|〉 ∼ �−a ; (6)

where a has the average value a = 0:34 ± 0:09 for the 1000 stocks studied. In order
to detect genuine long-range correlations, the e�ects of the U-shaped intra-day pat-

tern [124,125] for |G| has been removed [120]. This result is consistent with earlier
studies [25,126–128] which also noted long-range correlations. In addition to analyz-

ing the correlation function directly, we are applying power spectrum analysis and

the recently-developed detrended 
uctuation analysis [120,129]. Both of these methods

yield consistent estimates of the exponent a. We are also applying estimators such as

those developed in Ref. [130] to obtain accurate estimates of the exponent a.

4.3. Statistics of trading activity

In order to understand the reasons for slow decaying tails in the return distribution

and long-range correlations in volatility, we follow an approach in the spirit of mod-

els of time deformation proposed by Clark [33], Tauchen and Pitts [34], Stock [35],

Lamoureux and Lastrapes [36], Ghysels and Jasiak [37], and Engle and Russell [41].

Returns G over a time interval �t can be expressed as the sum of several changes

�pi due to the i = 1; : : : ; N�t trades in the interval [t; t +�t],

G�t =

N�t
∑

i=1

�pi : (7)

If �t is such that N�t/1, and �pi have �nite variance, then one can apply the classic

version of the central limit theorem, whereby one would obtain the result that the

unconditional distribution P(G) is Gaussian [33,131]. It is implicitly assumed in this

description that N�t has only narrow Gaussian 
uctuations i.e., has a standard deviation

much smaller than the mean 〈N�t〉.
Our investigation of N�t suggests stark contrast with a Gaussian time series with

the same mean and variance – there are several events of the magnitude of tens of

standard deviations which are inconsistent with Gaussian statistics [33–35,38,41,132–

136]. For each stock analyzed, we choose sampling time intervals �t such that it

contains su�cient N�t ; for actively-traded stocks �t=15 min; and for stocks with the

least frequency of trading, �t = 390 min (1 day) [135]. We �nd that the distribution

of N�t appears to display an asymptotic power-law decay

P{N�t ¿x} ∼ x−� (x/1) : (8)

For the 1000 stocks that we analyze, we estimate � using Hill’s method [116] and

obtain a mean value � = 3:40 ± 0:05. Note that �¿ 2 is outside the L�evy stable

domain 0¡�¡ 2 and is inconsistent with a stable distribution for N�t , and with the

log-normal hypothesis of Clark [33].
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4.4. Price 
uctuations and trading activity

Since we �nd that P{G�t ¿x} ∼ x−�, we can ask whether the value of � we �nd for

P{N�t ¿x} is su�cient to account for the fat tails of returns. To test this possibility,
we implement, for each stock, the ordinary least-squares regression

ln |G�t(t)|= a+ b lnN�t(t) +  (t) ; (9)

where  (t) has mean zero and the equal time covariance 〈N�t (t)〉 = 0. Our results
on 30 actively traded stocks yield the average value of b= 0:57± 0:09.
Values of b≈0:5 are consistent with what we would expect from Eq. (7), if �pi

are i.i.d. with �nite variance. In other words, suppose �pi are chosen only from the

interval [t; t + �t], and let us hypothesize that these �pi are mutually independent,

with a common distribution P(�pi | t ∈ [t; t +�t]) having a �nite variance W 2
�t . Under

this hypothesis, the central limit theorem, applied to the sum of �pi in Eq. (7), implies

that the ratio

� ≡ G�t

W�t

√
N�t

(10)

must be a Gaussian-distributed random variable with zero mean and unit variance [131].

We can test this hypothesis by analyzing the distribution P(�) and the correlations

in �.

Our results on 30 actively traded stocks seem to indicate that the distribution P(�) is

consistent with a Gaussian, with mean values of excess kurtosis ≈0:1. This is notewor-
thy, since, for the unconditional distribution P(G�t), the kurtosis is divergent (empirical

estimates yield mean values ≈80 for 1000 stocks).
If our hypothesis that P(�) is consistent with Gaussian is borne out by the data,

this would imply that the fat tails of P{G�t ¿x} ∼ x−� cannot be caused solely due

to P{N�t ¿x} ∼ x−�, because by conservation of probabilities P{
√
N�t ¿x} ∼ x−2�

with 2�≈6:8. Eq. (10) then implies that N�t alone cannot explain the value �≈3.
Since N�t is not su�cient to account for the fat tails in G�t , one other possibility

is that it arises from W�t . By de�nition W�t is the variance of all �pi in �t, which

is di�cult to estimate when one does not have su�cient N�t . We can investigate the

statistics of W�t and examine if the distribution of W�t is su�cient to explain the

value of � found for P{G�t ¿x}. Our results on 30 actively traded stocks suggest that
P{W�t ¿x} ∼ x−
, where we obtain rough estimates 
= 2:85± 0:20, consistent with
the estimates of � for the same 30 stocks. Estimates of 
 are obtained by choosing

�t = 15 min for these stocks, at the same time ensuring that N�t ¿ 20.

4.5. Volatility correlations and trading activity

Thus far we discussed Eq. (10) from the point of view of distributions. Next, we

analyze time correlations in N�t , and relate them to the time correlations of |G�t |. Our
studies on the same 30 actively traded stocks indicate that the autocorrelation function

〈N�t(t)N�t(t + �)〉 ∼ �−�, with a mean value of the estimates of � = 0:32 ± 0:09
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using the detrended 
uctuation analysis method [129]. To detect genuine long-range

correlations, the marked U-shaped intra-daily pattern [124,125] in N�t is removed [120].

We substantiate this analysis using semi-parametric estimators such as those due to

Robinson [130].

Our long-term goal is to relate the exponent � of the autocorrelation function of N�t

to that of |G�t |. To this end, we also estimate, in parallel, the time correlations in
W�t and |�|. Since our investigations on the 30 stocks seem to indicate the absence of

long-range correlations in W�t , the above investigation of correlations could yield the

interesting statement that the long-range correlations in volatility are due to those of

N�t . Together with the above discussion on distribution functions, these results suggest

an interesting result – that the fat tails of returns G�t arise from W�t and the long-range

volatility correlations arise from trading activity N�t .

4.6. Statistics of share volume traded

Understanding the equal-time correlations between volume and volatility and, more

importantly, understanding how the number of shares traded impacts the price has long

been a topic of great interest [25,28,33,34,39,134–138]. The number of shares traded

in �t is the sum

Q�t ≡
N�t
∑

i=1

qi ; (11)

where qi traded for all i = 1; : : : ; N�t transactions in �t. So it is clear that Q�t must

be positively correlated with N�t .

Our results on 30 actively traded stocks suggest that the probability distributions

P{Q�t ¿x} are consistent with a power-law asymptotic behavior

P{Q�t ¿x} ∼ x−� : (12)

Using Hill’s estimator, we obtain an average value �=1:7±0:2, within the L�evy stable
domain 0¡�¡ 2. This result suggests that Q�t can be e�ectively described using

a one-sided (fully asymmetric) stable distribution. A parallel analysis for P{qi ¿x}
(from Eq. (11)) yields consistent values of exponents within the L�evy stable domain,

suggesting a divergent second moment. We will ultimately extend this result to all

1000 stocks and test the dependency of � on the type of stock analyzed.

As a further test for L�evy stability of Q�t , we can investigate the scaling behavior

of the sum Qn ≡ ∑n
i=1 qi, where n is a �xed number of trades. We �rst analyze

the asymptotic behavior of P(Qn) for increasing n. For a L�evy stable distribution,

n1=� P([Qn − 〈Qn〉]=n1=�) should have the same functional form as P(q), where 〈Qn〉=
n 〈q〉 and 〈· · ·〉 denotes average values. We can also perform an independent test and

estimate � by analyzing the scaling behavior of the moments �r(n) ≡ 〈|Qn − 〈Qn〉|r〉,
where r ¡�. For a L�evy stable distribution [�r(n)]

1=r ∼ n1=�. Hence, by regressing
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[�r(n)]
1=r as a function of n, we obtain an inverse slope which would yield an estimate

of �.

4.7. Share volume traded and number of trades

If our hypothesis is true that Q�t (and qi) are consistent with a one-sided L�evy stable

process, then from Eq. (11), N
1=�
�t P([Q�t −〈q〉N�t]=N

1=�
�t ) should, from Eq. (11), have

the same distribution as any of the qi. Thus, we hypothesize that the dependence of

Q�t on N�t can be separated by de�ning

� ≡ Q�t − 〈q〉N�t

N
1=�
�t

; (13)

where � is a one-sided L�evy-distributed variable with zero mean and exponent �. To

test this hypothesis, we �rst analyze P(�) for consistent asymptotic behavior to P(Q�t).

4.8. Time correlations in share volume traded

We also study extensively the time correlations in Q�t(t). A di�culty arises due to

the divergent second moment of the distribution P(Q�t). To circumvent this problem,

we consider the family of correlation functions 〈[Q�t(t)]
a[Q�t(t+ �)]a〉, where the pa-

rameter a (¡�=2) is required to ensure that the correlation function is well de�ned.

Instead of analyzing the correlation function directly, we apply detrended 
uctuation

analysis [129], which has been successfully used to study long-range correlations in a

wide range of complex systems. Our results suggest that Q�t(t) has strong long-range

correlations, while the number of shares traded in each transaction qi (Eq. (11)) dis-

plays only short-range correlations, suggesting that long-range correlations in Q�t can

in turn be related to those of N�t , if Eq. (13) is found to be valid.

4.9. Returns and share volume traded

An interesting implication is an explanation for the previously observed [39,137,138]

equal-time correlations between Q�t and volatility V�t , which is the local standard de-

viation of price changes G�t . Now, V�t = W�t

√
N�t from Eq. (10). Consider the

equal-time correlation, 〈Q�t V�t〉, where the means are subtracted from Q�t and V�t .

Since Q�t depends on N�t through Q�t = 〈q〉N�t + N
1=�
�t �, and if the equal-time cor-

relations 〈N�t W�t〉, 〈N�t �〉, and 〈W�t �〉 are small (correlation coe�cients ≈0:1), it
follows that the equal-time correlation 〈Q�t V�t〉 ˙ 〈N 3=2

�t 〉 − 〈N�t〉〈N 1=2
�t 〉, which is

positive due to the Cauchy–Schwartz inequality.

5. Random matrix theory and correlation matrices

The correct determination of cross-correlations among stocks is of importance of

both practical and scienti�c reasons. On the practical side, identifying cross-correlations
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permits better portfolio selection [25,139,140]. On the scienti�c side, identifying corre-

lations enables us to investigate their origin which may help improve our understanding

of the mechanisms governing stock price dynamics.

One approach to describe cross-correlations between the returns of di�erent stocks

is to consider returns as being composed of common and idiosyncratic components

[25,55–72]. We follow a di�erent approach, in the spirit of the method of princi-

pal components [25], but may provide a more rigorous way to estimate signi�cant

cross-correlations. We start with the cross-correlation matrix C of returns Gi(t), with

elements

Cij ≡
〈GiGj〉 − 〈Gi〉〈Gj〉

�i�j

; (14)

where �i ≡
√

〈G2i 〉 − 〈Gi〉2 is the standard deviation of the price changes of company i,

and 〈· · ·〉 denotes a time average over the period studied.
For the high-frequency data from the TAQ database, we have 1000 stocks, which

yields a 1000×1000 matrix. Since correlations between stocks might not be stationary,
and because of the �nite length of time series used to estimate Cij, there is considerable

degree of randomness in the measured Cij. Thus, it is a di�cult problem in general

to estimate correlations from C that are not an e�ect of “randomness”. We start with

a “null hypothesis” that C is a random matrix – a correlation matrix constructed from

mutually uncorrelated time series. Deviations of the properties of C from that of a

random matrix would show genuine correlations. Statistical properties of matrices with

independent random elements – random matrices – has a long history in physics since

1950s and their properties are well studied [141,142].

5.1. Brief overview of random matrix theory

The physics study of random matrices was initiated by the physicist E. Wigner, but

the history of random matrices within mathematics is older. The problem that prompted

Wigner to develop RMT was the explanation of the energy spectra of heavy nuclei.

Large amounts of spectroscopic data on the energy levels were becoming available but

were too complex to be explained by model calculations because the exact nature of the

interactions were unknown. Although several models were developed in the 1950s to

explain the nuclear spectra, they were largely unable to account for the exact positions

of energy levels. RMT was developed in this context, to deal with the statistics of

energy levels of complex quantum systems. In matrix notation, the Hamiltonian would

be a matrix H with random elements Hij drawn from a probability measure [141,142].

Based on this assumption, a series of remarkable predictions were made and were

found to be in remarkable agreement with the experimental data [143–145].

It was later proved by Dyson and Metha [146] that RMT predictions represent an

average over all possible interactions. Hence RMT predictions are universal predictions

that will apply to wide classes of systems. Moreover, deviations from the universal



352 H.E. Stanley et al. / Physica A 287 (2000) 339–361

predictions of RMT identify system-speci�c, non-random properties of the system under

consideration, providing clues about the underlying interactions [141,142].

5.2. Comparison of the eigenvalue statistics of C with a random correlation matrix

Let us consider a random correlation matrix A constructed from random time series

X that are uncorrelated A=(1=M) X XT, where X is an N ×M matrix containing N

time series of M random elements each (with zero mean and unit variance), that are

mutually uncorrelated. The properties of random matrices A are well studied [147,148],

particularly, in the limit N → ∞; M → ∞, such that Q ≡ M=N is held �xed, it was

shown analytically that the distribution �(�) of eigenvalues � of A is given by

�(�) =











Q

2�

√

(�+ − �)(�− �−)

�
[�−6�6�+] ;

0 [�¿�+; �¡�−] ;

(15)

where �+ and �− are the maximum and minimum eigenvalues of A, respectively, given

by

�± = 1 +
1

Q
± 2

√

1

Q
: (16)

For �nite M and N , the abrupt cut-o� of �(�) is replaced by a rapidly-decaying edge.

We compare the eigenvalue distribution P(�) of C=(1=M) G GT, where G denotes

the time series of returns (normalized to zero mean and unit variance) of N stocks,

with �(�) [149–152].

We �rst examine returns at time scale �t = 30 min for N = 1000 stocks, each con-

taining M =6448 records. We compute the eigenvalues �i of the empirical correlation

matrix C, where �i are rank ordered (�i+1¿�i). Fig. 2(a) compares the probabil-

ity distribution P(�) with �(�) calculated for Q = 6:448. We note the presence of a

well-de�ned “bulk” of eigenvalues which fall within �(�). We also note deviations for

some of the large eigenvalues. In particular, the largest eigenvalue �1000≈50, for the
2-year period, which is approximately 25 times larger than �+. To con�rm that the

deviations for large eigenvalues are genuine, we compare P(�) for a correlation matrix

generated from N =1000 uncorrelated time series with the same length M =6448 and

�nd perfect agreement [Fig. 2(b)] – suggesting that the deviations from RMT found

for the large eigenvalues in Fig. 2(a) are genuine. An analysis of P(�) for C calculated

using M = 1737 daily returns of 422 stocks for the 7-year period 1990–1996 reveals

a well de�ned bulk of eigenvalues that agree with �(�), and deviations from �(�) for

large eigenvalues – similar to what we �nd for �t = 30 min.

5.3. Testing the eigenvalue statistics of C for universal properties of random

matrices

To test for universal properties, we �rst calculate the distribution of the nearest-

neighbor spacings s ≡ �k+1 − �k . The nearest-neighbor spacing is computed after
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Fig. 2. (a) Eigenvalue distribution P(�) of C compared with the RMT result for a random correlation

matrix shows the presence of a random “bulk” with falls within the RMT bound �+¡�¡�−. We also

note the presence of several eigenvalues above the upper bound �+ of RMT; in particular, the largest

eigenvalue �1000≈50 – approximately 25 times larger than �+. (b) P(�) for a correlation matrix of the

same size generated from mutually uncorrelated time series shows good agreement with the RMT result.

(c) Nearest-neighbor spacing distribution of the eigenvalues of C after unfolding. The results shown are ob-

tained using the Gaussian broadening procedure for unfolding. The eigenvalue distribution can be considered

as a sum of delta functions about each eigenvalue, �k , each of which is then “broadened” by choosing a

Gaussian distribution with standard deviation (�k+a − �k−a)=2, where 2a is the size of the window used

for broadening. The solid line is the GOE prediction, and the dashed line is a �t to the one parameter

Brody distribution p(s) ≡ B (1 + �) s� exp(−Bs�+1), with B ≡ [�((� + 2)=(� + 1))]1+�. The �t yields

� = 0:99± 0:02, in good agreement with the GOE prediction � = 1. A Kolmogorov–Smirnov test suggests

that the GOE is 105 times more likely to be the correct description than the Gaussian unitary ensemble, and

1020 times more likely than the GSE. Furthermore, at the 80% con�dence level, the Kolmogorov–Smirnov

test cannot reject the hypothesis that the GOE is the correct description. (d) Next-nearest-neighbor spacing

distribution of C. RMT predicts that, for the GOE, the distribution of next-nearest-neighbor spacing should

follow the same distribution as the nearest-neighbor spacing for the GSE. This prediction is con�rmed for

the empirical data both visually and by a Kolmogorov–Smirnov test that at the 40% con�dence level cannot

reject the hypothesis that the GSE is the correct distribution.

transforming the eigenvalues in such a way that their distribution becomes uniform – a

procedure known as unfolding [142]. Fig. 2(c) shows the distribution of nearest-neighbor

spacings for the empirical data, and compares it with the RMT predictions for real

symmetric random matrices. This class of matrices shares universal properties with

the ensemble of real symmetric matrices whose elements are distributed according to

a Gaussian probability measure – the Gaussian orthogonal ensemble (GOE). We �nd

good agreement between the empirical data and the GOE prediction,

PGOE(s) =
�s

2
exp

(

−�
4
s2
)

: (17)

A second independent test of the GOE is the distribution of next-nearest-neighbor

spacings between the rank-ordered eigenvalues [142]. This distribution is expected to

be identical to the distribution of nearest-neighbor spacings of the Gaussian symplectic

ensemble (GSE), which is consistent with the empirical data [150] [Fig. 2(d)].

The distribution of eigenvalue spacings re
ects correlations only of consecutive

eigenvalues but does not contain information about correlations of longer range. To
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probe any “long-range” correlations, we �rst calculate the number variance �2 which

is de�ned as the variance of the number of unfolded eigenvalues in intervals of length

L around each of the eigenvalues [142],

�2(L) ≡
〈

[

N

(

�+
L

2

)

− N

(

�− L

2

)

− L

]2
〉

�

; (18)

where N (�) ≡ ∑

i �(�− �i) is the integrated density of eigenvalues and 〈· · ·〉� denotes
an average over � [142]. If the eigenvalues are uncorrelated, �2 ∼ L. For the opposite

case of a “rigid” eigenvalue spectrum, �2 is a constant. For the GOE case, we �nd

the “intermediate” behavior �2 ∼ ln L, as predicted by RMT [150].
A second way to measure “long-range” correlations in the eigenvalues is through the

spectral rigidity �, de�ned to be the least square deviation of the unfolded cumulative

eigenvalue density from a �t to a straight line in an interval of length L [142],

�(L) ≡ 1

L

〈

min
A; B

∫ �+L=2

�−L=2

(N (�1)− A�1 − B)2 d�1

〉

�

; (19)

where 〈· · ·〉� denotes an average over � and N (�) ≡ ∑

i �(�−�i) is the integrated den-

sity of eigenvalues [142]. For uncorrelated eigenvalues, � ∼ L, whereas for

the rigid case � is a constant. For the GOE case, we �nd � ∼ ln L as predicted

by RMT [150].

The agreement of the eigenvalue statistics of C with RMT results implies that C has

entries that contain a considerable degree of noise. Such noise could be the result of

either nonstationary correlations or a result of the �nite time series used. To test that

�niteness of time series alone cannot be the reason for RMT agreement, we increase

the length of the time series M used to compute C by a factor of 4. We still �nd

agreement of the eigenvalue spacing distribution with RMT predictions, suggesting

that RMT agreement is also due to non-stationary correlations. From the practical

side, RMT agreement of the statistics of C argues against the wide use of empirically

measured Cij in a variety of applications.

5.4. Deviations from RMT predictions

The results presented in the previous section regard universal properties of the

cross-correlation matrix that agree well with RMT predictions. Deviations from RMT

indicate properties that are speci�c to the system and arise from the presence of col-

lective modes. For example, deviations of the level spacings of certain nuclei from the

Wigner distribution were found to be connected to collective modes of the nucleus.

For the stock market, an interesting question one may ask is “how can one detect

collective behavior?” Following the methods of RMT, we know that one approach is

to study the eigenvalue distribution of C.

Since our aim is to extract information about cross-correlations from C, we need to

compare the properties of C= 1
M
G GT with those of a random matrix with the same

structure. Thus, in order to separate genuine correlations from randomness, we seek to
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group the content of C into two disjoint classes: (a) the part of C that agrees with the

properties of A and (b) the part of C that deviates from the properties of A.

Our work suggests that the eigenvalue distribution of C includes several eigenval-

ues outside the upper bound (�+) predicted for random matrices. In order to interpret

their meaning, we must analyze the eigenvectors of C. We will analyze the statistics

of the eigenvectors [149,150]. RMT predicts that the distribution of eigenvector com-

ponents for a random matrix is a Gaussian with zero mean and unit variance. Our

examination of the eigenvectors corresponding to the eigenvalues which deviate from

the random-matrix bound show systematic deviations from the Gaussian prediction.

The largest eigenvalue is strongly non-Gaussian, tending to uniform – suggesting

that all companies participate equally. This observation can be tested by compar-

ing the returns of the portfolio de�ned by u1000, G1000(t) ≡ ∑N
i=1 u

1000
i Gi(t), with

a commonly-used indicator of market performance, the S&P 500 index. An ordi-

nary least-squares regression between the two suggests a large degree of dependence

indicated by an equal time correlation coe�cient = 0:85 ± 0:03 for the two years

analyzed. Thus, the largest eigenvalue corresponds to the entire market in
uence that

is common to all stocks, which is consistent with the commonly-used one factor market

model [25].

One explanation for eigenvalues that deviate from the RMT upper bound is

the commonly used multifactor models [25,69,140]. One sensitive test to determine

the number of signi�cantly deviating eigenvalues from RMT would be to examine

the agreement of the correlation matrix to the universal properties of random matrices

discussed above, as a function of the number of eigenvalues excluded.

In particular, we have examined the value of the largest eigenvalue as a function of

the sample size. An asymptotic extrapolation of this dependence (�nite-size scaling)

suggests that in the in�nite size limit this eigenvalue tends to in�nity. Such phenomena

occur in the physics of systems near the vicinity of a critical point, and are suggestive

of a collective mode.

5.5. Quantifying the number of signi�cant participants

To analyze the remainder of the deviating eigenvectors in a systematic way, we

introduce the concept of inverse participation ratios (IPR), which is commonly used in

localization theory [142]. The IPR for an eigenvector uk quanti�es the reciprocal of the

number of its signi�cant contributors and is de�ned as I k ≡ ∑N
i=1 [u

k
i ]
4. The meaning

of IPR can be illustrated by two limiting cases: (i) a vector with identical components

uk
‘ ≡ 1=

√
N has I k = 1=N , whereas (ii) a vector with one component uk

1 = 1 and all

the others zero has I k = 1. Therefore, IPR quanti�es the reciprocal of the number of

eigenvector components that participate signi�cantly.

An examination of the IPR values indicate that all components participate approxi-

mately equally to the largest eigenvector [150]. The remainder of the eigenvalues that

deviate from RMT upper bound have varying degrees of participation. In order to in-

terpret their meaning, we extract 1=I k signi�cant components of each of these deviating
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eigenvectors and identify common features such as type of stock, type of industry, or

geographic region of activity.

Both “edges” of the eigenvalue spectrum of C show signi�cant deviations of I k

from the average value 〈I〉, i.e., a plot of IPR as a function of eigenvalue displays a U
shape. For the largest eigenvalues which deviated from the RMT bulk, I k values are

approximately 4–5 times larger than 〈I〉 which suggests that there are varying numbers
of stocks participating to these eigenvectors. The corresponding eigenvalues are well

outside the random bulk, suggesting that these companies are correlated. In addition,

we also �nd that there are I k values as large as 0:35 for vectors corresponding to the

smallest eigenvalues �i≈0:25. These deviations are considerably larger than 〈I〉, which
suggests that the vectors have only a few companies stocks contributing signi�cantly.

We also note that the presence of vectors with large I k at the edges of the eigenvalue

spectrum (U-shaped dependence of IPR on eigenvalue) also arises in the theory of

Anderson localization [142]. In the context of localization theory, one frequently �nds

“random band matrices” [142] which give rise to eigenvectors with small I k in the

middle of the band, whereas the eigenvectors at the edge have large I k . A random band

matrix B has elements Bij independently drawn from di�erent probability distributions.

These distributions are often taken to be Gaussian, parameterized by their variance,

which depends on i and j. Although such matrices are random, they still contain

probabilistic information regarding the fact that a metric can be de�ned on their set

of indices i. Our �nding of localized states for small and large eigenvalues of the

cross-correlation matrix C is reminiscent of Anderson localization and suggests that C

may be a random band matrix.

5.6. Time stability of RMT deviations

Another question to be investigated to validate our results is the that of the stabil-

ity in time of the eigenvectors corresponding to the eigenvalues that deviate from

RMT bounds. To test the time stability, we �rst split the entire two year period

into four six-month sub-periods A, B, C, and D. For each sub-period, we calculate

a cross-correlation matrix, and compute its eigenvalues and eigenvectors. We can then

identify, from each sub-period, the p largest eigenvectors that deviate from the RMT

bounds. Let us denote by ai; i=1; : : : ; p, the p eigenvectors of period A (in ascending

order of eigenvalue), and similarly bj; j = 1; : : : ; p for period B. One may measure

time stability by the scalar product

Oij(�) ≡
N
∑

‘=1

ai‘(t)b‘j (20)

where O is a p × p matrix, and N = 1000 is the number of components of each

eigenvector. If the vectors are perfectly stable, then we expect Oij to be diagonal

with elements Oij = �ij, where �ij is the Kronecker delta. No stability would mean all

elements of Oij have values close to zero. Our results suggest that the eigenvectors
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corresponding to the largest 4–5 eigenvalues show large values of Oij. As we move

toward the RMT bound, the eigenvectors show decreasing amounts of stability.
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