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The direct crystal-to-glass transformation, i.e., spontaneous amorphization, which was first ob-
served by thermal annealing of stishovite SiO; at ambient pressure, has now been observed as
an isothermal phenomenon during both compression and decompression of initially stable crystals.
While counterintuitive, and dependent on kinetically controlled metastable events, the phenomenon
is of broad interest and potential importance in materials science and geophysics. In this paper we
use a combination of molecular dynamics simulations and analyses of laboratory data to explore
the metastable crystal ranges, including the negative pressure range, for key compounds such as the
ices, silicas, and alkaline earth perovskites. Our focus is on the establishment of phenomenologi-
cal patterns rather than on specific metastability-terminating mechanisms. We find that a simple
quadratic law, P — P, ~ (V —V;,)? (where P, and V; are the values of the pressure P and volume V'
on the spinodal), well approximates the equations of state over much of the metastable and even the
stable range—and implies the existence of an isochoric boundary line for stability to isotropic density
fluctuations. We delineate the conditions under which amorphization occurs, usually substantially
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before the stability limit is reached.

PACS number(s): 05.70.Fh

I. INTRODUCTION

There is now a resurgence of interest in phase tran-
sitions in out-of-equilibrium materials, dispersed among
subjects such as one-phase melting [1,2] tensile strength
[2,3] binary alloys and superconductivity [4] and most
recently, pressure-induced amorphization [5-17]. Part of
the interest derives from the recognition that materials
with interesting properties, including high-T, supercon-
ductors, are often materials that exist close to their me-
chanical stability limits, and are often metastable with
respect to other phases. It is becoming clear that, while
the majority of individual phases have metastable ranges
beyond their thermodynamic stability boundaries, the
metastable ranges are not unlimited but rather have ab-
solute boundaries imposed by the arrival at an intrinsic
instability (the vanishing of restoring forces) with respect
to one or the other type of lattice fluctuation.

Except near absolute zero, the metastability will be re-
lieved by some nucleation and growth process. However,
the fluctuations that assist the relevant nucleation bar-
rier crossing process will be those with respect to which
the crystal is becoming absolutely unstable since these
will be the modes with the greatest anharmonicity. To
date the focus of the many studies of this phenomenon
has been on identification of the failure mode. For in-
stance, many studies [1,3,4,9,10,16] have suggested that
the first mode to go unstable is a shear mode, and this
will no doubt often be the case. Given the complexities
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of lattice dynamics, however, it seems likely that failure
will often be more subtle and may involve, for instance,
softening of and/or avoided crossing of optical modes, as
demonstrated recently [18] for some silicate perovskites
treated in this work, and even coupling of optical modes
to acoustic modes.

Recognizing the difficulty of establishing any general
mechanisms for failure, we focus our attention here on an-
other important issue. This issue concerns the location of
the absolute stability limits in (P, T') space relative to the
equilibrium thermodynamic stability boundaries for dif-
ferent polymorphs of the same material. Also of concern
is the dependence of such limits on the direction of depar-
ture from the thermodynamically stable domain. It is cu-
rious that, while enormous interest [6-17] was generated
by the observation by Mishima, Calvert, and Whalley [5]
of the ice Ij-to-glass transformation under compression,
only a few workers [16-20] took account of the earlier,
but equally significant, observation of isothermal crystal-
to-glass transformation by Liu and Ringwood during de-
compression of calcium silicate perovskite [21] or of the
even earlier observation of amorphization of stishovite
SiO2 on decompression and annealing [22]. With this
in mind we present results obtained from a selection of
molecular dynamics simulations in which the improbabil-
ity of nucleation events maximizes the metastable range
that can be explored. As a result we observe certain
common (but not invariable) phenomena near the limits
of metastability. These can be usefully related to phe-
nomena observed in metastable liquids and interpreted

6484 ©1995 The American Physical Society



52 CRYSTAL STABILITY LIMITS AT POSITIVE AND. ..

to first order by mean-field theories of condensed mat-
ter. These interpretations in turn suggest experiments
not yet performed. We report results for both molecular
(ices) and ionic (silica and perovskite) materials.

II. ICE I

In the first case studied, that of ice I under ten-
sion as well as compression, we have used the TIP4P
potential and a large primary box, 864 molecules, in
order to avoid the danger of suppressing destabilizing
modes [23,24]. We have used both constant-volume and
constant-pressure (i.e., the variable box shape algorithm)
simulations [25]. Details of the simulation are given in
Ref. [26]. In the second case, that of ice VIII under de-
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compression, a box of 432 molecules has been used and
the variable box shape algorithm was employed [25,26].
In our work, we calculate density-pressure relations at
a series of temperatures during both increase and de-
crease of density from zero-pressure values [26]. In ice
I, the approach to the metastability limit on compres-
sion, for all temperatures below 100 K, and on tension
for temperatures below 250 K, is manifested by the onset
of rapid but reversible changes in density with increas-
ing pressure in the constant volume simulation, accom-
panied by small distortions in box shape in flexible box
simulations [see Fig. 1(a)]. In the case of increasing ten-
sion (negative pressure), approach to the metastability
limit is indicated by a similarly increasing compressibil-
ity. The failure in this case is manifested by a sharp
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FIG. 1. Ice Ir under compression and tension. (a) P-V relations at several temperatures. Solid lines give the reversible
behavior. (b) Tests of mean-field behavior of volume near compression and tension stability limits (Ps,Ts). (c) Values of P
that linearize the plots in part (b) and define the stability limits under compression (filled circles). Open circles denote the
nucleated fusion points (non-spinodal). The open square is the equilibrium melting point at atmospheric pressure, and crosses
show the melting line. The diamond shows the laboratory amorphization pressure at 80 K [4].
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break in the plot, since P tends rapidly back to zero on
rupture. We will see comparable behavior with ice VIII
and perovskites under decompression.

The large and growing density fluctuations near the
limits of stability in Fig. 1(a) are reminiscent of the be-
havior observed near the limit of stability in metastable
water (both supercooled and superheated). In each of
the latter cases increasing compressibilities are observed
[27,28], and can be explained by the approach to a spin-
odal line [29], the position of which is established (in
mean field) by equations of state. Since kinetic phe-
nomena, viz., nucleation of new phases, prevent close
approach to a spinodal, its absence as a singularity in
higher order treatments of phase transitions is not ger-
mane to our discussion.

Figure 1(b) demonstrates that the exponents describ-
ing this singularity are consistent with those of the clas-
sical (mean field) spinodal [29],

P—P, ~(V-V), (1)
where P, and V; are the values of the pressure P and vol-
ume V on the spinodal. This does not mean that the sys-
tem ultimately fails by nucleation initiated by isotropic
density fluctuations. Studies of SiO; quartz [17] and per-
ovskite CaSiO3 [18] show otherwise. Rather, the spin-
odal sets an upper limit on the pressure (or tension) to
which the phase could conceivably exist, hence providing
a readily accessible indicator of the stability field for a
compound. Use of the variable box shape algorithm can
provide some guidance as to the nature of preemptive in-
stabilities since the fluctuations in the entire strain tensor
can be evaluated. However, pinning down the precise fail-
ure modes and failure pressure will require for each case
detailed lattice dynamics analysis of the sort provided in
Refs. [16] and [18]. We note, in the present case of ice
I, that the box shape at 77 K, like the pressure, was re-
versible up to the failure pressure of 14 kbar, quite close
to the spinodal limit of 16 kbar.

We found the constant-volume results and the flexible
box results to be similar. The difference, a slightly ear-
lier collapse in the flexible box case, is in the direction
expected though it is barely outside calculation errors, in
view of the different method of accounting for the long-
range Coulomb forces and the different ensembles used
in the simulation.

We show below that, in the decompression of ice VIII,
the same simple mean-field quadratic law may be applied,
both to the simulation results and to the experimental
observations of Hemley et al. [30].

The overall behavior for ice I}, can be summarized in
the metastable phase diagram, Fig. 1(c). Figure 1(c)
shows the complete mechanical stability region in the
(T, P) plane {16]. The picture is similar to that concep-
tualized by Ponyatovsky and Barkalov [31] for different
polymorphs of a substance, although it will be seen that
it is not general. Note that at high temperature under
tension, metastable melting of ice preempts cavitation.
Indeed, on increasing the temperature at P = —0.2 GPa,
the crystal first transforms to the liquid phase at 311 K.
Then the metastable liquid cavitates near 340 K.
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III. ICE VIII

Ice VIII is the stable structure of ice formed at pres-
sures above 1.5 GPa. Oxygen atoms in ice VIII are po-
sitioned in two interpenetrating ice I. sublattices. Even
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FIG. 2. Ices VII and VIII under decompression. (a) P-V
relations for ice VII from experiments at ambient temperature
[30], and simulations of TIP4P ice VIII at 77 K (this work).
(b) Tests of the quadratic law for ices VII and VIII. Best fit
parameters for the data ranges shown are given in the legend.
A negative pressure. stability limit at 77 K is in accord with
decompression of ice VIII to ambient pressure reported by
Klug, Honda, and Tse [20]. Note that we fit the data both in
the variables (V — V;)? and (p — ps)%. The quality of the fit
is better in the second variable than the first. For this reason
the figure shows the variable (p — ps)?, both for experimental
data and for simulations. Moreover, the fit using V' — V; gives
a positive intercept P,, which is inconsistent with the exper-
imental observation of Klug, Honda, and Tse [20]. (c) Loci
of stability limits for ice polymorphs to isotropic fluctuations
according to quadratic law for ice I from Fig. 1(c) combined
with those of ice VIII from Fig. 2(b) (open circles) and a
conjecture (dotted line) based on the high-pressure melting
line, from Ref. [46], shown as a dashed line.
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though each molecule has eight nearest neighbors it forms
hydrogen bonds only to the four neighbors on its own
sublattice.

In Fig. 2(a) we show the (P, V') relations obtained from
constant pressure flexible box simulations for the decom-
pression of ice VIIL. In this case the equation of state
has been experimentally measured between 128 and 4.3
GPa at 300 K [30] and the data are included in Fig. 2(a).
Since the expansivity is very small the temperature differ-
ence affects the volume minimally, hence the agreement is
seen to be good, particularly at lower pressures. The ex-
perimental data between 60 GPa and ambient pressure
conform, within experimental error, to a quadratic law
[see Fig. 2(b)]: P — P, ~ (p— ps)?. The limiting pressure
obtained from this fitting is +1.0 GPa at a density of
1.35 g/cm®. Klug, Handa, and Tse [20] confirm that ice
VIII under decompression at 77 K does not amorphize
but their further experiments with annealing schedules
imply that amorphization under isothermal decompres-
sion would occur at 125 K.

Our simulation data also conform to a quadratic law
in the variable p — p, with P, = —0.5 GPa and p, =
1.42 g/cm3, as shown in Fig. 2(b).

It is interesting that ice VIII, which requires such high
pressures to become thermodynamically stable, should
have a metastable domain extending at low temperatures
into the negative pressure. Our study of this phase is in
its initial stages but we combine knowledge of the melt-
ing lines with some speculation to propose in Fig. 2(c)
the larger picture in which the metastable domains for
different polymorphs of the same substance are jointly
displayed in what we might call a Ponyatovsky-Barkalov
diagram [31]. The stability field of ice VIII is very large
and will evidently only be terminated at ultrahigh pres-
sure by collapse to a metallic state. Of obvious inter-
est are the intermediate cases of ice II and ice VI, which
should have similar high-pressure, as well as low-pressure,
limits.

IV. SIO; CRISTOBALITE

Findings from a less extensive molecular dynamics
(MD) study of a cristobalitelike SiO, are summarized
in Fig. 3. In this case the diverging compressibility is
only obvious under tension [Fig. 3(a)] where the log-log
plots familiar to critical point phenomenology are seen
[Fig. 3(b)] to be linear over three orders of magnitude
with exponent 0.5. The behavior under compression is
ambiguous even at low temperatures perhaps because the
failure mechanism is a shear instability as in quartz [17]
and the coupling of shear fluctuations to volume fluctua-
tions is weak. The break points on compression, however,
are well defined up to high temperatures.

Results are summarized in Fig. 3(c), which differs from
Fig. 1(c) by using a volume coordinate for reasons we now
discuss.

V. PHENOMENOLOGICAL TRENDS,
STRUCTURAL OBSERVATIONS, AND
RELATION TO LABORATORY STUDIES

Some phenomenological trends for these two very dif-
ferent substances can be noted. So long as no liquid
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phase can form, we find that the failure occurs or tends
to occur at a critical volume V,, which is independent
of temperature, in contrast to spinodals associated with
critical points [32]. The calculated V, values for ice I
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FIG. 3. SiO2 cristobalite under compression and tension
(a) P-V relations; the 2500 K curve has been displaced up-
ward 5 GPa for clarity. (b) Log-log plots of V — V, against
P — P, showing linearization with mean-field exponent 0.5
(dotted line). (c) Limiting volumes under compression and
tension plotted against volume [note distinction from Fig.
1(c) to emphasize isochoric limits to metastability under com-
pression (open squares), and tension (open circles). Filled
circles denote nucleated melting points, and filled triangles
denote V, obtained from power-law fits of part (b). In the
case of the simulated “cristobalite,” the collapse at 300 K oc-
curs 25% below the pressure of the laboratory phenomenon
(22 GPa [8]): our potential function is too approximate for
accurate predictions on SiOj.
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are always 22.7 cm®/mol under stretch and 15.8 cm3/mol
(below 100 K [14]) under compression. Cristobalite al-
ways collapses if extended to 29.7 cm®/mol or compressed
to 23.4 cm®/mol [see Fig. 3(c)] [33]. Such an “isochoric
metastability boundary” has been noted [2] (by Born in-
stability) for the simple embedded atom potential and
for Lennard-Jones systems under tension.

A comment on the structural character of TIP4P ice
Ip, at the 77 K stability limit is needed. The radial dis-
tribution function (RDF) shows the growth during com-
pression of intensity at about 0.35 nm, the position of
the “fifth neighbor” in the liquid phase [34]. At the high-
est density from which the compression is reversible (and
the original crystal is recovered on decompression), this
shoulder is on the verge of becoming a maximum. Near
this condition, the RDF peaks are very broad, more simi-
lar to those of the glass than of the crystal, although no ir-
reversible changes have occurred. The crystal is presum-
ably in a state in which a large, but subcritical, number
of molecules occupy defect sites. At this point, a fluctu-
ation such as that occurring at about time step 20 000 in
Fig. 2 of Ref. [9(b)] can nucleate an irreversible collapse
to the glass. However, until such a fluctuation occurs, the
system is metastable and can be recovered in its original
state on slow decompression [35]. The latter behavior can
be contrasted with that under tension, where no defect
buildup is seen and where quadratic laws apply to much
higher temperatures. The distinction must lie in the dif-
ferences in energy barriers to critical nucleus formation
under compression and tension. Indeed, the energy lost
in deforming the linear hydrogen bonds on compression
is compensated by the energy gain due to the increased
number of neighbors. Such compensation is not possible
on stretching, where direct rupture of linear hydrogen
bonds is a prerequisite for failure.

In laboratory studies, ice I; transforms to a pressure-
vitrified phase near 1.0 GPa at 77 K [5] [marked by a
square in Fig. 1(c)]. This pressure is significantly lower
than the spinodal pressure observed in this MD study,
but this is not surprising since the time scale for labora-
tory observation is some 10 orders of magnitude longer
than that of the simulation. On laboratory time scales
the transition at 77 K will occur by homogeneous nucle-
ation and growth of amorphous domains via optical mode
softening, as is observed in electron microscopic studies of
the pressure-induced amorphization of quartz-structured
G602 [8}

Laboratory detection of prespinodal increases in re-
sponse functions in ice would probably also be precluded
at 77 K by the nucleation event, in the same way that di-
vergent behavior is not observed in our simulations of ice
at higher temperatures [Fig. 1(a)] due to the fact that,
even on the computer time scale, the probability of cross-
ing the nucleation barrier becomes very high during the
simulation. This observation is important in connection
with the search for signs of spinodal failure in labora-
tory pressurized crystals. It suggests that experiments
should be conducted at the lowest possible temperature
in order to avoid masking of divergences by preemptive
homogeneous nucleation.

So far, we have shown that crystalline structures
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described by four different potentials (this work and
Ref. [2]) all exhibit an “isochoric metastability bound-
ary” under both tension and compression, a remarkable
and provocative observation.

VI. METASILICATE PEROVSKITES

We now look at additional cases of how crystalline
phases created at very high pressures relieve their
metastability on isothermal decompression. We follow up
on the Liu and Ringwood [21] observation that perovskite
CaSiOg, created in a diamond anvil cell experiment, col-
lapses to a glassy state on decompression (which was of
great frustration to them but great interest to us).

In Fig. 4 we examine this case to test the expectation
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FIG. 4. (a) Variation of pressure with volume during de-
compression of simulated alkaline earth metasilicate per-
ovskites M[II]SiOs. Note how a change of cation size pa-
rameter shifts the spinodal limit on perovskite stability from
positive to negative pressures without changing the limit-
ing volume. The inset shows how data over a wide vol-
ume range are consistent with the existence of a spinodal
limit slightly beyond the observed rupture point (for CaSiOs,
P, = —30.8 GPa, V, = 35.3 cm?; SrSiOs, P, = —6.1 GPa,
V, = 35.7 cm?®; BaSiO3;, P, = 48.6 GPa, V, = 36.1 cm®). (b)
Variation of pressure with volume for laboratory and simu-
lated CaSiO3. The limitation of the rigid ion potential as
parametrized by us is manifested by a discrepancy in the
pressure. However, the curvatures are comparable since the
quadratic plots testing the mean field stability limit [inset of
(b)] superimpose. Quantitative agreement is obtainable with
modified potentials based on those of Matsui for MgSiO3 (see

[18]).
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that the failure will again be preceded by diverging den-
sity fluctuations (preempted, in the case of laboratory ex-
periments, by homogeneous nucleation). The data plot-
ted in Fig. 4 were obtained, using MD simulations with
the transferable rigid ion model (TRIM) potentials from
earlier studies [36], on crystals of group ITA metal silicate
perovskites [M(II)SiO3] on which many experimental and
theoretical studies have been made [11,37-39]. A more
detailed study, using refined potentials that better repro-
duce the experimental data, has been reported elsewhere
[18] but the simple TRIM potential simulations produce
the same phenomenological trends and are more than ad-
equate for our present purposes.

The equations of state obtained for these crystalline
phases [see Fig. 3(a)] are qualitatively similar to those for
ice VIII and for SiO; cristobalite under tension, Figs. 2
and 3, although in the cases of SrSiO3 and BaSiOj3 the
pressure never reaches negative values before the failure
occurs. In the three cases in which the stable crystal has
our cubic box symmetry, Fig. 3 shows that the quadratic
law P — P, ~ (V — V,)? is well obeyed. The value of
V, proves to be almost the same, 35-36 cm®/mol, for all
cases, notwithstanding the different cation radii. The lat-
ter strongly affect the rupture pressure. Further expan-
sion of CaSiO3; beyond the V, to the ambient pressure
glass volume, 40 cm3/mol [40], results in a disordered
product [41]. However, in short time simulations, un-
like experiment, this product has not lost its memory of
the crystal from which it was derived. Recompression
to crystal volume results in the reformation of the per-
ovskite crystal. To obtain irreversible transformation to
the glassy state found by Liu and Ringwood [21], an ad-
ditional extension of volume to 50 cm3/mol, followed by
recompression, or annealing at 7' > 600 K, is needed.

It is now known that it is possible with care to re-
cover the cubic perovskite phase at ambient tempera-
ture, though it vitrifies within a few hours at ambient
temperature [37]. MgSiOg, as is well known, can always
be recovered at ambient temperature, and then persists
indefinitely. The calculations suggest therefore that the
SrSiO3 and BaSiOj3 perovskites will only be observable
under static high pressure conditions.

In Fig. 4(b) and its inset, we show that the curva-
ture in the experimental equation of state for CaSiOg3
obtained by Mao et al. [38] is comparable with our find-
ings although our equation of state is displaced to higher
pressures (reflecting the same deficiency in the TRIM
potential parameters discussed in Ref. [41]. For the
Fig. 4 inset presentation of experimental data, we use
a V, value of 32.0 cm? /mol obtained from the extremum
in the Birch-Murnagahn equation of state used by Mao
et al. [38] to fit their data. A quadratic plot of the experi-
mental data points then gives a behavior almost indistin-
guishable from our MD findings. Finally, we emphasize
that with reparametrization of CaSiOj3; pair potentials,
based on those of Matsui for MgSiO3 perovskite [42], we
can obtain quantitative agreement with the experimental
data. These calculations, combined with detailed lattice
dynamics calculations to identify the complex cascade of
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instabilities responsible for the final collapse of the crys-
tal to the glassy state, are described elsewhere [18]. Ref-
erence [18] also shows that, as in the case of ice I}, and
SiO; cristobalite, the low-pressure boundary is isochoric.

VII. CONDITIONS FOR AMORPHIZATION

From the foregoing we can define certain conditions
that need to be fulfilled before isothermal crystal-to-
amorphous transformations can be expected. First and
most obvious, the crystal needs to reach its stability
boundary while the pressure is positive or only weakly
negative, so that the alternative failure to a cracked
or cavitated state does not preempt the more isotropic
amorphization process. Second, it must occur at a tem-
perature below the glass transition temperature of the
amorphous phase so that nucleation of a thermodynami-
cally stable crystal phase does not permit a bypassing of
the amorphous domain of configuration space. Finally,
initial crystal structure must not be such that there is a
continuous nondiffusive (displacive) path to a stable crys-
talline state of lower free energy than that of the glass.

The actual path to amorphization may well be via in-
termediate crystalline states which themselves have no
mechanical stability at the temperature and volume of
the primary crystal failure as found for CaSiOjz per-
ovskite [18]. As emphasized earlier, the crystal will al-
most invariably find some path to failure before the den-
sity fluctuation divergence limit, indicated by the equa-
tion of state, can be reached. It is only a surprise that in
the case of ice I}, the latter can be so closely approached.

VIII. CONCLUDING REMARKS

The study of metastable domains in crystalline mate-
rials and the vitrification process that is frequently en-
countered on passing the stability limit, appears to be a
rich field for future work. The field includes metal-to-
amorphous semiconductor transitions [31] and molecular
insulator-to-amorphous semiconductor (or to amorphous
metal) transitions [11]. As a subclass the recently recog-
nized amorphous-amorphous [8,43-45| transitions could
be included. Near the metastable limits, particularly at
low temperatures (ambient for strongly bound systems),
many interesting phenomena may be anticipated.
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