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Abstract

We develop a quantitative method for analyzing repetitions of identical short oligomers in
coding and noncoding DNA sequences. We analyze sequences presently available in the
GenBank separately for primate, mammal, vertebrate, rodent, invertebrate and plant taxo-
nomic partitions. We find that some oligomers “cluster” more than they would if randomly
distributed, while other oligomers “repel” each other. To quantify this degree of clustering,
we define clustering measures. We find that (i) clustering significantly differs in coding and
noncoding DNA; (ii) in most cases, monomers, dimers and tetramers cluster in noncoding
DNA but appear to repel each other in coding DNA. (iii) The degree of clustering for dif-
ferent sources (primates, invertebrates, and plants) is more conserved among these sources
in the case of coding DNA than in the case of noncoding DNA. (iv) In contrast to other
oligomers, we find that trimers always prefer to cluster. (v) Clustering of each particular
oligomer is conserved within the same organism.

Introduction

Recently there have been reports linking certain neurological diseases, such as
Huntington’s disease, fragile X-linked mental retardation, and myotonic dystrophy,
with trinucleotide expansions — long repetitions of identical trinucleotides in the
coding regions of certain genes (1-3). For a review on the role of trinucleotide
repeats in neurological diseases, see Ref. (4).  Other studies have noticed long tan-
dem repeats of identical dinucleotides in noncoding regions of the genome (5-7).
Identical mono-, di-, tri-or tetranucleotides tandemly repeated, also known as
microsatellites, have been extensively analyzed (8). Since microsatellites were first
shown to aid genetic mapping (9), they have become primary genetic markers (10).
More recently, studies have used microsatellites to compare evolution among dif-
ferent species (11). At some loci, microsatellites are so polymorphic that they can
be used for DNA fingerprinting (12).

Quantitative studies of microsatellites include analysis of runs of single nucleotides
(13,14). Dinucleotides have been studied in terms of nearest neighbors (15,16) and
relative frequencies (6,7,17). Trinucleotides have been examined in terms of biased
distributions (18). Tandemly repeated pentamers have been studied in (19). A com-
prehensive study of the average length of simple repeats of units of 1—6
nucleotides was compiled  (20). An analysis of clustering of nucleotides has been
done by Mrazek and Kypr (21) and by Lio et al. for Haemophilus influenzae and
Saccharomyces cerevisiae chromosomes (22).

Interest in the nucleotide patterns in DNA (such as simple sequence repeats) is
growing due to its direct correspondence to evolutionary processes. The difference
in nucleotide patterns in coding and noncoding DNA reflects a difference in the
evolutionary pressure in various functional parts of DNA. Recent studies of distri-
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butions of dimeric tandem repeats (DTR) in DNA sequences reveal a significant
difference between coding and noncoding regions (6,7).  It was found that some of
the DTR in noncoding DNA have power-law distribution functions. On the con-
trary, all the DTR distribution functions in coding DNA are exponential, which
implies that they are either randomly distributed or short-range correlated. DTR are
one of many examples of complex patterns in DNA.

In order to extend the study of patterns of nucleotides in DNA, we develop a quan-
titative method for studying the repetitions of oligomers (mono-, di-, tri-, and
tetranucleotides) in coding and noncoding DNA. Using the concepts of percolation
theory (23-25), we calculate the mean length (defined below) of repetitions of
oligomers, and the expected length of repetitions if the oligomers, with the same
frequencies as in a real sequence, were randomly placed along an artificial
sequence. The expected length of repetitions of oligomers we use as a control. By
forming the dimensionless ratio between the actual value to the control value, we
can recognize whether oligomers “cluster” (repeat more than they would if their
order were randomly shuffled) or “repel” (repeat less than they would if their order
were randomly shuffled). In such a way we can understand if oligomers in DNA
tend to aggregate or segregate.

We systematically compare clustering in coding and noncoding DNA for: primate,
mammal, vertebrate, rodent, invertebrate and plant taxonomic partitions of
GenBank release 104.0. It is possible that differences in the patterns of repetitions
in coding and noncoding DNA (i) can furnish ways to classify unknown sequences
as coding or noncoding and  (ii) can shed light on the dynamics of evolution of var-
ious regions of DNA.

Method: Ratio Analysis

We quantify the repetitions of oligomers by dividing the sequence into the non-
overlapping windows of n nucleotides, where n is the size of an oligomer. For
trimers (n = 3) we select biological reading frames when we study coding regions.
In all other cases we select randomly chosen reading frames.

We analyze separately coding and noncoding sequences. For coding sequences we
concatenate exons within a single gene (excluding the untranslated 5′ and 3′ ends1).
Noncoding sequences we identify as those that are not explicitly specified as CDS
in the GenBank flat file format. In order to deal with the bias in the GenBank data-
base due to the multiple entries of short copies of some fragments of the larger
DNA sequences, we select only those loci that exceed in length 104 bp. This
reduces the redundancy of the data we analyzed. The total length and the number
of sequences analyzed in coding and noncoding regions of different taxonomic par-
titions are reported in Table I.

First, we compute the number of repeats of length l of a given oligomer in the analyzed
set of sequences: Ni (l), where i = 1, …, M is the index of an oligomer and M = 4n is
the total number of distinct oligomers of size n. According to our definition, we have

where L is the total number of oligomers.

Next, we introduce two measures of repeat length: (i) We define the “number” average
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1We do not find any significant difference between clustering properties of the untranslated
5′ and 3′ ends and noncoding DNA sequences. In addition, we perform the clustering ratio
analysis of the expressed sequence tags (EST) database, which are mainly taken from the
untranslated 5′and 3′ ends, and find that their clustering properties are similar to those of
noncoding sequences.

Table I
The total length in bp of the coding and noncod-
ing regions analyzed. The protein coding
sequences are constructed by concatenating
sequences belonging to the same gene, denoted as
CDS in the GenBank. The noncoding sequences
are constructed by concatenating sequences,
which are not denoted as CDS in the GenBank.

[1],



where

[3]

is the total number of repeat occurrences. 

(ii) We also define the “weight” average (see e. g. [25]):

[4]

This definition gives larger weights to longer repeats. The utility of [4] is that 〈l〉w

is the average length of a repeat to which a randomly chosen oligomer belongs.

Next, we calculate the control value, where the control is obtained by scrambling
(random reshuffling) the order of the oligomers. If all the nucleotides were evenly
represented, each oligomer would have a frequency of 1/4n, where n is the size of
the oligomer, e.g. n = 1 for monomers, n = 2 for dimers, etc. Since the frequencies
of the nucleotides vary, we calculate the actual frequency of each oligomer in a par-
ticular set of DNA sequences. We generate a control sequence by random concate-
nation of the oligomers with given frequencies.

For the control sequence, we can compute the probability Pl that a given oligomer
belongs to a “cluster” (aggregate) of exactly l repetitions in an uncorrelated ran-
dom sequence2 is given by percolation theory (23,24):

Pi (l) = lpl
i (1 - pi)2                                                            [5]

where pi is the frequency of a particular oligomer. By multiplying pi (l) by the total
number of oligomers L, we find the total length of clusters of size l. Thus, for ran-
dom uncorrelated sequences, the expected number of clusters Ni

0 (l) of size l (the
control) is given by

Ni
0 (l) = Lpl

i (1 - pi )2.                                     [6]

It is possible to calculate theoretical predictions for both measures of repeat
lengths for a control sequence in which the order of oligomers is randomly
scrambled (see Appendix A for the derivation). For such an uncorrelated random
sequence we find

[7]

where pi is the frequency of each oligomer, and

[8]

To quantify the relative clustering strength, we introduce two clustering ratios,
defined by

[9]

The clustering ratios compare the actual repeat length with the control case in
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2For the Markov sequence consult Appendix C.

[2]



which, by definition, no clustering occurs beyond the clustering that occurs in  an
uncorrelated random process.  Note, that for an uncorrelated random sequence, the
distributions of Rn and Rw are Gaussian, centered at Rn  = 1 and Rw  = 1 corre-
spondingly. Their standard deviations are computed in Appendix B. In Table II, we
present the relative clustering ratios Rn and Rw.

Results and Discussion

We compare the ratios of the observed values of the average length 〈l〉n of
oligomers3 (monomers, dimers, trimers, and tetramers) and their weight average
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3We are unable to obtain statistically significant results for the oligomers, longer than
tetramers. Hence, we omit the results for pentamers, hexamers, etc. in the present report.

Table II
The average clustering ratio values Rn and Rw along with the error bars are shown for mono-, di-, tri-,
and tetramers in coding and noncoding DNA of primate, vertebrate, invertebrate, mammal, rodent, and
plant taxonomic partitions of the GenBank. The mean values and the error bars (one standard devia-
tion) are computed by partitioning the GenBank data sets into 10 subsets of size 10% of the GenBank
data sets. Afterward, we compute Rn and Rw for each subset independently. Then we consider the dis-
tributions of the values of Rn and Rw for coding and noncoding DNA and compute the p-values for the
Kolmogorov - Smirnov test indicating the probability that those Rn and Rw values (for coding and for
noncoding DNA) are drawn from the same distribution. If p is close to 1, then the two distributions are
drawn from the same distribution with the probability close to 1. If p is close to 0, then these distribu-
tion are taken from two different distributions with the probability (1-p) ≈ 1. These results are consis-
tent with: (i) there is evolutionary pressure against clustering of repeats (except trimeric) in coding
DNA; (ii) the clustering ratios for all organisms show strong clustering of the trimers; (iii) the differ-
ence between the clustering of trimers in coding DNA for different taxonomic partitions is less pro-
nounced than in noncoding DNA.



〈l〉w to the theoretically predicted for a randomly shuffled sequence. We consider
primate, vertebrate, invertebrate, mammal, rodent, and plant taxonomic partitions
of GenBank release 104. We limit our analysis only to eukaryotic genomes since
for prokaryotic genomes our preliminary analysis shows virtually no clustering4.
The complete results for clustering ratio values and for the error bars of these val-
ues are presented in Table II. To compute error bars we partitioned GenBank data
sets into 10 subsets, each of size of 10% of the GenBank data sets. We compute the
clustering ratios for each set and from the distribution of these values we determine
the mean and the standard deviation, presented in Table II. The probability that
these distributions for coding and noncoding DNA belong to the same distribution
is characterized by the p-value of the Kolmogorov - Smirnov test (see (26)). If p is
close to 1, then the two sets of values are drawn from the same distribution with the
probability 1. If p is close to 0, then these set of values are taken from two differ-
ent distributions with the probability (1-p) → 1. In Table II we also present the p-
values. The errors which are due to the finite length of the sequences are negligi-
ble (see Appendix B). We find:

(i) A significant difference between the clustering of monomers (excluding
plants), dimers, and tetramers in coding versus noncoding DNA. The p-values for
all the distributions of ratio value sets of above mentioned groups of repeats do not
exceed 2·10-5.

(ii) The clustering ratios for the monomers in coding DNA for all the taxonom-
ic partitions except plants are close to unity (within 9%), which means that they are
close to being randomly distributed. For the noncoding DNA, however, these val-
ues are consistently greater than one, indicating the slight clustering of monomers.

(iii) The clustering ratios for the dimers in coding DNA are also close to unity
(within 7%). However, these values are consistently smaller than unity, which indi-
cates the slight repulsion of dimers in coding DNA. In contrast, the clustering ratios
for the dimers in noncoding DNA are consistently greater than unity. The cluster-
ing ratio values for the tetramers in coding DNA are consistently and significantly
smaller than one (up to 32%) which indicates the repulsion of tetramers. The clus-
tering ratios for the tetramers in noncoding DNA are consistently greater than unity. 

(iv) The clustering ratios for the trimers for all organisms show strong clustering
of the trimers in both coding and noncoding DNA.  For primates and mammals, the
Kolmogorov-Smirnov p-values for the Rn ratio are of the order of 1 (Table II),
which indicates that one cannot distinguish between coding and noncoding DNA
based only on Rn ratios. Interestingly, the difference between the trimer clustering
ratios for different taxonomic partitions in coding DNA is less pronounced than that
in noncoding DNA. This indicates that coding regions are more evolutionary con-
served than noncoding regions.

Observations (i) - (iii) might arise from the evolutionary pressure against cluster-
ing of repeats (except trimeric) in coding DNA. The source of clustering of
oligomers in noncoding DNA could be the result of various duplication processes
or simple repeat expansion processes (5,6,27), indicating that some of the neigh-
boring oligomers evolved from the same single copy. These observations are in
agreement with recent work (7,16,28), where dimeric tandem repeats (DTR) were
studied and it was found that DTR are abundant in noncoding DNA, while they are
rare in coding DNA. The difference in length distributions of DTR in coding and
noncoding DNA can be attributed to the fact that noncoding DNA is more tolerant
to evolutionary mutational alterations than coding DNA. These findings are also
consistent with the conclusions of Lio et al. (22).
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4We studied the complete genome of Escherichia coli; however we found that clustering
ratios are close to unity both in coding and noncoding DNA.



For coding DNA, the observed clustering of trinucleotides could be due to specif-
ic protein structures in which amino acids cluster together (such as an alpha helix).
Another possibility is that clustering of amino acids is alloted to the general prob-
lem of the stability of the native state of the folded proteins (29-32).

The strength of clustering of trimers in coding DNA relative to dimers and tetramers
can be explained by the fact that insertion or deletion of a dimer or a tetramer would
lead to a frame shift. Such shift in the reading frame leads in most cases to a loss of
protein function, which can be lethal for the organism. On the contrary, the insertion
or deletion of a trimer is equivalent to the insertion or deletion of an amino acid in
the protein sequence. Such insertion or deletion, if it happens away from the func-
tionally or structurally important sites of the protein (see (33-34)), would not affect
the protein function, and hence would be tolerated by natural selection.

We also calculate the clustering measures for each individual oligomer, which we
define the same way as in Eqs. (2) - (9), except that the summation over all types
of oligomers (i = 1, 2, .., M) is omitted in calculations of number and weight aver-
age values, and clustering ratios. Hence

[10]

and

[11]

The theoretical values for 〈l〉th
n,i = 1/(1-pi ) and 〈l〉 th

w,i = (1 + pi )/(1-pi ) (see (25))
are computed similarly to Eq. (7) and (8).

We find that the clustering ratios for each individual oligomer are conserved for
each organism, i.e. the standard deviation of the clustering measures in various
parts of the same genome is around a few percent. To illustrate this observation we
report the clustering ratio values for dimers in Homo sapiens in Table III5. This
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5The data for the clustering ratio values for other oligomers and taxonomic partitions of the
GenBank are consistent with this statement.

Table III
The average clustering ratio values Rn and Rw along with the error bars are shown for 16 dimers
in the Homo sapiens taxonomic partition of the GenBank for coding and noncoding DNA.
Note that the standard deviation of the clustering measures is a few percent, indicating con-
servation of the clustering measures for each particular dimer within the same organism.



observation indicates that the clustering ratio can quantify the tendency of the DNA
sequences to cluster and can be utilized in further studies of aggregates of
oligomers in DNA sequences. For example, different clustering ratios of various
dimers can suggest different mutation rates, specific for each dimer and organism.
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Appendix A: Derivation of Eqs. (7) and (8)

To derive Eq. (7) let us start from the definition of the length average 〈l〉n :

[A1]

where Ni
0 (l), the number of oligomers of type i in a sequence of length L, is deter-

mined by the Eq. (6). Thus, 

[A2]

Analogously we can derive Eq. (8):

Thus,

Appendix B: Dispersion of Rn and Rw Due to the Finite Length of the Sequence

Let us denote the probability density of finding a cluster of length l by Pi (l), where
i =1, ..., M. For the uncorrelated random sequence, 

[B1]

where χ = 
M
Σ
i=1

pi
2 χ = i=1M pi2. The dispersion of the cluster length is

The dispersion of the average value of cluster length, σ2 (〈l〉), due to the finite size
of the system is

[B3]

Since N = L (1 - χ) (see Eqs. (2) and (7)), we find using Eq. (2) that

[B4]
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Since the dispersion due to the errors in measuring pi is negligible, the standard
deviation of the Rn values can be computed as follows:

[B5]

Thus,

[B6]

Analogously, we calculate σ (Rw ):

[B7]

According to the Cauchy-Bounyakovsky inequality, the minimal value of χ is 1/M.
Using Eqs. [B6] and [B7], we estimate the dispersion due to the finite sampling size
for all entries of Table I. In all cases the expected fluctuations of clustering ratios
due to the finite sampling size do not exceed the error found directly by analyzing
different data segments and, hence, can be neglected.

Appendix C: Ratio Measures for Markov Sequences

For the one-step Markov sequence, generated with the help of a M × M matrix ||Πij||,
whose elements Πij are probabilities of finding element i after element j, the prob-
ability density Pi (l) of finding an oligomer of length l is (6)

[C1]

where χM = ΣM
i=1 pi Πij .

The average length of oligomers 〈l〉n,M is computed in analogy to Appendix A:

[C2]

and analogously

[C3]

Following the arguments of Appendix B, we find

[C4]

and 

[C5]

Thus we see that the errors in ratio values due to the finite length L (>105) of the
Markov sequences are negligible.
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