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Locating the source of diffusion in complex networks by time-reversal backward spreading
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Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex
networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human
body. An accurate localization of the source is inherently limited by our ability to simultaneously access the
information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we
locate the source from incomplete information and can we achieve full localization of sources at any possible
location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to
locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the
algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply
it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar
as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion
in complex networks based on limited accessibility of nodal information. Moreover, they have implications for
controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics,
slowing the spread of rumors, pollution control, and environmental protection.
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I. INTRODUCTION

Many large-scale dynamical processes taking place on
complex networks can be triggered from a small number of
nodes. Prototypical examples include epidemic spreading on
a global scale, rumor propagation through microblogs on the
internet, wide-ranging blackouts across North America, and
financial crises accompanied by the bankruptcy of a large
number of financial institutions. The self-organization theory
introduced by Bak and his collaborators [1] has provided
a theoretical explanation: when a complex system enters a
self-organized criticality state, small perturbations to even
single individuals are able to initiate a big event, such as the
avalanche of collapses in the sandpile model [2]. Moreover,
the development of modern technology considerably facilitates
the spreading of disease and information via public traffic
systems and the internet, which enables propagation across
a large area from a source, such as the worldwide H1N1
pandemic in 2009 [3,4] and the irrational and panicked
acquisition of salt in southeast Asian countries caused by a
rumor relevant to the nuclear leak in Japan. These phenomena
raise a challenging question: how to locate the source in a
huge network relying on relatively limited accessibility to
nodal states, answers to which are of paramount importance
for many aspects of nature and society, such as disease
control, antiterrorism, and economic health. Despite some
pioneering approaches attempting to locate sources [5–11]
and superspreaders [12,13], we still lack a comprehensive
understanding of our ability to precisely identify the original
source of spreading in a large complex network. The difficulty
stems from the lack of a general locatability condition to
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predict if the source at any possible locations is fully locatable
in terms of a given set of observers.

We develop a general locatability framework based on the
time reversible characteristic of diffusion-like processes. This
allows us to perform a time-reversal backward spreading to
accurately locate the source, and offer a locatability condition
that guarantees that a source will be fully locatable at any
position. The algorithm and locatability condition are applica-
ble in both directed and undirected networks with inherently
limited knowledge of nodes and a time delay along links. We
validate the tools by using a variety of complex networks
in combination with two typical diffusion-like dynamical
processes, i.e., epidemic spreading [14–16] and consensus
dynamics [17,18]. We have also applied our method to real
networked systems by employing empirical data from the 2009
H1N1 pandemic in China, focusing on the Chinese airline
and train networks as the epidemic spreading network. The
four sources predicted by our tools are in good agreement
with empirical findings. Our framework has further potential
applications in locating, for example, a spammer who abuses
email systems and pollution sources in river networks.

II. TIME-REVERSAL BACKWARD SPREADING

Our goal is to locate the source that initiates a diffusion-
like process taking place on an already-known undirected
or directed complex network using only the limited time
information pertaining to the diffusion observed from a
fraction of nodes. This limited information could be the time
period during which a person is being invaded by a virus,
or the appearance of an abnormal signal at a node. To better
mimic a real-world scenario, we assume that we are unable
to detect communications between the observable nodes and
their neighbors. For example, hospital records tell us when
a patient became ill, but do not tell us who passed the
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FIG. 1. Time-reversal backward spreading for locating the source. (a) A network topology with link weights (time delay). (b) The diffusion
paths from the source S and the observers o1, o2, and o3. The arrival time only at the three observers, namely, t1, t2, and t3 can be accessed. (c)
Implement TRBS along weighted shortest paths from o1, o2, and o3, respectively, and the reversed arrival time at each node stems from each
observer, respectively. (d) the vector T consisting of the reversed arrival time from each of the observers. The elements of Ts of the source
are identical, which is the key to distinguishing the source from the other nodes. If the observers provide sufficient information of the source,
the revered arrival time from observers are the original time ts of the diffusion from the source, enabling the recovery of ts . The source S is
in yellow and the three observer nodes are in dark blue, light blue, and green with black boundary. The actual diffusion from S is marked by
orange solid lines with arrows and the TRBS from the observers are, respectively, marked by colored dotted lines with arrows. The color of
numbers in the vector in (d) corresponds to the observer with the same color.

disease to the patient. Even knowing all of the sick persons
with whom the patient has had recent contact does not tell
us.

The network and the spreading process are illustrated in
Figs. 1(a) and 1(b), respectively. The weights along links are
the time delay of passing a signal along links. For an undirected
network, the delay along a link is the same for both directions.
Figure 1(b) shows that a spreading process starts from source
node s and propagates from the source to the whole network
along the weighted shortest paths to all nodes (because the
shortest paths are associated with the shortest propagation
delay).

Our time-reversal backward spreading (TRBS) algorithm
for locating sources is based solely on (i) the weighted network
structure [Fig. 1(a)] and (ii) the arrival time of certain signals
at nodes that we call observers. These accessible observers
o1,o2, . . . ,om receive a signal at time to1 ,to2 , . . . ,tom

, as shown
in Fig. 1(b). We assume the source s, the original time ts at
s, and the diffusion paths from s are unknown. Because of
the stochastic effect in real-world networked systems, we may
not know the exact propagation delay along a link between
two nodes, but we assume that the time delay follows a certain
distribution, e.g., the Gaussian or uniform distributions. Insofar
as the mean value and variance are finite, which are commonly
observed in real scenario, our algorithm is feasible if we use
the mean delay. If the distributions of time delay on each link
are nonidentical, we can use the mean value of each link to
specify the time delay of each link. The TRBS algorithm based
on the weighted network and the signal arrival time at some
observers is as follows:

(i) Perform the TRBS starting from an observer ok to all
nodes in the networks along the reversed direction of links (for
a directed network, TRBS from node i to j is allowed if and
only if there is a directed link with direction from j to i, namely
the reversed direction of the link; for an undirected network,
links are bidirectional with the same time delay on both
directions and the reversed direction is the same as the original
direction). This yields a reversed arrival time tok

− t̂(i,ok) at an
arbitrary node i, where t̂(i,ok) is the shortest time delay from ok

to i [see Fig. 1(c)]. Thus, the set of observers leads to a vector
Ti = [to1 − t̂(i,o1),to1 − t̂(i,o2), · · · ,to1 − t̂(i,om)]T for node
i [see Fig. 1(d)]. Note that the reversed arrival time is a virtual
time for source localization.

(ii) Calculate the variance of the elements in
T1,T2, . . . ,TN . The node with the minimum variance is
the source [see Fig. 1(d)]. Using our algorithm we can
locate the source with computational amount O(mN log N ),
and O(N2 log N ) in the worse case, where m is the
number of observers, N is the number of nodes, and
m < N .

For an idealized scenario in which we know the exact
time delay (weight) along each link, the source will have
zero variance [see Fig. 1(d)]. Since the diffusion process is
reversible, the time-reversal delay from ok to s is equal to
the actual delay from s to ok , i.e., tok

− ts = t̂(s,ok), which
leads to to1 − t̂(s,o1) = to2 − t̂(s,o2) = · · · = tom

− t̂(s,om) =
ts with zero variance. In contrast, for a node other than s the
paths of TRBS from the observers will not be the same as
that of the actual paths of spreading from the source, and node
variance will be nonzero.
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III. LOCATABILITY CONDITION

We offer a locatability condition to determine if a source
at any possible location can be fully localized from the arrival
time tok

(k = 1, · · · ,m) at arbitrary m given observers. Based
on the vector Ti (i = 1, · · · ,N ) calculated from m observers,
we define the difference between the vector of any two nodes
i and j , �Tij ≡ Ti − Tj. The locatability condition can then
be given: if and only if the elements of �Tij for any two nodes
are not all the same, the source at any location can be exactly
identified.

The general locatability condition is equivalent to the
statement that if there exist any two nodes, say, i and j , such
that the elements of their �Tij are the same, the source cannot
be distinguished between i and j . In the following, we justify
this equivalent locatability condition. We first describe the
equivalent condition mathematically. Let’s denote the shortest
time delay from node i to observer ok by t̂(i,ok), which is
defined as

t̂(i,ok) =
∑

ν∈P (i,ok )

θν, (1)

where θν is the time delay along link ν and P (i,ok) denotes
the set of shortest weighted path between i and ok . Since the
diffusion process is reversible along reversed links, according
to the definition of Ti , we have

�Tij = Ti − Tj =

⎛
⎜⎜⎜⎜⎝

t̂(j,o1) − t̂(i,o1)

t̂(j,o2) − t̂(i,o2)
...

t̂(j,om) − t̂(i,om)

⎞
⎟⎟⎟⎟⎠

. (2)

If the locatability condition is violated, namely,

t̂(j,o1) − t̂(i,o1) = t̂(j,o2) − t̂(i,o2) = . . .

= t̂(j,om) − t̂(i,om), (3)

we cannot identify the source s when s ∈ (i,j ), which is the
equivalent locatability condition and can be proved as follows.
Assume that i is the actual source with original time t si and
node i and j satisfies Eq. (3). The source i gives rise to the

arrival time to1 ,to2 , . . . ,tom
at observers o1,o2, . . . ,om. Suppose

that j is the source and the original time at j is t sj , which leads
to the arrival time t ′o1

,t ′o2
, . . . ,t ′om

at the same set of m observers
(for the source, origin time is the same as arrival time). Taking
the time reversible characteristics of TRBS along reversed
links, we can simply have tom

= t̂(i,om) and t ′om
= t̂(j,om).

According to Eq. (3), we can derive that to1 − t ′o1
= to2 − t ′o2

=
· · · = tom

− t ′om
= t si − t sj + c, where c is a constant. Note that

if the original time at j is t sj = t si + c, we have to1 − t ′o1
=

to2 − t ′o2
= · · · = tom

− t ′om
= t si − t sj + c = 0, which indicates

that source i and source j generate exactly the same arrival time
as the actual observed arrival time at all the observers. Thus, the
source cannot be distinguished between i and j in principle. In
other words, because the actual original time ts is unknown, if
Eq. (3) is satisfied, there exists two possible original time t si and
t sj with t sj = t si + c, such that the spreading process starts from
node i, and j will generate the same arrival time as the actual
arrival time at observers, rendering the source between i and
j indistinguishable. Hence, our locatability condition offers a
sufficient and necessary criterion for exclusively locating the
source. If the locatability condition is satisfied, namely, Eq. (3)
is violated, at least one observer is able to provide effective
information that is sufficient to distinguish i and j by using,
for example, our efficient algorithm. Therefore, the source in
a network is said locatable if and only if for any two nodes i

and j , the element values in �Tij are not all the same.
Figure 2 gives an intuitive example to explain the locata-

bility condition. Since the original time ts at the source is
unknown, if we choose a certain original time, e.g., ts = 1
at node i or ts = 2 at node j , both nodes can produce the
exact same arrival time at the three observers (t1 = 4, t2 = 3
and t3 = 3), indicating that the source cannot be distinguished
between i and j . Thus, the source in the network with
respect to the given set of observers is not locatable. This
scenario is exactly reflected by �Tij in which all elements
are the same. The locatability condition in principle inhibits
the indistinguishable scenario and exclusively locating the
source at any location is assured. If the locatability condition is
satisfied, namely, there is a single node in which the elements
in its vector Ts are identical, this identical value is the original

(a) (b)

FIG. 2. The uncertainty of source. (a) A diffusion process from the source j at ts = 2 with three observers o1, o2, and o3. (b) A diffusion
from the source i at ts = 1 with the same observers as in (a). The source in (a) and (b) produces the same arrival time at the three observers,
i.e., t1, t2, and t3. (c) The vector Ti and Tj and the difference �Tij between them. Without loss of generality, we assume the time delay along
each link is 1. The original time ts of the diffusion from a source is known for the locatability problem. The color of nodes and links represents
the same meaning as that described in the caption of Fig. 1.
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time of the diffusion from the source. This is because of
the intrinsic time-reversal characteristic of the TRBS process.
When implementing the TRBS, the reversed arrival time at the
source is nothing but the original time ts that is the identical
value in the vector Ts of the source, as shown in Fig. 1(d).
Therefore, if the source in a complex network is fully locatable,
the original time of diffusion can be inferred as well.

An immediate consequence of the locatability condition
is that a node with a single neighbor must be observed to
guarantee being fully locatable. This can be easily proved
by noting that the node and any one of its neighbors cannot
be distinguished for any observers, except the node itself
according to Eq. (3). This consequence indicates that for a
star graph, all nodes except the star should be observed, and
in a tree, we usually need to observe a large fraction of nodes
to enable full localization. For a fully connected network with
N nodes, we must observe N − 1 nodes to assure they are
fully locatable. For an undirected chain, both ends should be
observed for locating a source.

Note that the locatability condition is rigorous for idealized
networks in which we know the exact time delay along each
link. In practice, if the time delay of a link follows some
distribution resulting from the stochastic effect, the locatability
condition is violated somewhat. This is analogous to the
structural observability [19] of those scenarios in which we
lack a complete knowledge of link weights. Despite this lack,
it is possible for us to use the locatability condition to identify
a source from a pair of nodes. If the element values of �Tij

are sufficiently close, it is likely that nodes i and j will be
indistinguishable. If the element values differ greatly, however,
it is easier for us to identify which one is more likely to be the
source between them.

IV. SOURCE LOCALIZATION PERFORMANCE

To validate our locatability framework we explore two
prototypical dynamical processes, diffusion and consensus.
Diffusion processes commonly occur in many natural and
social network systems, such as epidemic spreading in a
population, virus propagation on the internet [20,21], rumor
propagation in social networks [22], and risk contagion in
financial networks [23]. Some dynamical processes are not
subject to diffusion but exhibit diffusion-like behavior, e.g.,
cascading failures in power grids [24–27] and the spreading of
gridlock in urban automobile traffic patterns [28–30]. To be as
general as possible, we consider the simplest diffusion model,
the one associated with diffusion delay. To simulate a diffusion
process, we must first construct a complex network with a node
degree distribution that allows the diffusion of a signal, e.g.,
a virus, a rumor, or a risky behavior in social network. Each
link is assigned a time delay (weight) of forwarding the signal
and the weights of links can be either the same or follow a
distribution. The simulation is carried out as follows. First, a
randomly selected source passes the signal to its neighbors.
The signal takes some time to reach its neighbor nodes,
depending on the link delays. Each node that has received the
signal forwards it to its neighbors and this process continues
until all the nodes in the network have received the signal.
What we can measure and record is the arrival time of the
signal at the observer nodes.

Consensus dynamics on complex networks have been
investigated since the development of complex network
science a decade ago [31–37]. Although most real systems
display nonlinear behavior, agreement and synchronization
phenomena are in many aspects similar to the consensus of
linear systems. We thus use simple canonical linear, time-
invariant dynamics with a communication delay [18],

ẋi =
N∑

j=1

aij [xj (t − τij ) − xi(t)], (4)

where xi(t) (i = 1, . . . ,N) is the state of node i at time t , and
τij is the time delay along the link between node i and node
j . We explore the diffusion of a perturbation starting from a
single source node in the consensus state. Note that, unlike the
standard diffusion process via contact or transportation, the
diffusion-like process of perturbation is caused by the node
coupling. Specifically, in the absence of external perturbations,
all nodes uniformly stay in the consensus state. Thus, the
transmission of a signal to other nodes can be discerned
when deviation from the consensus state occurs. We record
the time at which the state of observable nodes deviates from
the consensus state and, using our locatability framework, to
locate the source node with original perturbation.

We numerically validate our locatability condition by
comparing with the success rate of locating sources when the
exact weights of links are known. Figures 3(a) and 3(b) show
the success rate of locating sources in small-world and scale-
free networks by using our TRBS algorithm. It shows exact
agreement with the prediction of the locatability condition
for both homogeneous and inhomogeneous networks with a
different average node degree 〈k〉 and fraction of observers
no. The success rate achieves the upper bound predicted by
the locatability condition, indicating that our TRBS algorithm
is optimal for locating the source of spreading. Figures 3(c)
and 3(d) show the minimum fraction nmin

o of randomly chosen
observers to reach 90% success rate affected by 〈k〉 in
random and small-world networks. Note that nmin

o exhibits
a w-shaped function of 〈k〉 with two optimal values of 〈k〉.
This counterintuitive finding can be understood in terms of the
change of the maximum betweenness centrality (MBC) and the
variance of the shortest path length (SPL). Their joint effects
on no can be heuristically explained based on the locatability
condition. On the one hand, let’s consider a scenario that node i

must be passed in order to reach node j along the shortest path
from the observers. In this case, the source between i and j

will be indistinguishable (see Fig. 2). If this occurs, the number
of the observers is approximately equal to the betweenness
centrality of i. Hence highest the probability of encountering
this scenario for any two nodes is reflected in the MBC in
the network. The larger MBC means that there is a higher
probability that the locatability condition will be violated, and
this accounts for the requirement of more observers, namely,
the higher value of no. On the other hand, no is affected by
the variance of the shortest path length in the network. If the
shortest paths from all the observers to node i and j are the
same, based on the locatability condition, the source between
i and j will be indistinguishable in the sense that the reversed
arrival time at both nodes are exactly the same. An extreme
case is the fully connected network with zero variance of SPL
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(a) (b)

(c) (d)

FIG. 3. Locatability of source in model networks. (a, b) Success rate obtained using the efficient algorithm and predicted by the locatability
condition in Watts-Strogatz (WS) small-world network (a) and Barabási-Albert (BA) network (b) for different average node degree 〈k〉. (c, d)
The minimum number no of observers to reach 90% success rate, the effect of the maximum betweenness centrality (MBC) and the variance of
shortest path length (VSPL) as a function of 〈k〉, respectively, in Erdös-Rényi (ER) random network (c) and Newman-Watts (NW) small-world
network. The green belt represents the joint effect of MBC and VSPL on the locatability. The numerical results are obtained by averaging over
400 independent realizations and the network size is 100.

in which N − 1 observers are needed. Thus, a larger variance
of SPL results in lower values of no. The joint effect of BC and
SP on no gives rise to the “w shape” with two optimal average
degrees, as shown in the green region in Figs. 3(c) and 3(d).

Table I displays nmin
o for achieving a 90% success rate

of locating the source in homogeneous and heterogeneous
networks associated with a Gaussian distribution and a uniform
distribution of time delay along links, respectively. We assume
that only the mean time delay along links rather than the exact
time delay along each links is known. We assign the mean time
delay to each link, such that the network becomes a weighted
network with identical link weights. The results demonstrate
that our algorithm is successful based on the mean time delay
without exact time delays along links for both spreading and
consensus dynamics. The small differences between nmin

o of
spreading process and consensus dynamics are resulting from
the approximation during the numerical integral of Eq. (4).
Figure 4 shows the relations between nmin

o and network size
N . As we can see, the fraction of required observers decreases
as the network size increases for all the model networks,

implying the effectiveness and applicability of our method.
We also compares the performance with the Jordan center
method [10], which is an topology based method, shown

TABLE I. Minimum fraction of observers. The minimum fraction
nmin

o of randomly selected observers that assures 90% success rate
of locating the source of spreading process and the propagation of
perturbation in consensus dynamics on ER, WS, and BA networks.
The time delays of links are assumed to follow Gaussian distributions
with mean value 1.0 and variance 0.25 and uniform distributions in
the range (0.5, 1.5), respectively. We exclusively use the mean delay
of all links to identify sources. The network size N is 100 and the
average node degree 〈k〉 = 8. The results are obtained by averaging
over 500 independent realizations.

WS
ER (Gaussian/uniform) BA

Spreading 0.18/0.23 0.23/0.36 0.29/0.41
Consensus 0.17/0.21 0.21/0.31 0.28/0.36
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FIG. 4. Minimum fraction of observers for different network size.
The minimum fraction nmin

o of randomly selected observers that
assures 90% success rate of locating the source of spreading process
on ER, WS, and BA networks. The time delays of links are assumed
to follow Gaussian distributions with mean value 1.0 and variance
0.25. The average node degree 〈k〉 = 8. The results are obtained by
averaging over 500 independent realizations.

in Table II. The average rankings of the real source node
in our algorithm approaches 1, which is much smaller than
the rankings in Jordan center method. The robustness of our
method under conditions of incomplete information and noisy
data, and its need for only a small fraction of observers allows it
to be generally applicable in real-world networked systems in
which conditions of measurement noise and incomplete node
information are inevitable.

V. LOCATING THE SOURCE OF H1N1 SPREADING IN
CHINA

We apply our locatability framework to the H1N1 pandemic
in China in 2009. We use the empirical data to quantify the
arrival time of the virus at each major city to discern the source

with the earliest arrival time. Note that we assume that only
the arrival time of a fraction of major cities are accessible
and we aim to locate the source from the arrival time. We use
both airline and train networks among provinces to capture
the spreading network, in which the total number of vertex is
31. The airports and train stations are usually located at the
provincial capital cites, and the bidirectional links between
two nodes are weighted and related with the customer flux
estimated by the number of flights and trains per day. The time
delay τ along each link is estimated from the flux of passengers
in unit time by the following formula:

τij = 1

1 − (1 − ϕ)(1 − ξ )wij
, (5)

where i and j represent two major cities, ϕ characterizes the
time scale of the spreading process, ξ is the probability of a
single infected passage taking an airplane or a train, wij is the
number of equivalent airplanes per day between i and j . wij

is set according to China airline and train data base, where a
train is equivalent to 5 airplanes. ϕ is set to be 1/4, due to
the fact that the H1N1 pandemic in China lasted for about 4
months with the time unit 1 month. ξ is fixed to be 1/2000
owing to the fact that on average there are about 300 available
seats per airplane and about 1600 available seats per train with
the sum is about 2000. We have checked that our results of
locating the source is insensitive to the value of ξ . In the range
of 1/1800 < ξ < 1/3000, our algorithm offers approximately
the same locating probability of the source. The dominator of
Eq. (5) captures the infection probability between i and j , so
that the reciprocal of the infection probability corresponds to
the time delay.

Figures 5(a)–5(c) show the empirical record of the H1N1
pandemic in China in 2009. Specifically, Fig. 5(a) shows
that the disease arises almost simultaneously from Beijing,
Shanghai, Fujian, and Guangdong, i.e., these four provinces
are the sources. Figure 5(b) shows the outbreak of the disease
across China. Figure 5(c) shows the application of medical
treatment after the epidemic has spread across the country
causes the number of cases to decrease and, some months later,
disappear. Figure 5(d) shows both airline and train networks
in China with different passenger fluxes along the links. We
randomly pick a fraction of nodes to be observers and record
the outbreak time in each of them to be the arrival time,
and use the combined network of flight and train to locate
the disease sources (each province is a node with location

TABLE II. Performance comparison of Jordan center method and Time-reversal backward spreading method. All the nodes are ranked
based on Jordan centrality in descending order and reversal time variance in ascending order, respectively. The ranking of the source of
spreading process on ER, WS, and BA networks are averaged over 100 independent realizations. The time delays of links are assumed to follow
Gaussian distributions with mean value 1.0 and variance 0.25 and uniform distributions in the range (0.5, 1.5), respectively. The fraction of
observers is 0.05. The network size N is 1000 and the average node degree 〈k〉 = 8. The mean ranking of source node and its standard deviation
are presented.

WS
ER (Mean ± std) BA

Gaussian TRBS 1.01 ± 0.10 1.36 ± 0.88 2.92 ± 8.26
Jordan center 501.06 ± 285.20 500.95 ± 304.15 446.35 ± 278.48

Uniform TRBS 1.08 ± 0.36 1.59 ± 1.02 6.11 ± 14.48
Jordan center 491.75 ± 309.80 478.51 ± 290.18 520.63 ± 317.78
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(a)

(e) (f)

(b) (c) (d)

FIG. 5. Locate the sources of H1N1 pandemic in China. (a) The earliest outbreak of H1N1 in June 2009 in four provinces—Beijing,
Shanghai, Fujian and Guangdong—which are the sources of the epidemic spreading in China. The epidemic outbreaks occur at the four
locations nearly simultaneously. (b) The outbreak of H1N1 all over China in Oct. 2009. (c) The number of patients in China in December
2009. The color bar in (a), (b), and (c) denote the number of patents. (d) China airline and train networks with weighted links. The color bars
capture the passenger flux of airlines and trains per day, respectively. The mixture of the airline and train networks is used as the propagation
network of the H1N1 virus. (e) The average ranks of different provinces corresponding to the probabilities of being the sources of the epidemic
spreading calculated by our algorithm. The four actual sources are of the highest four ranks with respect to different fraction no of observers
and there is a clear gap between the sources and the other provinces. (f) The most probable paths of spreading from the sources uncovered by
using the estimated time delays along links. The results in (e) are obtained by randomly choosing 100 independent configurations of observers
with different fractions.

represented by the major city in the province). In particular,
for a group of observers, we rank all the provinces according to
their probability of being a source as revealed by the variance
of the elements in their reversed arrival time vector Ti . A
node with smaller variance in Ti will be of higher probability
to be a source. Figure 5(e) shows that the four nodes are
found to have the highest average ranks by the independent
realizations for different fractions of observers. Note that for
no > 0.3, there is a clear gap between the average rank of the
four provinces and that of the other provinces, indicating the
presence of four sources. As no increases, the gap widens,
which is a strong evidence that multiple sources exist. The
four sources identified by our method are in exact agreement
with the empirical record in Fig. 5(a), validating the practical
applicability of our method. From the locations of the sources
the most probable spreading paths of the disease can be
ascertained based on the estimated time delay, as shown in
Fig. 5(f). The spreading paths are obtained by preserving all
paths with the shortest time delay from one of the sources in the
set of all infection paths. The hidden radial spreading patterns
from the sources are then uncovered using our locatability
framework.

The fact that the H1N1 virus came from outside China
accounts for the four sources that spurs the epidemic spreading

in China. The four source provinces have international airports
and we suspect that the virus may invade China via inter-
national flights from other countries. Despite the challenge
of more than one sources, our algorithm still offers quite
high accuracy of ascertaining all the sources, demonstrating
the general applicability of our approach for addressing real
problems.

VI. DISCUSSION AND CONCLUSION

In a huge network often only a subset of nodes are accessi-
ble. We thus need an efficient algorithm for locating the sources
and ascertaining whether a given set of observers provide
sufficient information for source localization. Our locatability
framework uses the time-reversal backward spreading process
on complex networks to provide tools to address these
fundamental questions. Our algorithm uses the arrival time of
a signal at the observers, the minimum information required,
to locate the source. Our general locatability condition also
enables us to determine whether the source in a network
is fully locatable from a given set of observer nodes. We
have systematically tested our theoretical tools using diffusion
processes and consensus dynamics. Among the findings, an
interesting result is the presence of two optimal locatabilities
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as the link density increases from a very sparse network to
a fully connected network. We have also applied our tools
to H1N1 pandemic in China in 2009, finding that the four
earliest-outbreak provinces identified by our method from a
small fraction of observers are in good agreement with real
data. Our theoretical tools have implications for many dy-
namical processes pertaining to disease control, identification
of rare events in large networks, protection of the normal
functioning of the Internet, and the behavior of economic
systems.

Our work still has some limitations. For example, the time
delay along each link is assumed to be known, while, in
many real situations, we cannot get the time delays. How
to accurately approximate the time delays with effective
delays or equivalent delays, like the concept of effective
distance in Ref. [6], when time delays are unavailable needs
further investigation. In addition, our work raises a number
of fundamental questions, answers to which could further
improve our ability to locate the source of diffusion-like
dynamics occurring on complex networks. First, how do we
identify a minimum number of observers in an arbitrary
network using the locatability condition? Second, how do
we locate the sources using current methods if only part of

the network structure is accessible? We may overcome this
obstacle by using a network reconstruction approach based on
the recently developed compressive sensing method [38–41].
Third, how do we rank the observers with respect to the
amount of effective information they provide if the resources
are limited and only a small fraction of nodes are accessible?
Fourth, how to incorporate the information of time-delay
variance and improve the performance if the whole time
distribution is provided. The ideas in the Ref. [11] may
give some hints for better using the information of time
delay variance. Taken together, our tools, because of their
lower information requirements and solid theoretical supports,
could open new avenues for understanding and controlling
complex network systems, an extremely important goal in
contemporary science.
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