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Flow in porous media: The ‘‘backbone’’ fractal at the percolation threshold
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We show that for all Euclidean dimensions d {=d, —d,, where Lg ~ ¢l is the effective resistance
between two points separated by a distance comparable with the correlation length ¢, dy is the fractal
dimension of the backbone, and d,, is the fractal dimension of a random walk on the same backbone. We
also find a relation between the backbone and the full percolation cluster, d, —d,=d, —d,;. Thus the
Alexander-Orbach conjecture (ds/d,, =2/3 for d = 2) fails numerically for the backbone.

How can one describe the flow of fluid in a random
porous media? This important question has long eluded ex-
planation, yet is of general interest since it is related to the
“propagation of order” at a critical point of any sort."”> Re-
cently considerable attention has focused on the utility of
the percolation ‘‘backbone’’ as a useful model of the actual
path that this fluid flow might take.>*®* To define the back-
bone, consider two points / and j separated by a distance
comparable to the correlation length ¢ on a large bond per-
colation cluster just below the threshold p.. The Lgp back-
bone bonds between / and j are the bonds that belong to at
least one self-avoiding walk between / and j. The remaining
bonds in the cluster are ‘‘dangling ends’” (Fig. 1). If the
system is just above p., then the backbone is defined in a
similar fashion.®

We define the fractal dimension d,; of the backbone

through®
d
LBB -~ f ! . (13)

We shall introduce the fractal dimension of a random walk
on the backbone, 3,,, which relates the number of steps N,
in a random walk on the backbone fractal to the range £, of
the walk,

d
Ny~ (£,) " . (1b)
The utility of the backbone in describing the onset of

FIG. 1. Typical percolation cluster just below the percolation
threshold, indicating backbone bonds (heavy line) and dangling
ends (light lines); both are similar in that they are composed of
“‘links and blobs”’ (Ref. 3).

fluid flow in randomly porous media is perhaps most physi-
cally presented in terms of the Einstein relation for the dc
conductivity og4.x nD, where n is the density of carriers and
D the diffusion constant. In contrast to the usual treat-
ment,’1? we shall interpret n ~ P.,~ £~ A" as the fraction
of bonds belonging to the backbone. Since D =d¢2/

dN,, = (fw)z_d“', and adc~§"' (with 7=1t/v), we have for

t=(d-2)+(d,—d;) . 03

In writing (2) we have used the fact that the order-
parameter exponent is the codimension, ,(_3/1/ =d- ('1}.

It is convenient to introduce an effective length Lr giving
the resistance between points i and j, where Li ~— ¢¢ and
{=¢/v=1t—(d—2). Thus (2) becomes simply

{=d,—d; . 3)

We have confirmed the validity of (3) for the Cayley tree,
which is thought to accurately describe the statistics of per-
colation behavior above d=6. We find d,=2, and
d, =4," which agrees with the known result { =2.

We have also directly verified (3) on the Sierpinski gasket
model of the backbone, since'® d,=In(d +3)/In2 and®
d;=In(d+1)/In2 are both known exactly, as is’
I=Inl(d +3)/(d +1)1/In2. Although (3) is confirmed by
the gasket model, we note that this model does not perfectly
describe the percolation backbone; e.g., Z increases with d
up to d =6, while for the gasket { decreases with d for all d
(Fig. 2).

Equation (3) is new. However, in the usual treatment
one applies the Einstein relation to the full cluster and ob-

tains®!2

{=dy—d; . 4)
Here df ig the fractal dimension of the full cluster, defined
by s*~ ¢/ where s* is the number of sites in the incipient

infinite cluster. Similarly, d, is the fractal dimension of a
random walk on the full cluster, defined in analogy with Eq.

(1b), N = (£,)™. If we combine (3) and (4), we find
dy—ds=d,—ds . (5)

Note that (5) relates the full cluster to the backbone only.
This is a consequence of the intriguing property of the Ein-
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FIG. 2. Dependence on system dimensionality d of the effective
resistance exponent Z=§/v. The triangles are exact results for the
Sierpinski gasket (Ref. 5), while the squares are from direct calcula-
tions on the percolation backbone (Refs. 16-20). This figure for
the resistivity exponent { is analogous to Fig. 2 of Ref. 10 for the
localization exponent 8; .

o
—
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stein relation, which connects the dc conductivity (defined
via an external electric field that fixes the paths along which
the electrons may move) to the diffusivity (which is in-
dependent of the external forces).

Although (5) is quite surprising at first sight, an intuitive
explanation follows from examination of Fig. 1. Suppose
we view the incipient infinite cluster as one ‘‘backbone
chain,”” from which emanate k — 1 additional ‘‘dangling end
chains.”” Since the structure of all k chains is similar, we
expect for &,

(6a)
N ~kN,~ke™ . (6b)

Since s*~§df and N, ~ §d‘”, Eq. (5) follows from (6). On
the Cayley tree, (5) can be tested exactly since d, =6 (Ref.
14) and d;=4. To test (4), it would be very interesting to
calculate d,, and d, for other dimensions, and work along
these lines is underway.

We conclude with three remarks:

(i) Alexander and Orbach (AO) suggested’ that the
‘‘spectral”” dimension dsE2df/dw=% for d =2; from Eq.
(5) it would then follow that d, —d,;=+ds;. We might ask
if an analogous relation holds for the backbone. Were the
AO conjecture valid for the backbone, then d, —ds=5d,,
while we know that c?;<_df. Moreover, we find that the
backbone function ds=2d//d, =2d/({+d;) depends on d,
varying from % for d=2to 1 for d =6. Although the AO
conjecture clearly fails for the backbone!* we find that all
available numerical data!®?° are consistent (to +1-2%)
with the relation

ds=¢ @)
for any d. Note that (7) hold as an exact equality for d =1
and d = 6, suggesting the possibility that a reasonable back-
bone conjecture to complement the AO conjecture d,=%

could be d;=¢.
(i) It has recently been proposed that'%?' g, =d, —dy,

s*~kLps~ k€&

where B, is the exponent characterizing the localization
problem.?? If one applies parallel reasoning to the backbone
of a percolation cluster, one finds

Br=d,—d; . 8)

(iii) Equation (3) suggests a simple geometric relation
between various effective lengths in the percolation prob-
lem. We can think of the two points / and j as being con-
nected via three separate effective paths. Path 1 has an ef-
fective length equal to the total number of backbone bonds,

LBB~§df. Path 2 is a chain of length equal to the resis-
tance Lz —~ ¢* between i and j, while path 3 is a chain of
length L, = N,)/? equal to the number of bonds that would
be necessary to connect /i and j if the walk was one dimen-
sional. Thus Eq. (3) states that L, is the geometric mean
of Lg and Lpgp.

L,=(LgLgp)"? . 9)

The backbone bonds are made of links and blobs (Fig. 1),
where the number of links L in any dimension diverges as
L ~ ¢Y" (Ref. 6). Hence we can separate the contribution
of the links from that of the blobs by writing Lg =L + 8Lg,
Lw=L +8Lw, and Lgg=L +8Lgs. Since Lgg> Lp, we
have from (4)

L=Lg=sL,<Lsgs . (10a)

. d /2 d
From the definitions LR~§‘/”, L,~¢" , and Lgg~¢ 7,
(10a) is equivalent to the exponent inequalities
IS{S%vaSva .

(10b)

The more these exponents differ from 1, the more impor-
tant are the blobs (Fig. 3). They assume their maximum
values for d =2 (where the blobs are most important),
while they approach unity for d — 1 and also for d =6
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FIG. 3. Dependence on d of three critical exponents characteriz-

ing the percolation backbone: vc7f(<>), _;VEW (A), and ¢ (O).

The exponents clearly satisfy the inequalities (5b), which become
strict equalities only where the blobs do not contribute (d=1 and
d=6). The data for d; and { are from Refs. 5 and 16-20, while

%Ew is from Eq. (3).
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(where the blobs do not contribute).

In summary, we have considered the problem of flow in
porous media by focusing on the backbone bonds of a per-
colation cluster rather than on the entire cluster. We have
found that the resistivity exponent { = {/v is given by an ex-
tremely simple relation, Eq. (3), between two fractal dimen-
sions pertaining to the backbone. If one applies the same
argument to the full cluster,”'? then we can relate the back-
bone to full cluster as in (5). This relation is the conse-
quence of a deep feature of the Einstein relation, which

could be exploited to relate properties of a wide range of
different systems with the same dc conductivity. More gen-
erally, we expect that analogous statements apply to other
fluctuation dissipation relations.
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