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FIG. 2 *H-NMR spectrum of the pro- B. CH30H
duct obta}ned after reaction bet;/veen C. 13CH30H
the following compounds at 100 °C for D20
20 h; RhCl? (0.01 M), HI (Q.01 M), Ch, D. H13CoH
(1,100 p.s.i., 0.06 M in water),
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duct distribution indicated that the hydrolysis rate was substan-
tially slower than the rate of carbonylation to the corresponding
Rh-C(O)CHj; species.

Although the functionalization of methane was the focus of
our studies, we briefly examined ethane as a substrate. The con-
version rate was significantly faster than that observed for
methane, but the product specificity was lower. Acetic and pro-
pionic acids were formed in similar amounts and, in addition, a
significant amount of ethanol was also found. A separate experi-
ment indicated that the acetic acid was derived from ethanol
through a subsequent oxidation step. Thus, in contrast to the
Rh-CH; species, the rate of hydrolysis of the Rh-C,H; interme-
diate was comparable to the carbonylation rate. These observa-
tions find parallels in the fact that the rate of hydrolysis to
the corresponding alcohol was substantially faster for [ClsPt-
C,H;]* than for [ClsPt—-CH;]°~ (refs 13-15; A. C. Hutson and
A.S., unpublished observations).

A key question concerning the present system is the role of
the I” ion as a promoter. As methanol was not carbonylated to
acetic acid under our reaction conditions, the function of the
added I" ion cannot be the same as in the Monsanto system’.
We hope to address this and related mechanistic issues in future
studies. O
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WHEN lungs are emptied during exhalation, peripheral airways
close up'. For people with lung disease, they may not reopen for
a significant portion of inhalation, impairing gas exchange™. A
knowledge of the mechanisms that govern reinflation of collapsed
regions of lungs is therefore central to the development of ventila-
tion strategies for combating respiratory problems. Here we report
measurements of the terminal airway resistance, R., during the
opening of isolated dog lungs. When inflated by a constant flow,
R, decreases in discrete jumps. We find that the probability distri-
bution of the sizes of the jumps and of the time intervals between
them exhibit power-law behaviour over two decades. We develop
a model of the inflation process in which ‘avalanches’ of airway
openings are seen—with power-law distributions of both the size
of avalanches and the time intervals between them—which agree
quantitatively with those seen experimentally, and are reminiscent
of the power-law behaviour observed for self-organized critical
systems®. Thus power-law distributions, arising from avalanches
associated with threshold phenomena propagating down a branch-
ing tree structure, appear to govern the recruitment of terminal
airspaces.
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FIG. 1 a, The terminal airway resistance R, as a function of infiation
time for three different capsules on a single dog lung lobe. The
measurements were carried out using a modification® of the alveolar
capsule oscillator technique®. Three small plastic capsules were glued
to the surface of each isolated dog lung lobe studied. The pleura was
punctured, so that the capsules were in communication with the alveo-
lar space through a hole of diameter ~0.5 mm. The capsules were
connected to a smal! loudspeaker-in-chamber system through polyeth-
ylene catheters. Small amplitude, sinusoidal pressure oscillations with
a frequency of 10 Hz were led into the periphery of the lung through
the capsules. The input and output pressures of the catheter system
were measured with miniature pressure transducers in the loudspeaker
chamber, and in a side tap of the capsules, respectively. The local
input impedances seen from the capsules were calculated as the load
impedance on the catheters. R, was then obtained as the real part of
the local impedance. Note that R, decreases in discrete jumps as lung
volume increases. The magnified portion of the curve (inset) demon-
strates the existence of smaller jumps at a smailer scale. The three
different line types denote R, measured in three different capsules b,
Probability distribution function [](x) of the relative jumps in R.. We
detected the smaller jumps with software that could zoom-in and magn-
ify the desired portions of the curves as shown in a. This allowed us to
collect from 1,000 to 2,000 discrete jumps from the 10-16 repeated

Using the alveolar capsule oscillator technique, R, was
measured during constant-air-flow inflation from residual vol-
ume to total lung capacity, TLC, in lung lobes from four dogs®®.
Figure la shows that during inflation, R, decreases in well-
defined discrete jumps that are superimposed on a continuously
decreasing curve. Both the sizes of the jumps and the time inter-
vals between them show a significant variability within a single
inflation. When we magnify certain portions of the curves (Fig.
la, inset), we generally find further structures with smaller jumps
that are statistically similar to those seen on the entire curves.
The magnitudes of the jumps and the time intervals between
them vary substantially among capsules. Moreover, these magni-
tudes and intervals are different even in one capsule when the
inflation is repeated.

We quantified the statistical properties of the jumps in R, by
measuring the probability distribution functions [](x) and
[1(5) of the sizes of the relative jumps x in R, and the time
intervals ¢ between the jumps. Figure 15 and ¢ demonstrate that
the statistics made over the entire data set reveal that both
[1(x) and [1(#) display a range of nearly two decades of their
arguments, over which these functions decrease linearly on a
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re-inflations in each lobe from which histograms of the distribution
functions were constructed. ¢, Probability distribution function [](t) of
the time intervals between jumps in R;. The straight lines represent the
best fits to the data; their slopes give the exponents a and S.

log-log graph. We conclude that [](x) and [](¢) follow power-
law distributions, that is, [[(x)~x™ % and [[(f)~¢?, with a=
1.8+£0.2 and f=2.5+0.2. A power-law distribution indicates
the lack of a characteristic scale; indeed, it is known that distri-
butions describing phenomena with a characteristic size must
decrease exponentially in the ‘wings’, as the wings represent rare
events far outside this characteristic size”. Thus, our experi-
mental finding of a power-law distribution for the jumps in R,
and the time intervals between jumps, implies that the opening
process is not dominated by any characteristic size scale or
characteristic timescale.

Before interpreting the power-law distributions, we first note
that R, depends sensitively on the air flow resistance of the short-
est pathway connecting the trachea and the terminal airway in
which the measuring capsule is located—the ‘primary pathway’
corresponding to a given capsule. R, is also influenced by the
mechanical properties (such as airflow resistance, and the airway
and alveolar wall elasticity) of the subtree comprising all those
airways and the supplied alveolar regions that join the primary
pathway at each generation. During inflation, the radii of the
airways in the primary pathway increase, giving rise to a contin-
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uous decrease in R,. The existence of discontinuities in R, implies
that some fraction of the subtrees joining the primary path open
suddenly when the intra-bronchial pressure, Py, exceeds a
threshold value. Indeed, Macklem er al. have demonstrated that
overcoming a critical (or opening) threshold pressure is neces-
sary to open canine bronchioli®, a result supported by a study
in flexible-tube models’. Furthermore, the time required to open
an airway is determined by the viscosity of the fluid film covering
the airway wall; this time is well under 0.05 s for the smaller
airways’. Thus, airways open in such a short time that our
measurements detect discontinuous jumps.

To see how the discontinuous jumps in R, lead to power-law
distributions for [ [(x) and [](¢), we assume that airways do not
open independently, but rather in bursts—that is, the opening
of one airway may initiate the opening of several more peripheral
airways. When Py exceeds the opening threshold pressure of an
airway, all daughter airways in the subtended tree that had a
smaller threshold than Py (or were not closed) would be detected
as open. The number of airways, and hence the size of the recru-
ited alveolar volumes involved in such an opening sequence,
depends on the size of the subtrees, and can vary substantially.
Such a process of sequentially activating different numbers of
clements triggered by overcoming a threshold is often termed
an avalanche®. In complex dynamic systems, the existence of
avalanches of very different sizes is thought to lead naturally to
power-law dependences*'°.

To test the above 1nterpretation of the observed opening
phenomena, we developed a branching-airway model the
elements of which are circular elastic tubes of radius r and length
/. The airways are assigned a generation number (i=0, ..., N;
N is the order of the tree) and a column number j(;j=
0,...,2°—1). The last airways terminate in elastic alveoli repre-
sented by equal-sized spheres. An opening threshold pressure P,;
is also assigned to each airway (i,j). Opening of an airway
occurs when P;; is smaller than the pressure in its parent.
Initially, P;; is uniformly distributed between 0 and the value of
Py at TLC: Py is then increased in small increments. When Py
exceeds Pyo, the airway (0, 0) opens and its pressure is set equal
to Pp. Next, the two airways at /=1 are examined to determine
whether they can be opened with this value of Pg, that is, if
Pp>Pyoor Pp> P;,. If one or both conditions are met, then the
airways (1, 0) and/or (1, 1) are also opened. This opening pro-
cess is then continued sequentially down the tree until no airway
is found with its P,;< Pg. This process thus defines an avalanche
in the airways. When the avalanche stops, Pg is incremented and
the pressures in all the open airways are updated. We iterate
this process until all airways open. The development of such
avalanches in a six-generation tree (2°=64 alveoli) is illustrated
in Fig. 2; in the actual calculations, we use 14 generations
(2'*x16,000 alveoli, 256 times as many).

This model is stochastic in nature: its properties are therefore
studied by inflating the lung model for many different realiza-
tions of the set of opening threshold pressures P;; in the airways.
The R, as a function of inflation time predicted by our model
(Fig. 3a) is remarkably similar to that observed in the experi-
ments (Fig. 1a). Moreover, the statistical properties of R, that
is, the probability distribution functions [[(x) and [](r) (Fig.
3b, ¢) are also in good agreement with those calculated from the
experimental data (Fig. 15, ¢). Both functions are power laws,
characterized by exponents a =1.7+0.2 and §=2.5£0.2.

Our model allows us to investigate processes that cannot be
measured experimentally. One such process is the recruitment
of the newly opened alveolar volumes, v. We calculated the asso-
ciated probability distribution function, [[(v), and we find
[T(v)=0v7”, with y=1.1£0.2. The significance of a power-law
distribution is that the probability of finding a large avalanche
is much higher than it would be if the distribution were gaussian
or exponential. This implies that the newly recruited alveolar
volumes following an avalanche can in fact be remarkably large.
For example, in the bottom right panel of Fig. 2, the last avalan-
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FIG. 2 The development of avalanches in a six-generation airway model.
At first (top left), all airways are closed (white) whose threshold values
are larger than the intra-bronchial pressure (red), which defines the first
avalanche. Then the intra-bronchial pressure increases until a second
threshold is exceeded, and as a result all airways further down the
tree whose thresholds are smaller become inflated (green). The intra-
bronchial pressure is successively increased until a third, fourth, and
fifth thresholds are exceeded (yellow, magenta and brown). The last
threshold to be exceeded (bottom right) results in filling the airways
coloured blue. Note that the alveolar volume opened by an avalanche
is proportional to the number of terminal airways that are open. Note
also the wide range of avalanche sizes: the first avalanche opens only
one terminal airway, whereas in the last avalanche the number of air-
ways opened is more than a factor of ten larger than in the first avalan-
che, and comprises ~31% of the total number of airways.

che opens up over 30% of the total volume of the model, thereby
significantly increasing the total alveolar surface area available
for gas exchange. These findings suggest that both the magnitude
and timing of pressure excursions applied at the airway entrance
during artificial ventilation may be critical in triggering the
avalanche process of alveolar recruitment. Furthermore, these
processes may also pertain to pathological conditions of the
lungs, particularly in the presence of excessive intrabronchial
fluid, loss of pulmonary elasticity or increased bronchoconstric-
tor tone. The establishment of the relationship between the
avalanche processes in the airways and various pulmonary func-
tion tests awaits further research.

Before concluding, we note that power-law distributions may
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FIG. 3 Prediction of the model for the statistical properties of the
terminal airway resistance, calculated for a tree comprising 14 genera-
tions. We modelled the peripheral portion of the airway tree, because
it is only in these last 14 generations that airway closure was found to
occur®. The dimensions of the airways in the model were assigned by
a scaling rule: the radius ry0 and length Iy, (see text) were chosen so
that they were equal to r and / at the corresponding generation of the
merphometric airway data published by Horsfield et al*® The rand /
were made independent of the column index j and were scaled by a
factor of 0.86 and 0.9, respectively, from the r and / of the previous
generation which are mean values in the Horsfield model'®. Having
fixed the dead space of the tree, the size of the alveoli were chosen so
that the dead space was 10% of the total alveolar volume which was
then uniformly distributed among the terminal airways. The airway walls
and the alveolar walls were assumed to be perfectly elastic with their
pressure-volume relationships similar to those described by Lambert
et al.'® and Salazar and Knowles®®, respectively. At each step of the
inflation, the radii of the open branches and the alveoli were updated
according to their pressure—volume relationships. Then we calculated
R, of the entire tree, seen from an alveolus, as follows. (1) The complex
impedances, at 10 Hz, of all open branches—together with the imped-
ances of the alveoli—were calculated. (2) The total terminal impedance
was then obtained by marching up the primary path, starting from the
terminal end and adding the next branch or alveolar impedance in the
appropriate series or parallel fashion at each node. The real part of this
impedance is R;. &, Model-predicted R, at two alveolar locations as a
function of inflation time. Note the similarity between the patterns of

be widespread in biology'': for example, the static distribution
of airway radii was reported to follow a power law'2. Until now,
dynamic biological processes have not been studied extensively',

b ' ‘
1+ g
.
011 p
c
8
=)
]
¥ oot |
2
=
=
[
el
[
o 0001}
0.0001 i
0.01 0.1 ]
Relative jumps in A,
c
1 .
.\\ |
N ;
\ B =25+02 |
PN ‘
5§ o1 \ |
3
2 . ‘
b N\ ‘
] e i
z e |
2 e \
0.01 F
s e “
. ‘
0.001 -
h J
4 |
1 10

Time intervals between jumps (s)

the discrete jumps in the model and those in Fig. 1a. The magnified
portion of the curve (inset) demonstrates the existence of smalier jumps
at a smaller scale. b and ¢, [1(x) and [](t), respectively, predicted by
the model (dots). The straight lines represent the best fit to the data;
their slopes give the exponents a and . We estimated these probability
distribution functions from 2,000 repetitions of the inflation, requiring
~5 h calculation time for an IBM RS-6000 Model 350 work station.

but it is possible that the general framework of self-organized
criticality* will prove useful for describing a wide range of such
phenomena. [
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