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Dedicated to Cyril Domb on the occasion of his 70th birthday

We briefly review some recent attempts to achieve some genuine understanding of
diffusion-limited aggregation (DLA), the paradigm model for dynamical mechanisms of
disorderly growth processes. We shall see that the seminal ideas of Professor Cyril Domb
have influenced to a great degree many of the recent theoretical approaches. In particular, the
Domb-Hunter constant-gap scaling hypothesis becomes replaced by a continuum of gap
exponents. Moreover, while the growth probabilities for the tips of the DLA structure do
scale in the conventional fashion, there is evidence that the growth probabilities of the fjords
do not scale. Does this competition between one part of DLA that does scale, and another
that does not, underlic many of the unusual properties of this model?

I. Introduction

Few scientists have more influenced the first author than Cyril Domb, so it is
both a pleasure and an honor to dedicate this paper to him. Indeed, my main
purpose today is to illustrate some of the modes of thinking inspired by him.
I'll focus on the topic of how the original Domb-Hunter “single gap exponent”
scaling hypothesis [1] has evolved when confronted with the subtleties dis-
played by kinetic models of disorderly growth. I'll focus mostly on recent
advances in our attempts to really understand the prototype model of diffusion-
limited aggregation (DLA). This work is being carried out on several fronts, by
several different approaches [2-10], and I am pleased that those who have
worked closely with me on this topic have consented to join me as co-authors
on this mini-review.

Since this talk, on which this paper is based, is in the opening session, 1
promised the Organizing Committee to begin from “Square One”. According-
ly, I'll organize my presentation around three questions:
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Question 1: “What is DLA?”
Question 2: “Why are we interested?”
Question 3: “What do we actually do?”

2. First question: ‘“What is diffusion-limited aggregation?’’

Like many models in statistical mechanics, the rule defining DLA is simple
[11]. At time 1, we place in the center of a computer screen a white pixel, and
release a random walk from a large circle surrounding the white pixel (fig. 1a).
The four perimeter sites have an equal a priori probability p, to be stepped on
by the random walk; accordingly we write

p=1  (i=1,...,4). (1)

The rule is that the random walker sticks irreversibly — thereby forming a
cluster of mass M = 2. There are N, = 6 possible sites, henceforth called growth
sites (fig. 1b), but now the probabilities are not all identical: each of the growth
sites of the two tips has growth probability p_ .. = 0.22 while each of the four
growth sites on the sides has growth probability p, .., = 0.14. Since a side on the
tip is 50% more likely to grow than a site on the sides, the next site is more
likely to be added to the tip — it is like capitalism in that “the rich get richer”.
One of the main features of our approach to DLA is that instead of focusing on
the tips who are “getting richer”, we can focus on the fjords who are “‘getting
poorer’” — which is perhaps more familiar to physicists who all know the feeling
that ‘‘once you get behind you stay behind!”

Just because the third particle is more likely to stick at the tip does not mean
that the next particle will stick on the tip. Indeed, the most that one can say
about the cluster is to specify the growth site probability distribution (GSPD) -

“Fjord”
0.25 0.14 1 0.14
0.25 . 025  “Tip"-=-> 0.22 . . 0.22
0.25 0.14 ] 0.14
(a) t=1 (b) t=2

Fig. 1. (a) Square lattice DLA at time ¢ = 1, showing the four growth sites, each with growth
probability p, = . (b) DLA at time ¢ =2, with 6 growth sites, and their corresponding growth
probabilities p,.
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i.e., the set of numbers

{p:}, i=1,...,N (2)

> IV,
where p, is the probability that perimeter site (‘“‘growth site’’) i is the next to
grow, and N, is the total number of perimeter sites (N, =4, 6 for the cases
M =1, 2 shown in figs. 1a and b, respectively). The recognition that the set of
{p;} gives us essentially the maximum amount of information we can have
about the system is connected to the fact that tremendous attention has been
paid to these p; — and to the analogs of the p;, in various closely-related systems
[12-20].

If the DLA growth rule is simply iterated, then we obtain a large cluster
characterized by a range of growth probabilities that spans several orders of
magnitude - from the tips of the fjords. Fig. 2 shows such a large cluster,
where each pixel is colored according to the time it was added to the aggregate.
From the fact that the “last to arrive” particles (green pixels) are never found
to be adjacent to the “first to arrive” particles (white pixels), we conclude that
the p; for the growth sites on the tips must be vastly larger than the p, for the
growth sites in the fjords.

3. Second question: “Why study DLA?*’

There are almost always two reasons why one finds a given model interest-
ing, and hence there are generically two distinct answers to this question.

3.1. Answer one: “There are experimental realizations”

Today, there are roughly of order 10° systems in nature for which DLA may
be relevant [21-24]. Indeed, it seems that possibly DLA captures the essential
physics of a typical dynamic growth process that can be related to the Laplace
equation (with appropriate boundary conditions).

First is the fact that aggregation phenomena based on random walkers leads
to a Laplace equation for the probability II(r, r) that a walker is at position r
and time ¢ [25]. More surprising, however, is the vast range of phenomena
[21-24] that at first sight seem to have nothing to do with random walkers.
These include fluid—fluid displacement phenomena (“‘viscous fingers”), for
which the pressure P at every point satisfies a Laplace equation VP =0
[26-28]. Similarly, dielectric breakdown phenomena [29], chemical dissolution
[30], electrodeposition [31], and a host of other displacement phenomena
(including even dendritic crystal growth [32] and snowflake growth [33]) may
be members of a suitably defined DLA universality class.

Recently, several phenomena of biological interest have attracted the atten-
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Fig. 2. Large DLA cluster on a square lattice. Each cluster site is color-coded according to the
time which the site joined the cluster. Courtesy of P. Meakin.

tion of DLA aficionados. These include the growth of bacterial colonies [34],
the retinal vasculature [35], and neuronal outgrowth [36]. The last example is
particularly intriguing since if evolution chose DLA as the morphology for the
nerve cell (fig. 3), then perhaps we can understand “why” this choice was
made. What evolutionary advantage does a DLA morphology convey? Can we
use the answer to this question to better design the next generation of
computers? These are important issues that we hope to address between this
and the next Bar-Ilan conference, but already we appreciate that a fractal
object is the most efficient way to obtain a great deal of intercell “‘connectivity”
with a minimum of “cell volume”, so the next question is “which” fractal did
evolution select, and why?
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Fig. 3. (a) Typical retinal neuron and (b) its fractal analysis. From ref. [36b].

We will save time and space by resisting the temptation at this point to “pull
out the family photo album” to show lots of all these various realizations.
Instead, we may refer the interested reader (and their non-specialist col-
leagues) to the forthcoming book entitled Album of Fractal Forms [37].

3.2. Answer two: “‘Understanding DLA growth is a theoretical challenge”

As with many models in statistical mechanics, the theoretical challenge is as
important as the experimental realizations in “hooking” theorists. And as with
many statistical mechanical models, the “defining rule” in DLA is simple even
though the “consequences of that rule” are extremely rich. Understanding how
such a rich consequence can follow from such a simple rule is indeed an
irresistible challenge.

In the case of DLA, this challenge is enhanced by the fact that — unlike other
models with simple rules (such as the Ising model) —in DLA there is no
Boltzmann factor, so we can more easily explain and understand since one
does not have to know any physics beforehand. Indeed, it initially surprises
almost everyone who sees DLA develop in real time on a computer screen that
a complex outcome (at the global level of a “form’) seems to bear no obvious
relation to the details of the simple /ocal rule that produced this form.

There is even the philosophical challenge of understanding how it is that
even though no two DLA’s are identical (in the same sense that we can say no
two snowflakes are identical), nonetheless every DLA that we are likely to
ever see has a generic “form” that even a child can recognize (in the same
sense that almost every snowflake that we are likely to see has a generic form
that every child recognizes).

A second somewhat ““philosophical” point is the following. If we understand
the essential physics of an extremely robust model, such as the Ising model,
then we say that we understand the essential physics of the complex materials
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that fall into the universality class described by the Ising model. In fact, by
understanding the pure Ising model, we can even understand most of the
features of variants of the Ising model (such as the XY or Heisenberg models)
that may be appropriate for describing even more complex materials. Similarly,
we feel that if we can understand DLA, then we are well on our way to
understanding variants of DLA — such as DLA grown on a lattice (*DLA with
anisotropy”) or DLA grown using the noise reduction algorithm [38]. And just
as the Ising model is a paradigm for all systems composed of interacting
subunits, so also DLA may be a paradigm for all kinetic growth models.

So with these ambitious goals, we now proceed to consider the third
question.

4. Third question: ‘‘What do we actually do?”’

4.1. A Fractal dimension: Straightforward to calculate, but fruitless

Until relatively recently, most of the theoretical attention paid to DLA has
focussed on its fractal properties [39]. One definition of the fractal dimension
d; is by the “window box scaling” operation:

(1) First place an imaginary window box of edge L around an arbitrarily
chosen occupied DLA site (“local origin”).

(2) Then count the number of occupied pixels M(L) within that window
box.

(3) Next choose many different local origins to obtain good statistics.

(4) Finally, make a log-log plot of M(L) vs. L, and interpret the fractal
dimension d, as the “asymptotic”” (L — =) slope of this plot.

Conventionally, we write

M(L)~ L, (3)

where the tilde denotes ‘“asymptotically equal to”.

The difficulty of extrapolating from finite L to infinite L has motivated ever
more clever algorithms of generating ever larger DLA clusters. Most of the
world records are held by P. Meakin and his collaborators [39]:

12 x 10° (square lattice DLA) ,

Mo = { 10° (off-lattice DLA) . )
The corresponding estimates for d; are roughly [39]
4= 1.55 (square lattice DLA) , 5
‘=11.715+0.004  (off-lattice DLA). (5)
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The result for square lattice DLA is based on theoretical arguments [39], for
the simulations themselves are not conclusive in that the estimate of d, simply
decreases slowly with increasing cluster mass. Eq. (5) suggests that “aniso-
tropic DLA” (DLA grown on a lattice) is in a different universality class; the
calculations discussed below are for small mass (M <2600) for which the
influence of the lattice anisotropy is (hopefully!) negligible. We can actually
“see with our eyes” that d;=1.7 by means of a simple hands-on demonstra-
tion. We begin with a large DLA cluster (fig. 2). Suppose we take a sequence
of boxes with L =1, 10, 100 (in units of the pixel size), and estimate the
fraction of the box that is occupied by the DLA. This fraction is called the
density,

p(LY=M(L)/L*, (6)
where d =2 here. Combining (3) and (6), we find

p(L)~L*". (7
Now (7) is equivalent to the functional equation [40]

p(AL) = A%"“p(L). (8)

Carrying out this operation on fig. 2 with A = 10 will reveal (fig. 4)

| I | sy
(a) > (b) £h

Fig. 4. Schematic illustration of the results of a hands-on experiment to actually see (a) that DLA
is indeed a fractal since the density decreases linearly with the size L of the observation window (or
inverse wave vector ¢ '), and (b) that the fractal dimension is given by roughly d; — d =log,, 1 =
—0.301.
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1, L=1,
L L =100.

Here the result of (9),
p(10L)= 3p(L),

. -2 ~
convinces one that 107> =1_So

d, —2=log,, 3 = —0.301, (10a)
leading to
d;=1.70. (10b)

Although we now have estimates of d, that are accurate to roughly 1%, we
lack any way to inferpret this estimate. This is in contrast to both the d =2
Ising model and d =2 percolation, where we can calculate the various expo-
nents and interpret them in terms of scaling powers [40]. Thus [40, 41]

y, =15/8, yr=1 (Ising model) , (11a)
and [42]
y,=d,=91/48, yr=4d,.,=3/4 (percolation) , (11b)

where d,_, is the fractal dimension of the singly connected “‘red” bonds of the
incipient infinite cluster [42].

4.2. Multifractal approaches: Complex but fruitful

Multifractal approaches in statistical physics have a rich history [24], and
were first introduced for describing DLA in 1985 by Meakin and collaborators
[18]. The key idea is to focus on the set of growth probabilities { p;} and how
their distribution function %( p,) changes as the cluster mass M increases. The
basic reason why this approach is fruitful is that the { p;} contains almost the
maximum information we can possibly obtain about the dynamics of the
growth of DLA. Indeed, specifying the { p;} is analogous to specifying the four
“growth’ probabilities p, = ; (=1, ...,4) for a random walker on a square
lattice.
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Fig. 5. Schematic behavior of the histogram giving the number @(In p;) of growth sites with In p,
in the interval [In p,, In p, +81n p,].

The set of numbers {p,} may be used to construct a histogram %(In p,)
shown schematically in fig. 5. This distribution function can be described by its
momenis, or simply by its minimum and maximum.

4.3. Moments of the distribution function

The moments of Y (In p,) are determined by

Z, =2 9(In p)e (12a)

In p

or, equivalently,
Z,=2pf. (12b)

The form (12a) as well as the notation used suggests that we think of B as an
inverse temperature, —In p/In L as an energy, and Z, as a partition function.
Accordingly, it is customary to define a “‘free energy” F(B) by the relation

Zy=L"#, (13a)

or, equivalently,

log Z,
log L *

F(B)=— (13b)

In the literature there exist other symbols, and a brief dictionary is presented in
table I.

What to do with this thermodynamic formalism? One approach that we have
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Table I
Comparison of notation of this paper and other
notation in use. Adapted from ref. [2a].

Bogq F(B) < (q)
Eoa S(E) © f(a)

found to be particularly revealing is the analog for DLA of the successive
approximation (‘“series expansion’) approach pioneered by Professor Domb
and his collaborators. In fact a Boston University graduate student, J. Lee,
recently extended renormalization ideas of Nagatani [43] to actually obtain
exact results for a L X L cell for a sequence of values of L up to and including
L = 5. This work is described elsewhere [2], so we focus on one key result — the
apparent singularity in the quantity

7Hp). (14)

C(B)=-=

Fig. 6, which shows C(B) for a sequence of L values, is reminiscent of the
famous finite-size-scaling plot of C,,( B) for the L X L Ising model made by one
of Professor Domb’s former students, Michael Fisher [44]. Lee interpreted the
maximum in C(B) as heralding the existence of a singularity in C(8) at some
critical value B, (fig. 7).

What is the origin of this phase transition, if indeed such a phase transition
exists? This question was addressed by Blumenfeld and Aharony (BA) [3]. BA
considered the behavior of p_;, (the smallest of all the growth probabilities

.J- ]» PR 3x3
P —- 4x4 |
4l N - L

C(8.L)

Fig. 6. Analog of Fisher/Ferdinand plot for DLA. Shown is the dependence on B of 8°F/3°,
where F=—log Z/log L and Z, =%, (p,)". From ref. [2a].
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Fig. 7. Schematic illustration of the phase diagram for DLA as a function of the ‘“control
parameter’” .

{p;}) for a typical DLA cluster. BA made the ansatz that
Prnin ~ e AM* (BA ansatz) . (15)

BA noted that (15) implies that there is a phase transition, with 8. =0, since
for all negative 8, the moments Z, will be dominated by the smallest value of p,

Zp = (Puin)’ ~ e (M), (16)
Since an exponential is not a power law,
e—BAM"’ £ pF B ’ 17)

it follows that the free energy of (13) is not defined for 8 <0.

It is not difficult to construct DLA configurations for which the BA ansatz is
valid. For example, if a DLA has a tunnel with depth N, then the only way a
random walker can reach the end of the tunnel is to make a ‘““correct’ choice at
each site. For a square lattice, a ““correct step” will occur with probability }, so

Pmin=(%)NT=exp(_NT ll'l 4) . (18)

Hence (16) is confirmed, since we expect for those configurations with the
longest tunnel lengths that N~ M" (e.g., for those DLA configurations
shaped like a spiral galaxy, we expect Ny~ L> ~ M*'%).

Recently we decided to search for numerical evidence to test the BA ansatz
[8]. To this end, S. Schwarzer and J. Lee calculated the { p,} for approximately
200 DLA clusters of mass about 2600 [8]. This is more than an order of
magnitude larger than the size of clusters for which others had evaluated { p,}
accurately [19]. The reason for the improvement is that Schwarzer and Lee
used an exact enumeration approach [45] whereby one calculates exactly the
probability that a random walker is at position r at time ¢ given its probabilities
to be at the neighbor sites of r at time ¢ — 1.

To test for the form (15), one must plot p, =exp(In p_,,) (which we shall
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Fig. 8. “Aharony plot™ for the dependence of p,., on cluster size (see text). From ref. [8].

henceforth denote simply p,...) against M on log—log paper. We found (fig. 8)

that the data are linear for roughly a decade of mass (260=< M < 2600).
Enter Brooks Harris. Harris [7] noted that such “tunnel configurations”

might be sufficiently rare that they do not make a memorable contribution to

the quenched average p,. Accordingly, Harris proposed that
Puin(L)~ M™%  (Harris ansatz) . (19)

The Harris ansatz is supported by a simple deterministic fractal model for DLA
proposed by Mandelbrot and Vicsek {4]. Eq. (16) is replaced by

ZB ~Pf1in ~M ) (20)

so there is no phase transition. To test the Harris ansatz (19), we plot p,
against M on log-log paper and find (fig. 9) that the data are just as linear as
for the BA plot — for roughly the same decade in mass (260 < M < 2600).

So what is going on? Is the decay exponential (as proposed by BA) or is it
power law (as proposed by Harris)? To answer this question, we show in figs.
8, 9 the successive slopes of both the BA and Harris plots and note that these
quantities decrease in the former case and increase in the latter case. This fact
strongly suggests that at large mass

log M <log p_. <M’ (21)
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Fig. 9. “Harris plot” for the dependence of p_.. on cluster size (see text). From ref. [8].

More significantly, we note that for the Harris plot the slopes increase
approximately linearly with log M,

d
—_— i~ :
Slos M log pi, ~log M (22a)

Even a physicist can solve the differential equation (22a),
108 Poin ~ (log M)* (22b)

suggesting that we plot log p,_. against (log M)>. We find linearity over fully
two decades, for 26 < M <2600 (fig. 10), instead of the linearity over only one
decade found when testing the BA and Harris assumptions.

4.4. The void—channel model of DLA growth

Does the numerical result (22b) provide any clues for the underlying puzzie
of DLA? We suspect the answer to this question is ‘“‘yes”, and we have
proposed a ‘““void—channel” model of DLA {8, 9] in order to explain the result
(22b). The void-channel model states that each fjord is characterized by a
hierarchy of voids separated from each other by narrow “channels” or “gate-
ways”. The key features of the model are:

(1) The voids must be self-similar, i.c., their characteristic linear dimension
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Fig. 10. Plot in the form suggested by linear increase in the successive siopes of the Harris plot of
fig. 9. From ref. [8].

must increase with the same exponent. Thus

Lo ~M"". (23)

void
To see this, we assume the contrary: if (23) does not hold, then DLA will not
be fractal!

(2) The voids are separated by channels or gateways: a random walker can
pass from one void to the next only by passing through a gateway. If the
diameter of a gateway L, ,,... also scales as M 4 then we would expect that
Domin 18 given by the Harris ansatz. Since the numerics do not support the Harris
ansatz, we conclude that [8, 9]

L M (y<1id,). (24)

_—
channel

What is the evidence supporting the void-channel model of DLA growth
dynamics?

(1) First, we note that if channels “dominate”, then the BA ansatz would
have to be satisfied. The numerics rule this out.

(2) Second, we note that if self-similar voids dominate, then the Harris
ansatz would have to be satisfied. Again, the numerics rule this out.

(3) Photos of large DLA clusters reveal the presence of such voids and.
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Fig. 11. Off-lattice DLA cluster of 10’ sites indicating some of the channels that serve to delineate
voids. Courtesy of P. Meakin.

channels (fig. 11). Moreover, when the DLLA mass is doubled, we find that

outer branches “grow together” to form new channels (enclosing larger and

larger voids).

(4) The void—channel model can be solved [8,9] under the approximation
that the voids are strictly self-similar and the gates obey (24). The solution
demonstrates that log p_. = (log M)".

(5) The void-channel model is consistent with a recent calculation [46]
suggesting that DLA structures can be partitioned into two zones:

(a) An inner finished zone, typically with r<R_ (where R, is the radius of
gyration), for which the growth is essentially “ﬁmshed” m the sense that, 1tl
is overwhelmingly improbable that future growth will take place.

(b) An outer unfinished zone (typically r=R,) in which the growth is un-
finished.

Thus future growth will almost certainly take place in the region r > R,. Now
2R, = 3L, where L is the spanning diameter. Hence only about } the total

prolected area” of DLA is finished, the rest of the DLA being unfinished. We
suggest that the finished region will be created from the unfinished region by
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tips in the unfinished region growing into juxtaposition (thereby forming
voids).

It remains to demonstrate numerically that real DLA is characterized by a
hierarchy of self-similar voids separated by channels whose width scales with a
power of M smaller than M''“. Such a numerical calculation is underway, using
a hierarchy of off-lattice DLA clusters studied for a sequence of masses
M,= 25 28 .27 Although final numerical results are not available at the
time of this talk, we do have visual evidence that outer tips widely separated
for mass M, later grow together as the cluster size doubles and quadruples.
Indeed, such behavior is expected since the growth of DLA is fixed by the
growth probabilities, which are of course largest on the tips.

Two tips will grow closer and closer until their growth probabilities become
so small that no further narrowing will occur. This observed phenomenon can
be perhaps better understood if one notes that the growth probabilities { p,} of
a given DLA cluster are identical to normalized values of the electric field { £, }
on the surface of a charged conductor whose shape is identical to the given
DLA cluster. Thus as two arms of the DLA “‘conductor’” grow closer to each
other, the electric field at their surface must become smaller (since E, xVa,,
where ¢ = constant on the surface of the conductor). That E, is smaller for two
arms that are close together can be graphically demonstrated by stretching a
drumhead®' with a pair of open scissors.

(1) If the opening is big, the tips of the scissors are well separated and the
field on the surface is big (we see that the gradient of the altitude of the
drumhead is large between the tips of the scissors).

(2) On the other hand, if the scissor tips are close together, the field is small
(we see that the gradient of the altitude of the drumhead is small between the
scissor tips).

5. Summary

In summary, we have (1) one “firm” numerical result, log p_;, ~ (log M ),
given by eq. (22b). We have also (2) an analytic argument that this behavior
follows from a void—channel model of DLA structure in which there exist
self-similar voids separated by channels whose width does not scale. We have
(3) a plausibility argument that the tips of DLA grow together until they are
separated by a distance which is typically a few pixels, and we have (4) visual
evidence supporting this picture. We are presently working on obtaining firm
numerical evidence to test the void—channel model of DLA growth dynamics.

*1 A convenient drumhead is obtained by stretching panty hose across a circular sewing hoop
(R. Selinger, private communication).



H.E. Stanley et al. | Dynamic mechanisms of disorderly growth 39
Acknowledgements

First I wish to thank the Organizing Committee for inviting me, and for
having organized a stimulating program. We are grateful for discussion with A.
Aharony, P. Alstrom, R. Blumenfeld, T.C. Halsey, A.B. Harris, D. Stauffer,
P. Trunfio and T. Vicsek, and for support from ONR, NSF and NATO.
Finally, we thank D. Stauffer for a critical reading of the manuscript.

Appendix

The Domb—Hunter scaling hypothesis

One of the earliest formulations of the scaling hypothesis for thermodynamic
systems was proposed by the man we are honoring, Cyril Domb, and by
Douglas Hunter who was at the time Domb’s graduate student in the form of a
statement about the ‘“‘gap” or difference between the critical exponents de-
scribing successive moments Z [1]. In the 25 years since it was first proposed,
the Domb—~Hunter hypothesis of a constant-gap exponent has been verified in
countless situations in which phase transitions occur. In this talk we have
discussed one model system for which the Domb—Hunter constant-gap hypoth-
esis does not hold, DLA. The purpose of this appendix is to describe the
Domb-Hunter scaling hypothesis in this context, and to enquire if we can
develop a deeper understanding of it from the behavior of DLA. We begin by
considering a few simple examples:

Example 1: Unbiased random walk

Consider, e.g., the Bernoulli probability distribution II(x, ), which gives the
probability that a one-dimensional unbiased random walk is at position x at
time ¢ given that it was at x =0 at time ¢ =0,

0= (30 p)(3) - (A1)

This distribution is characterized by its moments,
Z,=(x")= > xPl(x, ). (A.2)

x=-1

Hence [47]

(xy=1=1, (A.32)
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(x*) =1, (A.3b)

( 4y 2 _ _ 2 _%l 2

x")y=3¢r-2t=311 37/~ (A.3c)
oy = 15.(1 - 2 _Ei) 3

(xy =150(1- 2 + )~ (A.3d)

These moments have the property that if we write

Z,~t 1P (A.4)
then F(B)= B/2. The “Domb—Hunter gap”

A(BY=F(B+1)- F(B) (A.5a)
is independent of 3,

A=} (unbiased random walk) . (A.5b)

More generally, for a random walk with fractal dimension d,,, one can show
that (A.5b) becomes

A=1/d, (fractal substrate) . (A.5¢)

Example 2: Percolation

A second example is percolation. For an inifinite system, Stauffer’s scaling
hypothesis [42] is well verified:

(a) Right at the percolation threshold p = p_, the system is self-similar on all
length scales, so the number of s-site clusters per lattice site decreases with s as
a power law,

n.~s . (A.6)

A remarkable fact is that the critical exponent 7 controlling this decrease in the
distribution of cluster sizes is directly connected to the fractal dimension d; of
the incipient infinite cluster,

=1+d/d,. (A.7)

(b) Away from p_, the system remains self-similar for length scales less than
the pair connectedness length £. Hence the power law relation (A.6) must hold
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for all s smaller than a characteristic cluster size s*, where s* is connected to £
through

s*~Eh%~|p—p| . (A.8)

For values of s above s*, the system ceases to be self-similar and hence (A.6)
must break down: the long-tail behavior of the power law (associated with
‘“‘scale-free”” behavior of a self-similar system) must cross over to a function
with an inherent scale. That scale is, of necessity, set by s* itself, so that when
p # p. (A.6) must be replaced by

n,(p)~n,(p)f(s/s*). (A.9)

The function f(x) is sometimes called a cutoff function because it ‘‘cuts off”’ the
power law of (A.6) above values of x where the system ceases to be
self-similar. For the limit of infinite dimension d, the Cayley tree solution is
believed to be exact and we know the explicit form of f(x),

const. (x<1),

f)~ {e—xl (x> 1). (A.10)

For a system of edge L at the percolation threshold p = p_, the basic quantity
n,(p) is replaced by n (L)= N,(L)/L“, where N,(L) is the number of clusters
of s sites. On length scales much less than L, the system must be self-similar.
Hence the analog of (A.9) is

n(L)~n,(L =) g(s/s*), (A.11)

when n (L =) ~s~" and now s* ~ L“. We say that the cluster size distribu-
tion is scale-free for cluster sizes smaller than s* since on small length scales
the system cannot ‘“know’ that it is finite.

The analog of (A.2) is

Z,=(s") Ei sPIL(L) = i s#"'n (L) (A.12)

since the probability that an arbitrarily chosen site belongs to an s-site cluster is
given by II(L)=sn(L). The scaling properties of the moments of this
distribution then follow by dimensional analysis, since n, has the dimensions of
s "~L"™ and r =1+ d/d,. Thus

Z_,={sH=2s""M(L)=>n(L)~L7", (A.13a)
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Zy=(s"y=2 M(L)=2sn(L)~L “*, (A.13b)
s s

Z,=(s"Y=2s"I(L)=2,sn (L)~ L % (A.13¢)

Since F(B) is defined by (13), we have

F(-1)=d, (A.14a)
F0)=d—-d,, (A.14b)
F(1)=d-2d, . (A.14c)

We see from (A.14) that the family of “Domb-Hunter gap exponents”
A(B)=F(B +1)— F(B) collapses to a single value,

A=—d, (percolation) . (A.14d)

Comparing (A.14d) with (A.5b) we see that percolation has the same simplify-
ing feature which we found for the case of simple random walk, namely the
Domb-Hunter gap exponents are constant. Hence one needs to know only one
exponent and the value of the gap exponent to determine al/ the exponents of
the system.

That the Domb—Hunter formulation of scaling leads to the scaling equalities
among the critical exponents for thermodynamics is demonstrated quite clearly
in the original Domb-Hunter paper [1]. Here we demonstrate that fact for
percolation by deriving the Rushbrooke equation

a+2B+y=2 (A.15)
relating the critical exponents 2 — « for the total number of clusters (Z_, of eq.
(A.13a)), B (not to be confused with the 8 appearing in the moment expres-
sions) for the fraction of sites belonging to a finite cluster (Z, of (A.13b)), and
v for the average size of a finite cluster (Z, of (A.13c)). From the definition
(A.12) it follows that

F-1)=02-a)lv, (A.16a)

F(0)=8/v, (A.16b)

F(1)=—vylv, (A.16c)
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so that
A-D)=Bv—-2—-a)lv, (A.17a)
A0)=—ylv—Blv. (A.17b)

From (A.17) we see that the Domb-Hunter hypothesis A(0) = A(1) leads
immediately to the Rushbrooke exponent equality (A.15).

Example 3: Correlated spatial disorder 48] and random multiplicative processes
[49]

DLA is a disorderly growth model, just as is invasion percolation. Unlike
percolation, for DLA there is a strong spatial correlation in the position of the
particles. For DLA, an observation window centered on a ‘“‘tip site” sees a
quite different structure of growth probabilities than an observation window
centered on a “fjord site”. We say that the disorder in DLA is spatially
correlated.

Is there a relation between the correlated spatial disorder of DLA and the
breakdown of Domb—Hunter scaling? To try to answer this question, we now
consider an extremely simple model of correlated spatial disorder, which,
although extremely simple, differs fundamentally from other models of spatial
disorder which generally take the spatial order to be random (e.g., by
introducing random bias fields which alternate from point to point in the
system). To study physical properties such as transport, most previous work
has been based on variations of the classic percolation model in which the
disordered material is treated as an uncorrelated network of random bonds
(e.g., resistors) that are either open or blocked (finite or infinite resistivity).
Thus the spatial disorder is assumed to be completely uncorrelated. However
in many real disordered materials, such as polymers, porous materials, and
amorphous systems, the spatial disorder is correlated. For example, if we
model the permeability of a porous rock by an array of resistors whose
resistances are chosen randomly, then it is possible to find huge resistances
neighboring tiny resistances. Such configurations cannot occur in nature since
the permeability of a “crack”, while random, cannot fluctuate arbitrarily. The
spatial disorder is correlated.

Ref. [48] introduces a topologically one-dimensional model that encompasses
the essential physics of correlated spatial disorder but is simple enough to be
treated analytically. Consider a set of N resistors in series, where the resistance
R, of resistor j changes in a correlated fashion,

R, =(1+¢€)R,. (A.18)
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T
R | 2 4 2 | 2 { 2 4 8 4 8

s MWW s AN s A s AWM AN s AN AN
T. =3 IR IR 3 DR R S B 3 R ) R 3 DS BN 3 I 3|

Fig. 12. A realization of the one-dimensional model for correlated spatial disorder (from ref.

48D).

Here € >0 is arbitrary, and 7, is chosen randomly to be +1 or —1 (see fig. 12).
Because neighboring resistors may only differ by a factor of (1 + €), this model
insures a smooth spatial variation of the resistance.

If € = 1, then we have a simple one-dimensional random resistor network in
which each resistance in the chain is either twice the preceding resistance or
half the preceding resistance [48]. If we begin the chain with a unit resistor
R, =1, then we choose the next resistor R, to be R, =2 with probability 3 or
R, = ! with probability 1. There are clearly 2" configurations of a chain of
N + 1 resistors.

One question of interest is the distribution for R, the resistance of resistor
N. Clearly

(Ry) e =27 (A.19a)
and

(RN)min = (%)N g (Algb)
Moreover the distribution @(R ) is quite asymmetric (like fig. 5), since it has a
maximum at the most probable value of R, — which is unity — and a long tail
extending to (R,) ., =2". Corresponding to this long tail is a set of moments
that do not satisfy Domb—Hunter constant-gap scaling, since there are configu-
rations with large values of R, which dominate the moment sum. To make this

explicit, note that for the first moment we have on summing on ali 2"
configurations,

z,=2 [Ry()IP() = (5)", (A.20a)
28¢
while for the second moment

Z,= 2 [Ry(OPl0) = ()" (A.20b)

Here P(c) is the probability of each of the 2" configurations ¢, and R (c) is the
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value of resistor N in configuration c. Since (¥)" is much larger than
() =(£)", we see that Z,> (Z,)>

Are multifractal phenomena associated with systems where the underlying
physics is governed by a random multiplicative process? Certainly there are no
multifractal phenomena associated with simple random additive processes (such
as the sum of 8 numbers, each number being chosen to be either a —1 or a
+1 — which has a geometrical interpretation as an 8-step random walk on a
one-dimensional lattice).

To answer this question, consider a simple random rmultiplicative process in
which we form the product of 8 numbers, each number randomly chosen to be
either a 3 or a 2 [49]. The results of simulations of such a process are shown in
fig. 13. The y-axis is the value of the product after & realizations, and the
x-axis is the number of realizations ®. In total there are 2° =256 possible
configurations of such random products. Normally, random sampling proce-
dures give approximately correct answers when only a small fraction of the

Average (a)
e}
Mean

Mosbtuu 3 3 |
probabée
0

O T T ]
86 b e __3

30 - 7

F(g=-5)

25 F .

20'.,..1....1 1 s
0 50 100 150 200 250

Number of Samples

Fig. 13. (a) The results of a computer simulation of a random multiplicative process [49] in which a
string of 8 numbers is multiplied together, and each number is chosen with equal probability to be
either 2 or . The limiting or asymptotic value of the product is (3)®=3.47. However the
simulations do not give this value unless the number of realizations @ is approximately the same as
the total number of configurations of this product, 2° = 256. This simulation was provided by R.
Selinger.

(b) Estimation of F( = —5, L =4) obtained by random sampling for DLA grown in a 4 X 4
cell. The dashed lines are the exact value for L =4. The running average shows “jumps”, and
becomes close to the exact value after the number of samples is the same order of magnitude as the
total number of configurations (256 in this case). These discontinuous jumps arise from the samples
which give the dominant contribution to F(8, L), but are very rare. From ref. [2a].
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possible 256 configurations has been realized. Here, however, one sees from
fig. 13 that the correct asymptotic value of the product is attained only after
approximately 256 realizations [49]. Monte Carlo sampling of only a small
fraction of the 256 configurations is doomed to failure because of the 256
configurations, a rare few (consisting of, say, all 2’s or seven 2’s and a single 1)
bias the average significantly and give rise to the upward steps in the running
average shown in fig. 13.

A simple random multiplicative process that gives rise to multifractal phe-
nomena is found in the simple hierarchical model of the percolation backbone
[50]. If the potential drop across the singly connected links 1s V, and that across
the multiply connected links is V,, then we see that when this structure is
iterated the potential drops across each of the bonds are products of the
potential drops of the original structure. The reader can readily demonstrate
that for this hierarchical structure Z(B) = (V? + V2)", where N is the number
of iterations carried out [50]. It turns out that Z( 8) obeys a power law relation
of the form of (13), with an infinite hierarchy of exponents given by F(g) =
1+log(V®+ V%) /log2. In order to obtain this result, one must use the
relation N_, ~ L*"%, where N,_, is the number of singly connected “‘red” bonds
[42].
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