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We present an overview of recent research applying ideas of statistical mechan-
ics to try to better understand the statics and especially the dynamic puzzles
regarding liquid water. We discuss recent molecular dynamics simulations using
the Mahoney–Jorgensen transferable intermolecular potential with five points
(TIP5P), which is closer to real water than previously-proposed classical
pairwise additive potentials. Simulations of the TIP5P model for a wide range of
deeply supercooled states, including both positive and negative pressures, reveal
(i) the existence of a non-monotonic temperature of maximum density line and a
non-reentrant spinodal, (ii) the presence of a low-temperature phase transition.
The take-home message for the static aspects is that what seems to ‘‘matter’’
more than previously appreciated is local tetrahedral order, so that liquid water
has features in common with SiO2 and P, as well as perhaps Si and C. To better
understand dynamic aspects of water, we focus on the role of the number of
diffusive directions in the potential energy landscape. What seems to ‘‘matter’’
most is not values of thermodynamic parameters such as temperature T and
pressure P, but only the value of a parameter characterizing the potential energy
landscape—just as near a critical point what matters is not the values of T and
P but rather the values of the correlation length.

KEY WORDS: Mode coupling theory; low-density liquid; high-density liquid;
homogeneous nucleation; structural heterogeneities; instantaneous normal
mode.



1. THE GOAL: UNDERSTANDING ‘‘WHAT MATTERS’’

Many physicists are attracted to physics because of the focus on under-
standing just enough of a subject to comprehend the key features that
really matter. As soon as some physicists feel they understand ‘‘what
matters,’’ insatiable appetites for novelty force attention to new puzzles.
Among most exciting new developments in the 1960’s (when the first
author met Michael Fisher) was the degree to which the principle of scale
invariance provided increased understanding of ‘‘what matters’’ near a
critical point. The key point was that what matters near a critical point is
the correlation length for statics, and the correlation time for dynamics. An
exciting question these days is ‘‘what matters’’ in understanding the statics
and dynamics of liquid water, and important clues are emerging when one
focuses on behavior in the deeply supercooled region, especially just above
—and just below—the ‘‘critical’’ temperature TMCT predicted by mode
coupling theory.

2. STATICS: ‘‘WHAT MATTERS’’ IS LOCAL TETRAHEDRAL

GEOMETRY

2.1. Introduction

Liquid water is not a typical liquid. However, some progress has
occurred in understanding its highly anomalous equilibrium and dynamical
properties. (1–6) Water is a space-filling hydrogen bond network, as expected
from continuum models of water. However when we focus on the well-
bonded molecules, we find that water can be regarded as having certain
clustering features—the clusters being not isolated ‘‘icebergs’’ in a sea of
dissociated liquid (as postulated in mixture models dating back to
Röntgen) but rather patches of well-bonded molecules embedded in a
highly connected network or ‘‘transient gel.’’ (7–10) Similar physical reasoning
applies if we generalize the concept of well-bonded molecules to molecules
with a smaller than average energy (11) or to molecules with a more ordered
than average ‘‘local structure’’. (12)

2.2. Liquid–Liquid Phase Transition Hypothesis

Poole et al made computer simulations of the ST2 model of water,
with the goal of exploring in detail what might happen in the low-tempera-
ture region, (13) and discovered in this artificial ‘‘computer water’’ the exis-
tence of a second critical point CŒ, below which the liquid phase separates
into two distinct phases—a low-density liquid (LDL) and a high-density
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liquid (HDL). It is not required that the system is exactly at its critical
point for the system to exhibit remarkable behavior, such as the phenome-
non of critical opalescence discovered and correctly explained in 1869 by
Andrews (14) in terms of increased fluctuations away from (but close to) the
critical point. Thus, although in experiments one cannot get closer than
(5–15)°, CŒ nonetheless exerts a strong effect in the experimentally-acces-
sible region of the phase diagram. If we have a singularity in our phase
diagram at a well-defined critical point, it’s going to have an effect on an
entire region around it—a ‘‘critical region.’’

2.3. Experimental Work

When liquid water is supercooled below the homogeneous nucleation
temperature TH ( − 38°C at P=1 atm), crystal phases nucleate homoge-
neously, and the liquid freezes spontaneously to the crystalline phase.
Mishima creates 1 cm3 high-pressure ices in a piston-cylinder apparatus,
decompresses the sample at a constant rate of 0.2 GPa/min, and—because
melting is endothermic—observes melting transitions of the ice polymorphs
using a thermocouple to detect a change in the sample temperature during
the decompression. (15, 16) He then determines melting pressures at different
temperatures. The melting curves he obtains agree with previously-reported
data for stable melting lines, (17, 18) and extend our knowledge of the location
of metastable melting lines to much lower temperatures.

The Gibbs potential G of the ice polymorphs is known. Since G is
identical in coexisting phases, locating the melting lines of the ice poly-
morphs is sufficient to learn G for water along these lines. By interpolating
data for G obtained along these melting lines, one can find the approximate
experimental G for a wide range of temperatures and pressures in the no-
man’s land below TH. (15) After finding G as a function of pressure P and
temperature T, one can find by differentiation the volume as a function of
P and T. Volume as a function of T is just what we want—this is the equa-
tion of state of liquid water. The P-V-T relation found is consistent with
the existence of a line of first-order liquid–liquid transitions which conti-
nues from the line of low-density amorphous—high-density amorphous
transitions and terminates at an apparent critical point CŒ. The P-V-T rela-
tion is also consistent with other known experimental data (19–25) and also
with a number of theoretical and simulation results. (12, 13, 26–35)

2.4. Theoretical Work

The most natural response to the concept of a second critical point in
a liquid is bafflement—such a thing just does not make sense. To make the
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concept more plausible, we offer the following remarks. Consider a typical
member of the class of intermolecular potentials that go by the name
of core-softened potentials. (36–38) Recently such potentials have been re-
visited; (27, 39–52) they are attractive to study because they can be solved ana-
lytically in one-dimension and are tractable to study using approximation
procedures (and simulations) in higher dimensions. They are also more
realistic than one might imagine at first sight, and indeed may reflect ‘‘what
matters’’ in water-water interactions, since the repulsive soft core mimics
the effect of the small number (four) of nearest neighbors in liquids with a
local tetrahedral structure. Although such a picture may seem to be over-
simplified, it is consistent with neutron data. (21–24) Also, simulation results
are in good accord with neutron results (see, e.g., ref. 53), and Sasai relates
these two distinct local structures to dynamic properties. (54)

2.5. Simulations

The shape of the spinodal in the negative-pressure region can be used
to test the liquid–liquid phase transition hypothesis, so we briefly discuss
recent calculations of the density and pressure of the spinodal, which
we denote rsp(T) and Psp(T), respectively. Relatively few experimental
works (55, 56) and simulations (13, 57–61) have been performed on ‘‘stretched’’
water. Recently, Yamada and her coworkers (30) simulated a system of
N=343 molecules interacting with the TIP5P potential. (62) TIP5P is a five-
site, rigid, non-polarizable water model, not unlike the ST2 model. (63) The
TIP5P potential accurately reproduces the density anomaly at 1 atm and
exhibits excellent structural properties when compared with experimental
data. (62, 64) The TMD shows the correct pressure dependence, shifting to
lower temperatures as pressure is increased. Under ambient conditions, the
diffusion constant is close to the experimental value, with reasonable tem-
perature and pressure dependence away from ambient conditions. (62)

Figure 1 shows results for pressure along isotherms. At lower temper-
atures an inflection develops, which becomes a ‘‘flat’’ isotherm at the
lowest temperature, T=215 K. The presence of a flat region indicates that
a phase separation takes place; the critical temperature is TCŒ=(217 ± 3) K,
the critical pressure is PCŒ=(340 ± 20) MPa, and the critical density rCŒ=
(1.13 ± 0.04) g/cm3.

Figure 2 plots the pressure along isochores. The curves show minima
as a function of temperature; the locus of the minima is the TMD line,
since (“P/“T)V=aP/KT, the ratio of the thermal expansivity to isothermal
compressibility. Note that the pressure exhibits a minimum if the density
passes through a maximum (aP=0). It is clear that, as in the case of ST2
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Fig. 1. Dependence on density of the pressure at all temperatures investigated (T=
[215, 220, 230, 240, 250, 260, 270, 280, 290, 300, 320] K, from bottom to top). Each curve has
been shifted by n × 150 MPa to avoid overlaps. An inflection appears as T is decreased, trans-
forming into a ‘‘flat’’ coexistence region at T=215 K, indicating the presence of a liquid–
liquid transition. Inset: A detailed view of the T=215 K isotherm. Courtesy of M. Yamada.

water, TIP5P water has a TMD that changes slope from negative to posi-
tive as P decreases. Notably, the point of crossover between the two
behaviors is located at ambient pressure, T % 4°C , and r % 1 g/cm3. Also
plotted is the spinodal line, obtained by fitting the isotherms (for T \ 300 K)
of Fig. 1 to the form P(T, r)=Ps(T)+A[r − rs(T)]2, where Ps(T) and
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Fig. 2. Pressure along seven isochores of density (0.90, 0.95,..., 1.20) g/cm3. The minima
correspond to the temperature of maximum density line (dashed line). Note the ‘‘nose’’ of the
TMD line at T=4°C. Stars denote the liquid spinodal line, which is not reentrant, and
terminates at the liquid-gas critical point. Courtesy of M. Yamada.
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rs(T) denote the pressure and density of the spinodal line. This functional
form is the mean field prediction for P(r) close to a spinodal line. For
T [ 250K, Ps(T) is calculated by estimating the location of the minimum
of P(r). The results in Fig. 2 show that the liquid spinodal line is not
reentrant and does not intersect the TMD line.

2.6. Outlook

Before concluding this brief discussion of statics, we ask ‘‘What is the
requirement for a liquid to display a liquid–liquid phase transition?’’ By the
arguments presented above, some other liquids should display liquid–liquid
phase transitions, namely systems that at low temperature and low pressure
have anticorrelated entropy and specific volume fluctuations. Thus a
natural extension to our work is to consider other tetrahedrally-coor-
dinated liquids. Since other tetrahedral liquids have that similar features,
we might anticipate similar liquid–liquid phase transitions occur on the
liquid free energy surface of these liquids. Evidence in favor of this possi-
bility has been reported for SiO2, (66, 67) amorphous GaSb, (68, 69) C, (70, 71) and
Si. (72) Recently, clear experimental evidence for a liquid–liquid phase tran-
sition has been reported in phosphorus, where the low-density liquid phase
is a molecular liquid of tetrahedral P4 ‘‘molecules.’’ (73, 74) With a change in
pressure, the low-pressure, low-density molecular liquid transforms to a
high-pressure, high-density polymeric liquid. During the transformation,
two forms of liquid coexist, showing that phosphorus has a first-order
liquid–liquid phase transition. (75) A careful analysis of tetrahedral liquids
with and without liquid–liquid phase transitions has recently been
published, (76) who compares the density maxima of the four best researched
examples of tetrahedral liquids (SiO2, BeF2, H2O, and liquid Si), compares
their special liquid state heat capacity behavior, and places them in a
semi-quantitative relationship in their anomalous transport properties.

3. DYNAMICS ON THE POTENTIAL ENERGY LANDSCAPE:

‘‘WHAT MATTERS’’ IS THE NUMBER OF DIFFUSIVE DIRECTIONS

3.1. Introduction

The study of the dynamics in supercooled liquids is receiving great
interest (77) due to novel experimental techniques, (78, 79) detailed theoretical
predictions, (80) and by the opportunity to follow the microscopic dynamics
via computer simulation. (81, 82) Mode coupling theory (80) quantitatively
predicts the time evolution of correlation functions and the dependence on
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temperature T of characteristic correlation times. Unfortunately, the tem-
perature region in which mode coupling theory is able to make such
predictions for the long time dynamics is limited to weakly supercooled
states. Parallel with the development of mode coupling theory, theoretical
work (83–87) has called attention to thermodynamic approaches to the glass
transition, and to the role of configurational entropy in the slowing down
of dynamics. (88–90) These theories, which build on ideas put forward some
time ago, (91–93) stress the relevance of the topology of the potential energy
landscape explored in supercooled states. Detailed studies of the potential
energy landscape may provide insights into the slow dynamics of liquids,
and new ideas for extending the present theories to the deep supercooling
regime.

3.2. Instantaneous Normal Modes and the Topology of the

Potential Energy Landscape

One approach to understanding the role of the potential energy land-
scape is to study the connectivity between different local configurations
using the instantaneous normal mode formalism. (94) Analogous to the
standard normal mode theory for solids, an instantaneous normal mode is
the eigenfunction of the Hessian, which is the matrix of the second deriva-
tives of the potential energy with respect to all 6N atomic coordinates. In a
liquid state, the eigenvalues of the Hessian matrix are not all generally
positive; the negative eigenvalues indicate a downward curvature of the
potential energy landscape, i.e., indicate unstable directions for the system.
Previous studies using the instantaneous normal mode formalism indicate
that the number of directions with negative curvature is reduced on
cooling, motivating theories relating diffusion in liquids to the instanta-
neous normal mode density of states. (95, 96) Low temperature liquid dynam-
ics involve the superposition of fast oscillations around quasi-equilibrium
positions (intra-basin motion) and the rearrangement of the system
between these positions (inter-basin motion). The typical oscillation period
is much shorter than the typical time needed by the system to rearrange
itself, i.e., the structural relaxation time. instantaneous normal mode
theories for diffusion relate the diffusion of the system in configuration
space to activated processes of inter-basin motion. In this respect, the
unstable modes are considered representative of the barriers crossed when
the system changes basins.

One approach (97, 98) among many (99, 100) for separating the diffusive
modes (basin changes in configuration space) from the non-diffusive modes
(no basin changes) is classifying the modes according to their potential
energy profile (Fig. 3), and partition those unstable modes into two groups:
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Fig. 3. Schematic sketch of the possible shapes of the potential energy landscape associated
with imaginary eigenvalues. Unstable modes are first separated into shoulder and double well
modes. Furthermore, double well modes are split into diffusive and non diffusive ones.
Courtesy of E. LaNave.

(i) unstable normal modes due to the anharmonicities (shoulder modes)
and (ii) modes along which the system is crossing a saddle (double-well
modes). (99) In order to distinguish between shoulder and double-well
modes, the potential energy profile is calculated along straight paths that
follow the direction of the eigenvector. Furthermore, to distinguish the
false and true double wells, we calculate the steepest descent trajectories
starting from the opposite sides of the saddle. A mode represents true
double well, and this is called a diffusive mode if these trajectories end up
in two distinct local minima.

3.3. Results

Next we discuss the numerical relationship between D and the number
of diffusive modes fdiff in the vicinity of the fragile-to-strong crossover
temperature T× . We review recent work on two different models of
tetrahedral liquids, the SPC/E extended simple point charge model for
water (98, 101) and the BKS model of silica. (102) For silica (Fig. 4), the fragile-
to-strong transition temperature T× coincides numerically (102–105) with the
critical temperature TMCT identified by mode coupling theory. For both
models, it appears that D depends on T and P only through fdiff —the
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Fig. 4. Arrhenius plot of (a) the diffusion constant D for Si atoms in SiO2 and (b) fdiff. The
crossover to the straight line Arrhenius behavior below T× represents the fragile-to-strong
crossover for silica. Part (c) shows the parametric relation D/T vs fdiff in a log-log scale. The
data are smooth through the ‘‘mode-coupling’’ crossover temperature T× . Courtesy of
E. LaNave.

analog of the magnetization M(H, T) of a ferromagnet depending on
magnetic field H and temperature T only through the correlation length t.
Specifically, for both models it appears that D follows a general power-law
relation of the form

D/T ’ (fdiff)a, (1)

for roughly two decades in fdiff and three decades in D/T. For the water
model, a % 2 while for the silica model it appears that a % 1.3. In the case
of silica, the identical functional form describes the relationship between D
and fdiff both above and below T× , showing that while the T dependence of
both D and fdiff is sensitive to the microscopic mechanisms controlling the
dynamics, the fragile-to-strong transition does not affect the relation
between D and fdiff. The exponent value a=2 found for water has recently
been theoretically interpreted. (104)

In summary, then, two different dynamical mechanisms affect the
slowing down of the dynamics in supercooled states: (98)

(i) In the weakly supercooled region, the slowing down of the
dynamics arises from the progressive reduction in the number of directions
where free exploration of configuration space is possible. The system is
always located close to a multi-dimensional ridge between different basins,
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and the time scale of the long-time dynamics is set by the time required to
probe one of the free directions. In this range of T, the diffusion is not
limited by the presence of energy barriers that must be overcome by ther-
mally activated processes, but is controlled by the limited number of direc-
tions leading to different basins along almost constant potential energy
paths. Furthermore, the number of free directions completely determines
the value of D, independent of the thermodynamic parameters T and r.

(ii) Close to TMCT, the system starts to sample regions of configura-
tion space that have no free directions. The change in the dynamics above
and below TMCT can be viewed as a change in the properties of the potential
energy landscape sampled in equilibrium, from configurations always close
to a ridge of progressively lower and lower dimension to configurations far
from any ridge. (105, 106) Below TMCT, the system must go close to the ridge
and then select the right direction. The search for the ridge below TMCT, i.e.,
the search for a rare event, can be probably described as an activated
process, which corresponds to Arrhenius behavior of the diffusion con-
stant.

(iii) The relation between connectivity and number of local minima
in the potential energy landscape—which can be calculated in theoretical
models as recently done for the random energy model (107)—may help build
on the existing ideas bridging thermodynamics and dynamics. (108)

4. DYNAMICS BELOW THE MODE COUPLING THEORY:

‘‘WHAT MATTERS’’ IS COOPERATIVE MOTION

4.1. Introduction

As a supercooled liquid is cooled toward the glassy state, the system is
increasingly found near local potential energy minima, called inherent
structure configurations. (91) In this description, in the glassy state, the
system is localized in one of the potential energy basins. (103, 109–111) While
such a picture of liquid dynamics is difficult to verify experimentally,
computer simulation offers an excellent opportunity to explore these ideas.
For a pre-defined liquid potential, a liquid trajectory can be generated via
molecular dynamics simulation and the local potential energy minima can
be evaluated by an energy minimization method. (91) With this procedure,
the motion in phase space is converted into a minimum-to-minimum
trajectory, or inherent structure trajectory. A general picture of the system
moving among a set of basins surrounding the multitude of local minima
has evolved. More specifically, simulations have shown that both the depth

1048 Stanley et al.



of the minima sampled by the system, as well as the number of these
minima, decrease on cooling. (111, 112)

The description of the real motion of the system as an inherent struc-
ture trajectory becomes a powerful way of separating the vibrational con-
tribution, responsible for the thermal broadening of instantaneous mea-
surements from the slow structural component. (113) Such an approach becomes
even more powerful below TMCT, since most of the instantaneous configu-
rations are far from saddles, making correlation functions calculated from
the inherent structure trajectory fully account for the a-relaxation dynamics.(109)

4.2. Results

Recent results (114) are based on molecular dynamics simulations of the
SPC/E model (115) of water for 216 molecules, at fixed density r=1 g/cm3.
The numerical procedure is described in ref. 59. The trajectories are
analyzed at T=180 K, and the mode coupling temperature for this density
is TMCT=193.6 K, (59) so the system is in the deep supercooled liquid state.
At this temperature, the diffusion coefficient is four orders of magnitude
smaller than its value at T=300 K and only a few molecules move signifi-
cantly (with displacements larger than 0.025 nm) at each simulation time
step.

To aid in understanding the distribution of the displacements during
the IS changes, Fig. 5(a) shows the displacements u of all 216 individual
molecules for a typical inherent structure transition. In fact, there is a rela-
tively small set of molecules with a large displacement. A snapshot of the
eight molecules with the largest displacement is shown in Fig. 6. Interest-
ingly, this set of molecules forms a cluster of bonded molecules. Indeed, for
all cases studied, the set of molecules which displace most forms a cluster
of bonded molecules. The observed clustering phenomenon characterizes
the inherent structure transitions in water and can be interpreted as the
analog of the string-like motion observed in simple atomistic liquids, (109)

connected to the presence of dynamical heterogeneities. (116–119) Similar
results were found by Ohmine et al. using the TIP4P and TIPS2 models for
water. (120)

To characterize the distribution of individual molecular displacements
between different inherent structures more carefully, Fig. 5(b) shows the
distribution of displacements u of the oxygen atoms P(u). Note that P(u)
was previously studied by Schrøder et al. for a binary Lennard-Jones
mixture. (109)

Analysis of the changes in hydrogen bond connectivity associated with
inherent structure changes reveals that these transitions are associated with
the breaking and reformation of hydrogen bonds.
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between inherent structure changes, P(u), sampled along a 30 ns trajectory in 20,000 inherent
structure changes. The exponential tail of P(u), with a characteristic length of about 0.02 nm,
is mostly due to the highly mobile molecules, while the power law with exponent 2.5 would
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Courtesy of N. Giovambattista.

Fig. 6. Snapshot of the system in one inherent structure. Only the eight molecules with
displacement larger than 0.025 nm [Fig. 3(a)] are shown here. Hydrogen-bonded molecules
are connected by tubes. Note that all 8 molecules are nearby and form a cluster, which unlike
the Lennard–Jones case, are bounded and less string-like. Courtesy of N. Giovambattista.
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Reference 114 further shows that the transitions associated with an
increase in the energy correspond to the breaking of linear bonds and to
the simultaneous formation of bifurcated bonds. (121, 122) Similarly, the tran-
sitions associated with a decrease in the energy correspond to the breaking
of bifurcated bonds and to the simultaneous formation of linear bonds.
This result supports the hypothesis that the linear to bifurcated transition
can be considered as an elementary step in the rearrangement of the
hydrogen bond network.
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