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The purpose of this opening talk is to describe examples of recent progress in applying
statistical mechanics to biological systems. We first briefly review several biological sys-
tems, and then focus on the fractal features characterized by the long-range correlations
found recently in DNA sequences containing non-coding material. We discuss the evidence
supporting the finding that for sequences containing only coding regions, there are no long-
range correlations. We also discuss the recent finding that the exponent o characterizing
the long-range correlations increases with evolution, and we discuss two related models,
the insertion model and the insertion-deletion model, that may account for the presence
of long-range correlations. Finally, we summarize the analysis of long-term data on hu-
man heartbeats (up to 104 heart beats) that supports the possibility that the successive
increments in the cardiac beat-to-beat intervals of healthy subjects display scale-invariant,
long-range “anti-correlations” (a tendency to beat faster is balanced by a tendency to
beat slower later on). In contrast, for a group of subjects with severe heart disease, long-
range correlations vanish. This finding suggests that the classical theory of homeostasis,
according to which stable physiological processes seek to maintain “constancy,” should be
extended to account for this type of dynamical, far from equilibrium, behavior.

1. Introduction

In the last decade it was realized that many biological systems have no char-
acteristic length scale, thus having fractal or, more generally, self-affine prop-
erties [1]. In contrast to compact objects, fractal objects are almost entirely
composed of “surface.” This observation explains why fractals are of great
importance in biology, where surface phenomena are of crucial importance.

Lungs exemplify this feature. The surface area of a human lung is as large
as a tennis court. A lung is made up of self-similar branches with many scale
lengths, which is the defining attribute of a fractal surface. The efficiency of
the lung is enhanced by this fractal property, since at each breath oxygen and
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carbon dioxide have to be exchanged at the lung surface. The structure of the
bronchial tree has been quantitatively analyzed using fractal concepts [1,2].

A second example is the arterial system which delivers oxygen and nutrients
to all the cells of the body. For this purpose blood vessels must have fractal
properties [3]. The diameter distribution of blood vessels ranging from cap-
illaries to arteries follows a power-law distribution which is one of the main
characteristics of fractals. Sernetz et al. [3] have studied the branching pat-
terns of arterial kidney vessels. They analyzed the mass—radius relation and
found that it can be characterized by fractal geometry, with fractal dimensions
between 2.0 and 2.5. Similarly, the branching of trees and other plants, as well
as root systems have a fractal nature. One of the most remarkable examples of
a fractal object is the surface of a cauliflower, where every little head is an al-
most exact reduced copy of the whole head formed by intersecting Fibonacci
spirals of smaller heads, which in turn consist of spirals of smaller and smaller
heads, up to the fifth order of hierarchy. West and Goldberger were first to
describe such a “Fibonacci fractal” in the human lung [1]. (For a general re-
view of fractals in physiology and medicine see also Goldberger, Rigney, and
West [1].)

Considerable interest in the biological community has also arisen from the
possibility that neuron shape can be quantified using fractal concepts. For
example, Smith et al. [4] studied the fractal features of vertebrate central
nervous system neurons in culture and found that the fractal dimension is
increased as the neuron becomes more developed. Caserta et al. [5] showed
that the shapes of quasi-two-dimensional retinal neurons can be characterized
by a fractal dimension . They found for fully developed neurons in vivo, dy =
1.68+0.15, and suggest that the growth mechanism for neurite outgrowth bears
a direct analogy with the growth model called diffusion-limited-aggregation
(DLA). The branching pattern of retinal vessels in a developed human eye
is also very similar to DLA [3]. The fractal dimension was estimated to be
about 1.7, in good agreement with DLA for the case of two dimensions.

The DLA-type model governing viscous fingering may also serve to resolve
the age-old paradox “Why doesn’t the stomach digest itself?” [6]. Hydrochlo-
ric acid (HCl) when released under pressure by the secretory glands crosses
the viscous lining of the stomach using the principles of viscous fingering that
govern the breakdown of any viscous liquid when a less viscous one is forced
under pressure through it.

Yet another example of DLA-type growth is bacterial colony spread on 2d
plates [7]. Vicsek et al. [8] studied bacterial colony growth on a strip geometry
which results in a self-affine surface. They calculated the roughness exponent
a for this surface and found a = 0.78 £ 0.07.

In recent years long-range power-law correlations have been discovered in
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a remarkably wide variety of systems. Such long-range power-law correlations
are a physical fact that in turn gives rise to the increasingly appreciated “frac-
tal geometry of nature” [9-15]. So if fractals are indeed so widespread, it
makes sense to anticipate that long-range power-law correlations may be sim-
ilarly widespread. Indeed, recognizing the ubiquity of long-range power-law
correlations can help us in our efforts to understand nature, since as soon as
we find power-law correlations we can quantify these with a critical exponent.
Quantification of different behavior allows us to recognize similarities be-
tween different systems, thereby eventually leading to recognizing underlying
unifications that might otherwise have gone unnoticed.

A system is said to exhibit long-range correlations when some physical prop-
erties of the system at different positions (or times) are correlated and the cor-
responding correlation function decays much slower than exponentially with
distance or time. The mechanism for generating long-range correlations is not
always obvious. One possibility is that there is an input to the system which
itself has long-range correlations. However, in many cases long-range correla-
tions are spontaneously generated, even though all the physical interactions
are themselves short-range. A well-studied example is a system at or near its
critical point, for which the interactions among the molecules are quite short
range, being essentially nearest-neighbor only. A remarkable manifestation of
the fact that the correlations extend in range to thousands of atomic distances
1s the phenomenon of critical opalescence, in which visible light (of wave-
length thousands of A) is scattered (fig. 1). It is difficult, a priori, to imagine
that a biological system is situated at its critical point, as that would require
some control parameter to be tuned to just the proper value. However recently
it has come to be appreciated that many systems essentially “tune themselves”
spontaneously such that they become closer and closer to a critical point; such
sclf-organized critical phenomena may occur in biological systems [16].

1.1. Systems with characteristic scales

In order to understand the concept of “scale-free,” we start with a discussion
of systems with characteristic scale, the correlation length.

Consider a physical quantity (measurement) which describes some proper-
ties of a system. This quantity may vary from one location to another location
(or may fluctuate in time). If the system cannot be divided into many isolated
sub-parts, the fluctuations of the physical quantity are not completely uncor-
related even though they may be driven by some stochastic process. However,
if the stochastic influence is strong, the physical quantity can be viewed as an
independent variable. Therefore, there is a well-defined scale for correlation
length related to the distance above which the physical properties are uncor-
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Fig. 1. Behavior of the binary mixture cyclohexane-aniline just below its consolute point. The
fact that the correlations are long-range is manifest by the fact that visible light is strongly
scattered (courtesy of R.A. Ferrell).

related (or the smallest scale of the sub-systems that can be treated as inde-
pendent).

This characteristic scale has its practical role in simplifying the problem of
describing the system. Several first order models for studying physical sys-
tems take advantage of the existence of this scale; they usually assume that the
complete system can be divided into many sub-systems that do not commu-
nicate with each other. For example, classical gases can be viewed as a system
of hard sphere particles with the radii chosen to be the characteristic length of
the actual molecular interaction distance. The fact that this type of model can
describe some general properties of a real system is an important justification
of this characteristic scale.

For many physical systems, a similar scale in time also exists. Furthermore,
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we note that the characteristic scales are frequently related to the exponential
decay of a specific physical quantity. For example, a half life time is a charac-
teristic time scale for radioactive particles. The physical mechanism of expo-
nential decay is easy to understand: Consider a function 7(¢) that measures
the amount of information (or other physical property) at time (or position)
{. In many cases, it is reasonable to assume that the amount of information
lost will be proportional to the amount of information that exists at that mo-
ment, i.e.,

dl(¢)
dr

ox —1(1). (1)
The solution for this type of equation is

I1(1) x exp(—t/1), (2)

where 7 1s the inverse of the proportionality constant in egs. (1),(2). It also
plays the role of characteristic scale.

In general, when the correlation of a physical quantity decays fast enough
(not necessarily exponential), then the notation of a characteristic scale is
meaningful and useful.

1.2. Scale-free systems

Not every system contains a well-defined length (or time) scale to which
the system can be simplified accordingly. In the last few decades, significant
attention has been directed at understanding systems that do not have any
characteristic scale. A classical example is a ferromagnetic Ising spin system
at the critical point. We will use this example to illustrate some important
aspects of a scale-free system.

Consider a three-dimensional lattice with a spin on each lattice site. The
spin can only take two directions (values), denoted by 1 and —1, and only
interacts with its nearest neighbors through ferromagnetic interaction (lower
energy when two spins align with each other). The system is then put in con-
tact with a heat reservoir which provides the thermal energy for the fluctua-
tions of the spins. If the temperature for the heat reservoir is high, then the
“randomness” of the thermal noise dominates. Therefore, each spin is com-
pletely free to choose its own direction with little correlation to its neighbors.
If we gradually lower the temperature, we will notice that the coupling energy
becomes relatively stronger and spins are more correlated (with a short cor-
relation length). A physically meaningful way to define the correlation length
for the system is first to connect all nearest neighbor spins that are aligned in
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the same direction as a “cluster” and relate the correlation length to the av-
erage cluster size. Spins in different clusters know nothing about each other
and, therefore, the system can be divided into independent sub-systems (clus-
ters). For high temperature, the distribution of cluster size decays fast (it is
extremely rare to find large clusters), thus a meaningful correlation scale ex-
ists. As we lower the temperature, the size distribution varies (more chance
to find large clusters) and the correlation length increases. However, there is
no dramatic change in the form of the distribution function. If we continue to
lower the temperature, suddenly, at the critical temperature, the distribution
function becomes a power law and the correlation length diverges, i.e., the
size of the largest cluster one can find is comparable to the system size. At this
point, the system can no longer be viewed as many independent sub-systems
and any characterization of the system must involve the system as a whole:
long-range order appears. In this case, the origin for generating long-range cor-
relations is the balance between two competitions, “order” (spin coupling)
and “disorder” (thermal fluctuations), over all scales.

Systems that have long-range correlations usually have certain physical prop-
erties described by homogeneous functions. A homogeneous function f is de-
fined as

SQ@r) ~ g(d) f(r). (3)

The physical meaning for the homogeneous function is that the value of the
function at a new scale is simply related to the value of the original scale by
some constant factor. The solution to eq. (3) is power-law function, i.c.,

[y ~rf, (4)

The list of systems in which power law correlations appear has grown rapidly
in recent years, including models of turbulence and even earthquakes [16].
What do we anticipate for biological systems? Generally speaking, when “en-
tropy wins over energy”— i.e., randomness dominates the behavior — we find
power laws and scale invariance. Biological systems sometimes are described
in language that makes one think of a Swiss watch. Mechanistic descriptions
must be incomplete, since only some appropriately-chosen averages appear
to behave in a regular fashion. The trajectory of each individual biological
molecule is of necessity random - albeit correlated. Thus one might hope that
recent advances in understanding “correlated randomness” [17-20] could be
relevant to biological phenomena. While there have been reports of scale in-
variant phenomena in isolated biological systems, ranging from the fractal
shapes of neurons [4,5] to long-range correlations in heart beat intervals [21],
selected literary compositions [22], and stock market fluctuations [23], there
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has been no systematic study of a biological system that displays power-law
correlations.

First we will attempt to summarize the key findings of some recent work
[24-43] suggesting that, under suitable conditions, the sequence of base pairs
or “nucleotides” in DNA also displays power-law correlations. The underlying
basis of such power law correlations is not understood at present, but it is at
least possible that this reason is of as fundamental importance as it is in other
systems in nature that have been found to display power-law correlations.

2. Discovery of long-range correlations in DNA

In order to study the scale-invariant long-range correlations of a DNA se-
quence, we first introduced a graphical representation of DNA sequences,
which we term a fractal landscape or DNA walk [24]. For the conventional
one-dimensional random walk model, a walker moves either “up” (u#(i) =
+1) or “down” (u(i) = —1) one unit length for each step i of the walk. For
the case of an uncorrelated walk, the direction of each step is independent of
the previous steps. For the case of a correlated random walk, the direction of
each step depends on the history (“memory”) of the walker [18-20].

One definition of the DNA walk is that the walker steps “up” (u(i) =
+1) if a pyrimidine (C or T) occurs at position a linear distance [ along
the DNA chain, while the walker steps “down” (u(i) = —1) if a purine (A
or G) occurs at position {. The question we asked was whether such a walk
displays only short-range correlations (as in an n-step Markov chain) or long-
range correlations (as in critical phenomena and other scale-free “fractal”
phenomena).

There are actually many possible rules of mapping of DNA sequence onto
a 1-dimensional random walk:

Correlations of pairs of nucleotides:

(1) u(i) = +1 for A or G and u(i) = —1 otherwise (purine-pyrimidine
rule);

(i1) u(i) = +1for Cor G and u(i) = —1 otherwise (hydrogen bond rule});

(1) u(i) = +1 for Aor C and u(i) = —1 otherwise.

Correlations of one nucleotide with itself:

(iv) One can assign u(i) = +1 if nucleotide A occurs on the ith place and
u(i) = —1 otherwise (in case of C,G, or T);

(v) u(i) = +1 for Cand u(i) = —1 otherwise;

(vi) u(i) = +1 for G and u(i) = —1 otherwise;
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(vil) u(i) = +1 for T and u(i) = —1 otherwise.
Correlations of some physical quantity (e.g., molecular mass rule):

(viil) u(i) = 134 for A, u(i) = 110forC,u(i) = 150for G,and u (i) = 125
for T.

This list of rules may be extended. Moreover, there have also been attempts
to map the DNA sequence onto a multi-dimensional space [25,32]. Generally
we find that the original purine-pyrimidine rule provides the most robust
results, probably due to the purine-pyrimidine chemical complementarity.

The DNA walk allows one to visualize directly the fluctuations of the purine—
pyrimidine content in DNA sequences: positive slopes on the fig. 2 correspond
to high concentration of pyrimidines, while negative slopes correspond to
high concentration of purines. Visual observation of DNA walks suggests that
the coding sequences and intron-containing non-coding sequences have quite
different landscapes. Fig. 2a shows a typical example of a gene that contains a
significant fraction of base pairs that do not code for amino acids. Fig. 2b shows
the DNA walk for a sequence formed by splicing together the coding regions
of the DNA sequence of this same gene (i.e., the cDNA). Fig. 2¢ displays
the DNA walk for a typical sequence with only coding regions. Landscapes
for intron-containing sequences show very jagged contours which consist of
patches of all length scales, reminiscent of the disordered state of matter near
critical point. On the other hand, coding sequences typically consist of a few
lengthy regions of different strand bias, resembling domains in the system in
the ferromagnet state. These observations can be tested by rigorous statistical
analysis,

The DNA walk provides a graphical representation for each gene and per-
mits the degree of correlation in the base pair sequence to be directly visual-
ized, as in fig. 2. Fig. 2 naturally motivates a quantification of this fluctuation
by calculating the “net displacement” of the walker after ¢ steps, which is the
sum of the unit steps # (i) for each step i. Thus y(£) = Zf=l u(i).

An important statistical quantity characterizing any walk is the root mean
square fluctuation F (£) about the average of the displacement; F (£ ) is defined
in terms of the difference between the average of the square and the square of
the average,

F2(0) = TAp (O - Ay (D), (5)

of a quantity Ay(£) defined by Ay(£) = y(£y + [) — y(£4y). Here the bars
indicate an average over all positions Zy in the gene. Operationally, this is
equivalent to (a) taking a set of calipers set for a fixed distance ¢, (b) moving
the beginning point sequentially from £, = 1to £, = 2, ... and (c) calculating
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Fig. 2. The DNA walk representations of (a) human f-cardiac myosin heavy chain gene
sequence, showing the coding regions as vertical golden bars, {(b) the spliced together coding
regions, and (c¢) the bacteriophage lambda DNA which contains only coding regions. Note
the more complex fluctuations for (a) compared with the coding sequences (b) and (c). We
found that for almost all coding sequences studied that there appear regions with one strand
bias, followed by regions of a different strand bias. The fluctuation on either side of the overall
strand bias we found to be random, a fact that is plausible by visual inspection of the DNA
walk representations. We used different step heights for purine and pyrimidine in order to align
the end point with the starting point. This procedure is for graphical display purposes only (to
allow one to visualize the fluctuations more easily) and is not used in any analytic calculations.
After ref. [24].

the quantity Ay(£) (and its square) for each value of 4,, and (d) averaging
all of the calculated quantities to obtain F2(£).
The mean square fluctuation is related to the auto-correlation function

C(e)=ult)ullo + 1) — ully) (6)

through the relation

I/
Frey=35 % ciG-i. (7)

1A=1j=1
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The calculation of F (£) can distinguish three possible types of behavior.

(1) If the base pair sequence were random, then C(£) would be zero on
average (except C(0) = 1),s0 F(£) ~ £1/2

(1i) If there were a local correlation extending up to a characteristic range
R (such as in Markov chains), then C(£) ~ exp(—£/R); nonetheless the
asymptotic behavior F (£) ~ ¢£'/2 would be unchanged from the purely random
case.

(iii) If there is no characteristic length (i.c., if the correlation were “infinite-
range”), then the scaling property of C'(£) would not be exponential, but
would most likely to be a power law function, and the fluctuations will also
be described by a power law

F(¢)~1°, (8)

with o # 3.

Fig. 2a shows a typical example of a gene that contains a significant fraction
of base pairs that do not code for amino acids. It is immediately apparent that
the DNA walk has an extremely jagged contour which we shall see corresponds
to long-range correlations. Double logarithmic plots of the mean square fluc-
tuation function F (£) as a function of the linear distance ¢ along the DNA
chain for intron-containing and intergenic (i.e., non-coding) sequences are
linear, so F (£) ~ £2. A least-squares fit produces a straight line with slope «
substantially larger than the prediction for an uncorrelated walk, o = %, thus
providing direct experimental evidence for the presence of long-range corre-
lations.

On the other hand, the dependence of F(¢) for coding sequences is not
linear on the log-log plot: its slope undergoes a crossover from 0.5 for small ¢
to 1 for large £. However, if a single patch is analyzed separately, the log-log
plot of F(£) is again a straight line with the slope close to 0.5. This suggests
that within a large patch the coding sequence is almost uncorrelated.

It is known that functional proteins usually form a single compact three-
dimensional conformation that corresponds to the global energetical mini-
mum in the conformational space. Recently, Shakhnovich and Gutin [44]
found that in order to have such a minimum it is sufficient that an amino acid
sequence forms an uncorrelated random sequence. The finding of Peng et al.
[24] of the lack of long range correlations in the coding nucleotide sequences
provides more evidence for this hypothesis, since there exist almost one-to-
one correspondence between amino acid sequences and their nucleotide codes.
Furthermore, this finding may also indicate that the /ack of long range cor-
relations in the amino acid sequences is, in fact, a necessary condition for a
functional biologically active protein.
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3. Other methods of measuring long-range correlations

One can also worry that the apparent long-range correlation is some artifact
of the DNA walk method itself. To compare the fluctuations of o in our DNA
walk method with those found in other methods, we have used two standard
methods to study the correlation property of sequences, namely the correla-
tion function C (£) and the power spectrum S (). The power spectrum den-
sity, S(f), is obtained by (a) Fourier transforming the sequence {u(i)} and
(b) taking the square of the Fourier component. For a stationary sequence,
the power spectrum is the Fourier transform of the correlation function. If the
correlation decays algebraically (not exponentially), i.e., there is no charac-
teristic scale for the decay of the correlation, as we found in the non-coding
DNA sequences, then we expect power-law behavior for both the power spec-
trum and the correlation function,

S~ /1), (9)
and

C(L)~ (1/2)7. (10)
The correlation exponents «, f and y are not independent, since

L+ 2-y
a = = .

2 2 ah

The first equality is derived in eq. (A.13) below, while the second is derived
in eq. (20). For a typical DNA sequence of finite length, both the correlation
function and power spectrum are fairly noisy, but the estimates of § and y
obtained are consistent with those calculated from the DNA walk method.
The reason for the smaller fluctuations of « in the DNA walk method is due
to the fact that F2(¢) is a double summation of C(¢). Thus it would seem
that the original DNA walk method is more useful due to reduced noise.

Apart from the reduced noise mentioned above, one additional advantage
of the DNA walk method [24] is that to find the exponent characterizing
the long-range correlation one need not correct the data by subtracting the
white noise, S(oc) *!. Since there is no unambiguous method of estimating
S'(c0), this need to correct the data introduces an uncontrollable source of
uncertainty.

#*1 In the power spectrum analysis for those sequences containing non-coding regions, subtract-
ing of the white noise, S(c0), as performed in ref. [27], gives more weight to the non-coding
segments (correlated) than the coding segments (uncorrelated). See also [47].
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4. Difference between correlation properties of coding and non-coding regions

Our initial report [24] on long-range (scale-invariant) corrclations in
non-coding DNA sequences has generated contradicting responses. Some
[25,27,36] support our initial finding, while some [26,31,35,37] disagree.
For example, Voss [27] has recently proposed that coding as well as non-
coding DNA sequences display long-range power law correlations in their base
pair (bp) sequences. This finding disagreed with our earlier analysis [24],
claiming that coding DNA sequences do not display power-law correlations.
However, the discrepancy between [27] and [24] could have arisen because
the analysis in [24] was based on partitioning the entire coding sequence
into a few large subsequences of constant overall compositional bias. It is im-
portant to resolve this discrepancy, since Voss based his scientific conclusion
(“immunity to errors on all scales”) on his claim of power-law correlations
in coding sequences [27].

The source of these contradicting claims may arise from the fact that, in
addition to normal statistical fluctuations expected for analysis of rather short
sequences, coding regions typically consist of only a few lengthy regions of
alternating strand bias. Hence conventional scaling analyses cannot be applied
reliably to the entire sequence but only to sub-sequences.

Peng et al. [42] have recently applied the “bridge method” to DNA, and
have also developed several similar methods specifically adapted to handle
problems associated with non-stationary sequences which they term detrended
Sfluctuation analysis (DFA).

The idea of the DFA method is to compute the dependence of the standard
error of a linear interpolation of a DNA walk Fy (£ ) on the size of the interpola-
tion segment £. The method takes into account differences in local nucleotide
content and may be applied to the entire sequence which has lengthy patches.
In contrast with the regular F (¢) function, which has spurious crossover be-
havior even for £ much smaller than a typical patch size, the detrended func-
tion F;(£) shows linear behavior on the log-log plot for all length scales up to
the characteristic patch size, which is of the order of a thousand nucleotides
in the coding sequences. For £ close to the characteristic patch size the log-log
plot of F4(£) has an abrupt change in its slope.

The DFA method clearly confirms the difference between coding and non-
coding sequences, showing that the coding sequences are less correlated than
non-coding sequences for the length scales less than 1000, which is close to
characteristic patch size in the coding regions (fig. 3).

To provide an “unbiased™ test of the thesis that non-coding regions pos-
sess but coding regions lack long-range correlations, we analyzed several un-
correlated and correlated control sequences of size 10° nucleotides using the
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Fig. 3. Comparison of the fluctuation analysis used in ref. [37] and the DFA presented here.
The DNA sequence is for the complete genome of lambda phage, whose DNA walk appears in
the inset. The two parallel dotted lines have slope 0.5. A best fit straight line to F4(£) for the
interval £ = 4 to 1024 has slope o = 0.51. After ref, [42].

GRAIL neural net algorithm [46]. The GRAIL algorithm identified about 60
putative exons in the uncorrelated sequences, but only about 5 putative exons
in the correlated sequences.

Using the DFA method, we can measure the local value of correlation ex-
ponent a along the sequence (see fig. 4) and find that the local minima of
« as a function of a nucleotide position which usually corresponds to non-
coding regions, while the local maxima corresponds to non-coding regions.
The statistical analysis of the nucleotide sequence data for yeast chromosome
III (315338 nucleotides) shows that the probability that the observed corre-
spondence between the positions of minima and coding regions is due to ran-
dom coincidence is less than 0.0014. Thus, this method, which we called the
“beachcomber” algorithm, can be used for finding coding regions in the newly
sequenced DNA, a potentially important application of DNA walk analysis.

S. Fractal landscapes and molecular evolution

Molecular evolutionary relationships are usually inferred from compari-
son of coding sequences, conservation of intron/exon structure of related se-
quences, analysis of nucleotide substitutions, and construction of phylogenetic
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30000 35000 40000 45000 50000 55000 60000
nucleotide position

Fig. 4. Beachcomber plot for a typical section containing about 10% of the Yeast Chromosome
III [45] - from base pair #30000 to #60000. The vertical yellow bars indicate the set of
base pairs forming identified genes (GenBank Release #76), while the white bars indicate less
certain “putative genes” determined from analysis of open reading frames [45]. The exponent
o is calculated by the beachcomber method [43]: we form an observation box of length 800,
place this box at the beginning of the chromosome, and calculate the long-range correlation
exponent « for the 800 base pairs lying inside this box. Then we move the box 75 base pairs
further along the chromosome, and again calculate o for the 800 base pairs lying inside this
box. Iterating this procedure, we obtain 315000/75 = 4186 successive values of «, each giving
a “local” measurement of the degree of long-range correlation. The red curve is obtained using
rule 1; a “down” step for A or G (purines) and an “up” step for C or T (pyrimidine). We
see that when the box is covering coding regions, the value of « is generally small, while in
between coding regions, there is frequently a peak in a. If a were the same for coding and
non-coding regions, we would expect the peaks and dips to occur with no evident correlation
in the position of genes. After [43].

trees [48]. The changes observed are conventionally interpreted with respect
to nucleotide sequence composition (mutations, deletions, substitutions, al-
ternative splicing, transpositions, etc.) rather than overall genomic organiza-
tion.

Very recently, Buldyrev et al. [41] sought to assess the utility of DNA corre-
lation analysis as a complementary method of studying gene evolution. In par-
ticular, they studied the changes in “fractal complexity” of nucleotide organi-
zation of a single gene family with evolution. A recent study by Voss [27] re-
ported that the correlation exponent derived from Fourier analysis was lowest
for sequences from organelles, but paradoxically higher for invertebrates than
vertebrates. However, this analysis must be interpreted with caution since it
was based on pooled data from different gene families rather than from the
quantitative examination of any single gene family.

Buldyrevet al. [41] tested the hypothesis that the fractal complexity of genes
from higher animals is greater than that of lower animals, using single gene
family analysis. They focused their analysis on the genome sequences from
the conventional (Type II) myosin heavy chain (MHC) family. Such a choice
limits potential bias that may arise secondary to non-uniform evolutionary
pressures and differences in nucleotide content between unrelated genes. They
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also used the DNA walk technique to study the MHC gene family because of
the availability of completely sequenced genes from a phylogenetically diverse
group of organisms, and the fact that their relatively long sequences are well-
suited to statistical analysis.

The DNA landscapes show that the coding sequences of myosins remain
practically unchanged with evolution, while the entire gene sequences become
more heterogeneous and complex. The quantitative measurements of the ex-
ponent o by DFA method confirm this visual observation showing that for
all coding sequences of MHC family a = 0.5. In contrast, for entire genes of
MHC family, the value of @ monotonically increases from lower eukaryotes
to invertebrates and from invertebrates to vertebrates.

Of note, the value of « is not strongly related to the presence of exons since
“stitching together” intron sequences (by removing exons) produces a value
similar to that of the full gene. For example, for the human MHC gene the
value of « after the exons are removed is 0.593 versus 0.586 for the complete
sequence, further supporting the view that the principal source of long-range
correlations in genomic sequences is the composition of non-coding elements
themselves and is not just the intron versus exon alternation as was suggested
by Nee [26].

The results of analysis of MHC family were confirmed by the studies of
other gene families [39].

6. Insertion model

The finding described in the previous section suggests that the source of
long-range correlations could be an evolutionary process specific to non-coding
sequences. In contrast, the coding sequences should preserve their uncorre-
lated structure in order to maintain the functional properties of the encoded
proteins.

Li [49] was first to suggest a simple model of a biologically plausible process
of duplication and mutation that can produce a sequence with any given value
of a. His model can be used to explain certain features of highly repetitive
DNA, but does not take into account many other important processes of DNA
evolution like retroviral insertions and deletions, which are probably the main
source of rapid evolution of DNA sequences.

An example of such a retroposone is the LINE-1 sequence which consists of
6 139 base pairs and is believed to contain a code for a functional protein [50].
In agreement with this we find that the LINE-1 sequence has a value of « close
to 0.5, indicating the lack long-range correlations [39]. Moreover, the LINE-1
sequence has a strong strand bias of about 59% of purines, which is also very
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typical for coding sequences. The total number of LINE-1 sequences and frag-
ments in the human genome is estimated to be 107 000, while in the genome
of the chimpanzee there are only 51 000 copies of the LINE-1 sequence [51].
This dramatic difference indicates that thousands of insertions or deletions of
LINE-1 sequences took place over a relatively short evolutionary time scale.
LINE-1 sequences are found on both strands of DNA and therefore produce
large local fluctuations of nucleotide content. Another very frequent repeti-
tive element is the ALU sequence [52], which is also statistically similar to
protein coding DNA, but, in contrast with the Line-1 sequence, is only 300
base pairs long.

The central idea of the insertion model [39] is based on the assumption that
the insertion of retroelements, formed by the inverse-transcribed RNA, plays
a major role in DNA evolution. The statistical properties of retroelements are
similar to those of protein coding sequences. In order to be inserted into DNA,
a retroelement must form a loop. The probability to find a loop of certain size
! in a long polymer chain in a solvent is given [53] by the formula

P() o (1/1)*, (12)

where u is a critical exponent with a value close to 2.2. Thus we assume

(1) that DNA sequences are comprised of subsequences distributed accord-
ing toeq. (12), and

(ii) that these subsequences are statistically similar to protein coding se-
quences which (a) usually have a significant excess of purines over pyrim-
idines (or vice versa because of DNA two-strand complementarity) and (b)
can be modeled by a Markovian process with short range correlations.

This biological evolution model which we developed is mathematically
equivalent to the generalized Lévy walk which gives rise to a landscape with a
well-defined power-law long-range correlation exponent o that depends upon
the Lévy walk parameter 1 [39],

1, u<2,
a=d2-tu 2<p<3, (13)
3 u2>3,

i.e., non-trivial behavior of « corresponds to the case 2 < x < 3 where the first
moment of P (/) converges while the second moment diverges. The long-range
correlation property for the Lévy walk, in this case, is a consequence of the
broad distribution of eq. (12) that lacks a characteristic length scale. Eq. (13)
is valid only asymptotically for large values of £. For small ¢ the slope of the
log-log plot of the function F (¢ ) for the generalized Lévy walk model increases
monotonically from a value defined by short range Markovian correlations of
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the inserted subsequences to a value a = 0.9 predicted by eq. (13). However,
this limiting value can be achieved only for very long sequences of about 10°
base pairs, and has a large standard error for finite sequences [38].

To test the insertion model [39], we have adjusted its parameters, to best
approximate features of actual DNA sequences and found a very good agree-
ment for the behavior of successive slopes of the F (£) function for all se-
quences that contain a substantial percentage of non-coding material.

7. Insertion-deletion model

In order (i) to gain some insight into possible evolutionary mechanisms that
could increase the complexity of the DNA landscapes and generate long-range
correlations of DNA sequences, and (ii) to create a more realistic model of
DNA evolution which includes also deletion of certain DNA subsequences, in-
tron insertion and the exchange of genomic material between DNA strands and
chromosomes, Buldyrev et al. [41] modified the generalized Lévy walk model
by allowing random deletion and reinsertions of subsequences with length dis-
tribution defined by eq. (12). Starting with an uncorrelated sequence, statis-
tically similar to to mRNA of MHC, the model generates with each new itera-
tion more and more heterogeneous sequences, and reproduces the monotonic
increase of « with evolution observed for MHC gene family.

(1) To simulate cDNA sequences, one starts with a biased random walk of
length L with an overall excess of purines over pyrimidines corresponding to
that observed in the cDNA sequences.

(i1) At each time step, one “mutates” the sequence by the following proce-
dure:

(a) Choose a random point in the sequence and cut a sub-sequence of length
n starting from that point, where the length » is chosen from a power law
distribution ¢(n) ~ n—# with g ~ 2 (between L, ~ 20 and L/2). The reason
for this power law distribution is that the cutting of a DNA segment most
likely occurs when a loop is formed, and it is known that the distribution of
loop sizes in a long polymer obeys a power law [51]. Choose another random
point in the sequence at which we insert this length-n sub-sequence.

(b) With probability 0.5, a strand substitution may occur in this sub-
sequence (i.e., all purines are substituted by pyrimidines and vice versa,
thereby inserting a complementary strand).

(¢) To simulate retroviral insertion occurring, with some small probability
Di, the subsequence to be inserted is substituted by a random sequence of equal
length with the same percentage of purines and pyrimidines as in the initial
cDNA sequence.
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Of note, if the model is iterated without the insertion of random biased
sequences as assumed in rule (iic), the value of a will return to 0.5, indicating
a random sequence. Insertion of biased random regions (according to a power-
law distribution) maintains the exponent o > 0.5. The importance of rule (iic)
of the model is consistent with the hypothesized role of retroviral insertions
in the genomes of high animals [51].

Furthermore, without strand substitution as implemented by rule (iib),
no long-range correlation will appear. This mirror-image replacement mimics
molecular evolution occurring by partial gene duplication or transposition and
the occurrence of “extinguished exons” [54]. In order to test our assumption
of strand substitution we also analyzed an alternative DNA landscape in which
nucleotides cytosine (C) and guanine (G) result in an up step, while adenine
(A) and thymine (T) correspond to a down step. Since such walks cannot
be affected by strand substitution, our model would predict the absence of
long-range correlations. Indeed, our analysis of the fluctuation Fy(¢) for this
modified DNA landscape does not exhibit as robust a power law correlation
as for the original purine-pyrimidine rule. Another crucial assumption is the
existence of an overall bias (either of purines or of pyrimidines) in the ini-
tial sequence; it is this bias that enables strand substitution to produce differ-
ences in nucleotide content. This assumption is consistent with our observa-
tion that most coding regions exhibit overall bias in their purine-pyrimidine
concentration.

The mechanism of generating power-law correlations in this insertion—
deletion model is related to the competition between two countervailing
“forces.” The deletion and insertion of segments in rule (iia) and (iib) tends
to randomize the sequence, while the insertion of biased segment imple-
mented by rule (iic) tends to organize the system. As the iteration proceeds,
the newly inserted biased segment is then broken into smaller pieces of dif-
ferent bias (according to a power-law distribution). After a large (but finite)
number of iterations (which depends on the parameters of the model), these
two competing effects will tend to balance each other. At this point the system
will exhibit power-law correlation.

The observed trend of o to increase with evolutionary status for the MHC
family is also consistent with the predictions of the model: “higher” species
that appeared more recently will tend to generate long-range correlations with
a larger value of the parameter «. Thus, vertebrate myosin is likely to be more
“complex” than invertebrate myosin because the former incorporated genetic
material from the latter species. This view of molecular evolution is consistent
with the theory of punctuated equilibrium [55] that postulates rather rapid
periods of change (occurring during speciation) followed by periods of stasis.

The finding that a increases with evolution contradicts a recent study by
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Voss [27] which paradoxically reported that the strength of nucleotide corre-
lations (quantified by the power spectral scaling exponent £, which is uniquely
related to «) increases from organelle to invertebrates but then decreases for
primates. This apparent discrepancy is likely due to the facts that Voss [27]
(1) did not analyze single gene families with evolution, (ii) did not distinguish
intron-containing vs intron-less sequences, and (iii) did not correct for large
regions of “strand bias” (unequal numbers of purines and pyrimidines). We
have found that if one does not take into account the crossover between two
large (but uncorrelated) regions of strand bias as seen in all the MHC ¢cDNAs
(corresponding to the uphill and downhill regions in fig. 2b), one can obtain
a spuriously large value of c.

Nee [26] proposed that it is the alternation of introns and exons (regions
containing different nucleotide content) which modulates the long-range cor-
relations. This idea is somewhat similar to the proposed model, but its main
conclusion - that the sequence from which all exons have been cut does not
exhibit long-range correlations — appears to be incorrect. In fact, intron se-
quences show long-range correlations as robust as those of complete genes
with approximately the same exponent «. In contrast, our model describes not
only the intron-insertion process, but also the shuffling process within non-
coding sequences (introns and intergenomic sequences). This shuffling pro-
cess (not just the insertion of uncorrelated introns) leads to a > 0.5 within
single introns and intergenomic sequences, a fact that cannot be explained in
the framework of the Nee hypothesis. Further, our model bears potential rel-
evance to biological evolution, by providing a possible mechanism for trans-
formation of primordial RNA molecules (currently considered to be the first
to develop) into complex DNA sequences containing noncoding elements.

Finally, two major theories have been advanced to explain the origin and
evolution of introns. One suggests that precursor genes consisted entirely of
coding sequences and introns were inserted later in the course of evolution
to help facilitate the development of new structures in response to selective
pressure, perhaps, by means of “exon shuffling” [56]. The alternative theory
suggests that precursor genes were highly segmented and subsequently organ-
isms not requiring extensive adaptation or new development or, perhaps, fac-
ing the high energetic costs of replicating unnecessary sequences, lost their in-
trons [57,58]. Support for these hypotheses has remained largely conjectural,;
no models have been brought forward to support either process. The land-
scape analysis of the MHC gene family and the stochastic model presented in
this study are most consistent with the former view.


































































