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Cluster statistics of hydrogen bond networks in water are calculated with the use of molecular dynamics
(MD) and are compared with the predictions of gelation models. For small bond networks the MD calcu-
lations agree well with Flory theory (which neglects cycles), but they disagree for the larger networks. The
MD data for the connectivity of the larger networks agree much better with our ice lattice calculations,
providing the first MD test of the ability of Flory theory to describe polyfunctional condensation network

statistics.

It is widely agreed that the unusual properties of liquid
water are related in some fashion to the hydrogen bond net-
work.! However, there is very little information on just
how the bonds conspire to produce the observed macroscop-
ic behavior. Computer simulation studies of water afford an
opportunity to address this question. Indeed, the first direct
information about the hydrogen bond connectivity was ob-
tained from molecular dynamics (MD) studies which re-
vealed the clear existence of a percolation threshold.2
Shortly thereafter it was established from Monte Carlo
simulations that essentially identical results could be ob-
tained for a variety of different intermolecular potentials
and bond criteria, so that the main conclusions ‘‘network
analysis’’ are independent of the details of the simulation.?

Here we examine in much more detail the statistics
describing the microscopic connectivity. Instead of concen-
trating on the ‘‘macroscopic’’ functions treated previous-
ly,2=% we focus on the distribution functions W(M,p), the
weight fraction of hydrogen bond networks with M
molecules when a fraction p of the hydrogen bonds are in-
tact. We shall see that the MD data agree well when M is
small with the predictions of the Flory theory of gelation,®
but that systematic discrepencies occur for larger values of
M. These arise from the fact that Flory theory neglects cy-
cles; therefore, we perform additional calculations on the ice
lattice which has even-numbered cycles and presumably re-
flects to some degree the local geometry in water. We shall
see that the MD data agree better with the lattice calcula-
tions than with the Flory theory for large M.

MD CALCULATIONS

The MD results were obtained by analysis of configura-
tions from the simulation’ of a system of 216 ST2 water
particles at 7 =284 K and density 1.0 g/cm’ Periodic
boundary conditions are imposed on the basic cubic box of
edge 18.6 A. The simulation covers a total period of 8.1 ps
(38100 time steps). We use two distinct definitions of a hy-
drogen bond. Definition D; defines bonds by a purely ener-
getic criterion: Two molecules / and j are considered to be
bonded if their pair interaction energy satisfies Vjy < Vus.
Definition D, combines the energetic definition with a
geometric criterion: If the oxygen separation of / and j is
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greater than 3.5 A, then i and J are said to be unbonded
even though the energetic criterion may be fulfilled. The
parameter Vyp takes on a set of 32 equally spaced values
ranging between — 1.5 and — 6.2 kcal/mole. In the case of
more permissive definitions, there sometimes occur
molecules having more than four bonds; for the D, analysis
we eliminate the weakest until there are no more than four
bonds per molecule, while for the D, analysis we permit
molecules with more than four bonds. The mean number
of hydrogen bonds per molecule nyg varies roughly between
zero and four. We interpret the quantity p = nyp/4 as the
fraction of intact bonds.

For each water configuration, we analyze the complete hy-
drogen bond distribution. Networks that span the basic
cube in at least one coordinate direction are considered to
be infinite, and only the remaining finite nets are used in
the analysis procedure described below. Because 127 MD
configurations were analyzed for definition D, and 800 con-
figurations for D,, we expect the data for D, to show less
statistical fluctuation.

FLORY THEORY

In 1941, Flory presented the classic analytic results for a
random network in the absence of cycles or ‘‘polygonal clo-
sures.”’® The weight fraction of monomers belonging to a
bond network of M monomers is

W(M,p)=A(M)p"~1(1—p)/-DM+2 (1)

Here p is the fraction of all possible bonds that are intact
and is interpreted as the extent of reaction, f is the func-
tionality, and

Ar(M) = f(fM—M)!/M!(fM —2M +2)! 2

is a combinatorial factor giving the total number of
“‘branched polymer” or “‘lattice animal’’ configurations of
M monomers. The most natural choice for water mono-
mers is f =4 as there are two protons and two lone pairs as-
sociated with each molecule, and four hydrogen-bonded
neighbors in all known modifications of ice.
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HYDROGEN BOND NETWORKS

We have made plots comparing Flory theory and MD cal-
culations on ST2 water for a sequence of M ranging from 1
to 50; the plots for three selected values, M =5, 15, and 40,
are reproduced in Fig. 1(a). There are no adjustable param-
eters in either the Flory theory or the MD calculations and
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this comparison provides the first MD test of the ability of
Flory theory to describe polyfunctional condensation. We
find very good agreement for plots with 1 <M <12. For
still larger M the positions of the maxima of the Flory
curves tend toward a value of 1/(f—1) = %, while the MD
data approach a larger limit.

Additional quantities of interest in gelation are (a) the to-
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FIG. 1. Dependence on fraction of intact bonds p of (a) W (M,p), the weight fraction of water molecules belonging to an M-molecule
network (for M =S5, 15, and 40), and (b) W*(s,p), the weight fraction of molecules belonging to an s-site patch of four-bonded molecules
(for s =5, 15, and 40) Shown are the predictions for the Flory theory as a solid curve and the results of MD calculations using both defini-
tions D, (O) and D, (A). The crosses indicate the Monte Carlo lattice calculations and the dashed curve represents exact lattice calculations
(for the infinite lattice, of course). There are no adjustable parameters, so the decreasing quality of the agreement as M (or s) increases is in-

dicative of the breakdown of Flory theory for large networks.
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FIG. 2. Part (a) shows the dependence on p of the rotal number of bond networks G and the mean size of a bond network S, while part
(b) shows the corresponding quantities for the patches of four-bonded molecules. The solid curve gives the predictions of Flory theory,

while the MD data are shown for definition D, (Ref. 8).

tal number of bond networks, regardless of size,

Gp= 3 M 'W(Mp) ,
M=1

(3a)

and (b) the mean size of a bond network (the mean
number of monomers belonging to a network, or ‘‘degree of
polymerization’’),

S(p= 3 MW(Mp) .

M=1

(3b)

Figure 2(a) compares these two quantities for the Flory
theory and MD calculations. We see that for G(p) there is
excellent agreement for all p, while for S(p) there is poor
agreement near the percolation threshold. This finding may
be understood as follows. Flory theory gives accurate ex-
pressions for W(M,p) at small M, and G(p) weights the
small networks. Thus Flory theory accurately predicts
G(p). On the other hand, S(p) weights the large networks,
where Flory theory is no longer a good approximation.?
The position of the maximum in S(p) is predicted to ap-
proach ch'°”=%, while the MD data display a maximum at
0.4—as anticipated from the large-M behavior of W(M,p).
Note that for any lattice which includes bond cycles, one al-
ways finds values for p, which are larger than pflov.

FOUR-BONDED MOLECULES

When p is very large, the fraction p* of four-bonded water
molecules is significant. The hydrogen bond networks in
liquid water are characterized by many tiny ‘‘patches’’ of
four-bonded molecules, and the local density in the vicinity
of a patch is lower than the global density.® Accordingly, it
is of interest to test the extent to which Flory theory pro-
vides an adequate description of the corresponding distribu-
tion function W*(s,p), the weight fraction of molecules be-
longing to an s-site patch of four-bonded water molecules.
Equation (1) for bond networks and f =4 is replaced by

W*(s,p) =A4(s)p3s+l(1 _p3)2s+2 .

Figure 1(b) shows the corresponding plots of W*(s,p) for
s=35, 15, and 40. In contrast to the case of bond networks,
we see that the Flory theory begins to break down already
for s =5. This is understandable, since the calculation for
W*(s,p) for the four-bonded molecules utilizes much more
extensively the lattice topology than the calculation of the
corresponding W(M,p) for bond networks, and hence the
neglect of rings in Flory theory is more serious.'°

Figure 2(b) shows the corresponding plots of G*(p) and
S*(p) for the total number of four-bonded patches and the
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mean size of a patch, respectively. Again, we see that the
MD data agree well for G*(p) but not for S*(p) near the
threshold region. The density of four-bonded molecules
p=p* at the percolation threshold for four-bonded
molecules is p. =0.39 =(0.79)%, considerably larger than the
corresponding value for the Flory theory p.=0.23 =(0.69)*.

LATTICE CALCULATIONS

In view of the observed discrepancies between MD data
and Flory theory, it is tempting to see if better prediction of
the MD data can be obtained by making calculations for a
lattice that contains polygonal closures. As noted above,
the maximum of S(p) is near 0.4; perhaps coincidentally,
the bond percolation threshold for an ice lattice is 0.39.!!
Accordingly, we have calculated W (M,p) and W*(s,p) for
the ice lattice, which perhaps better than other lattices re-
flects the local geometry in water. For M <6 and s <6
these calculations can be made exactly.!! For s > 6 we per-
formed Monte Carlo calculations on a sequence of lattice
sizes'? up to a maximum of 21296 sites. We see that the
MD data agree better with the ice lattice calculations than
with the Flory theory, indicating that cycles are important in
describing hydrogen bond networks in liquid water. Of
course, we know that MD simulation results show also the
presence of odd-numbered rings'> while the calculation on
an ice lattice includes only even-numbered rings. Hence the
better agreement between MD continuum and Monte Carlo
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calculations on the ice lattice primarily indicates that rings
are important, not that the connectivity of water molecules
is identical to that of ice.

In summary, we find that both microscopic (Fig. 1) and
macroscopic (Fig. 2) results from the MD simulations of
water are well described by the Flory theory of gelation, with
two important exceptions: (a) the microscopic distribution
functions W (M,p) for bond networks disagree with Flory
theory for M larger than roughly 12. Also, the correspond-
ing distribution functions W*(s,p) for clusters of four-
bonded molecules disagree for s larger than about 5. In
both cases, the MD data agree better with calculations on an
ice lattice, which take into account cycles. (b) Although the
macroscopic function G(p) agrees perfectly with Flory
theory, the maximum of S(p) peaks at a value somewhat
closer to the percolation threshold for the ice lattice than
the percolation threshold for Flory theory.
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