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Abstract

This brief overview is designed to introduce some of the advances that have occurred in
our understanding of percolation phenomena. We organize our presentation around three simple
questions: (i) What are percolation phenomena? (ii) Why do we care? (iii) What do we actually
do? To answer the third question, we will brie
y review some recent applications of percolation
that have been the subject of research in the Boston University group. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. What are percolation phenomena?

Percolation addresses questions that arise when considering geometric connectivity,
connectivity of virtually any kind of object. An example of such a question is how
many clusters exist [1–3]. A typical clustering phenomena arises if we occupy randomly
a fraction p of the sites of an L×L square lattice. Two neighboring occupied sites are
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said to belong to the same cluster. When p is small, the mean cluster size is small,
but as p increases there appears a threshold value p= pc at which a cluster (at least
one) suddenly spans the lattice [4].

2. Why to care about percolation phenomena: scienti�c reasons

2.1. Prototype threshold phenomenon

One reason that percolation is interesting is because it displays a threshold phe-
nomenon. If we plot on the y-axis the probability of �nding a spanning cluster Pspan
for L × L system as a function of p, the fraction of occupied sites, we �nd that in
the L→ ∞ limit, Pspan approaches a Heavyside step function – i.e., as p→ pc, there
is a genuine discontinuous switch between two di�erent macroscopic phases: “no in-
�nite cluster” and “in�nite cluster.” This switching e�ect is remarkable, since as one
smoothly changes a microscopic control parameter p, one discovers a discontinuous
change in a relevant macroscopic function Pspan.
The switch in a �nite system is not sudden, but is broadened over a region of p

values. The thickness of this transition region for �nite L gives information on the
critical exponent – more precisely, on the exponent dred, the fractal dimension of the
singly-connected “red” bonds in the cluster.
Threshold phenomena bring to mind phase transition and critical phenomena prob-

lems. Why? Because threshold phenomena are a kind of switch. Phase transitions are
also switches. As the �eld across a membrane increases, nothing happens until a thresh-
old is reached where the membrane conducts electricity. Similarly, this transition has
the properties of a critical point. Percolation phenomena share with critical phenomena
the hallmark features of scaling, universality, and renormalization group [5]. So the
percolation threshold has the properties of a critical point but, because the only concept
involved is geometry, the system is less di�cult. There is no temperature: the problem
is purely geometric. In principle, Archimedes could have studied percolation, and using
percolation he could have invented scaling, universality, and renormalization group.

2.2. Prototype fractal

Another reason percolation is scienti�cally interesting is that it is a prototype fractal
– in an era when the ubiquity of fractals in nature is being challenged by practitioners
in the �eld [6,7]. We can experience the striking self-similarity of a fractal when we
examine a series of pictures of a large percolation cluster created for some �xed value
of p = pc. A little box is cut out of the �rst picture, blown up, and used as the
second picture (Fig. 1). The same little box procedure can be repeated in the second
picture, creating the third picture, and in the third, creating the fourth. The untrained
eye recognizes that the statistical properties in all four pictures are the same, and to
con�rm this by a simple experiment, we can remove the labels, mix the pictures up, and
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Fig. 1. Four successive magni�cations of the incipient in�nite cluster that forms at the percolation threshold.
In the �gure that you see, however, the labels of the four panels have been removed and the panels have
been scrambled. Attempt to put them back into sequence by eye – it is extremely di�cult if the system
is at the percolation threshold (p = pc). An educational game is to time how long it takes each player to
detect by eye which of the 24 possible panel orderings is the correct one that arranges the four panels in
increasing order of magni�cation. (This �gure is courtesy of J. Kantelhardt and A. Bunde.)

then see how long it takes to put them back into sequence. It takes a remarkably long
time, and more signi�cantly can be done only by looking for nonstatistical features of
the patterns, such as speci�c invaginations of a speci�c part of the cluster.
As a control, one can repeat the same experiment examining not the incipient in�nite

cluster that forms right at the percolation threshold (p = pc) (Fig. 1), but rather the
in�nite cluster that appears above the percolation threshold (p¿pc) (Fig. 2). While
it is essentially impossible to order the four panels of Fig. 1 using only statistical
information, it is trivial to order the four panels of Fig. 2.
In Fig. 1 we saw that the incipient in�nite cluster itself is self-similar. A second

form of “self-similarity” arises: the entire collection of clusters at p = pc obeys a
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Fig. 2. The same as Fig. 1 except that now the system is slightly above the percolation threshold. In the
�gure that you see, the labels of the four panels are removed and the panels are scrambled. Attempt to
put them back into sequence by eye – it is extremely easy since the system is now above the percolation
threshold (p¿pc). Because self-similarity is lost above the percolation threshold, it does not take long to
detect by eye which of the 24 possible orderings is the correct one in which the four panels are arranged
in increasing order of magni�cation. (This �gure is courtesy of J. Kantelhardt and A. Bunde.)

hierarchical relationship that can be uncovered by making a histogram on log–log paper
of the number of s-site clusters. Remarkably, this histogram is linear, over as much
as eight decades for the four terasite systems now studied [8,9]. The slope � of this
straight line (a “scaling exponent”) depends on the system dimension but not on the
lattice type (e.g., square vs. triangular), a property that is a hallmark of the universality
principle in critical phenomena. The scaling exponent � shows the remarkable feature of
critical phenomena, elucidated �rst in momentum space renormalization group studies,
of sticking at a �xed “chemical” value above a critical dimension dc (which equals 6 for
percolation phenomena). The hierarchical feature of percolation phenomena (quanti�ed
by �) is related to the self-similarity (quanti�ed by dfractal). Indeed, the two parameters



H.E. Stanley et al. / Physica A 266 (1999) 5–16 9

are easily related, with �= 1 + d=dfractal, so dfractal has also the property of sticking at
a �xed value dfractal = 4 above dc.

2.3. Connection with thermal critical phenomena

Thirty years ago at Kubo’s 1968 Statphys-9 meeting, the late Pieter Kastelyn pre-
sented a remarkable demonstration that percolation, a purely geometric problem, could
be derived from a statistical mechanical model called the Potts model, which models
the interaction of objects that can be in one of s states [10]. Kastelyn found that if one
forms very carefully the limit in which the number of states approaches unity, then one
recovers the purely geometric percolation problem. This important work mathematically
links pure connectivity problems with a statistical mechanical model (the Potts model,
a special case of which is the Ising model). This connection is deep and not fully un-
derstood. Indeed, the parameters that enter into modern theories of critical phenomena
– e.g., the �eld-like scaling power yH and the temperature-like scaling power yT – can
be related to purely geometric objects. The �eld-like scaling power yH is exactly equal
to the fractal dimension dfractal of the percolation cluster, while the temperature-like
scaling power yT is exactly equal to the fractal dimension dred of the singly-connected
bonds – i.e., the “red” bonds – that tenuously hold together the incipient in�nite cluster
that forms just below the percolation threshold [11,12].
The geometric interpretation of thermal critical phenomena is even more profound:

the correlations that form in a cooperative system (and the entire world constitutes
a cooperative system) arise from only one thing – connectivity. One can trace these
correlations out with a pencil on a piece of paper. This is what makes it profound: it
links all of nature to something geometrical. Perhaps sometime in the not-so-near future
scientists will understand very deeply the nature of reality. If and when that happens,
we conjecture that connectivity concepts will play a role in that understanding.
Another reason for our interest in percolation phenomena is the relevance to real-

world problems [13–15]. For example, the clusters that form in percolation by them-
selves are uniquely associated with a class of geometric objects called “lattice animals.”
These lattice animals are not compact objects – like human animals – but rather are
stringy, rami�ed, fractal objects. They have many remarkable properties. For example,
Parisi and Sourlas rigorously connect the exponent �LA characterizing the statistics of
lattice animals in d dimensions with the exponent �LY characterizing the Lee–Yang
singularity in the Ising model partition function zeros in d−2 dimensions [16]. This is
useful in that if we uncover some property in the Ising model in, say, two dimensions
we automatically know some property in the lattice animal problem in four dimensions
[17]. In particular, the critical dimension of the lattice animal problem is 8 and the
critical dimension of the Lee–Yang Ising model is 6.
Another variant is to impose direction. Instead of connectivity just being joining

hands, we impose the rule that you can only join hands in a subset of the directions. For
example, on a square lattice we might allow only connections to the “south” or to the
“west” (but not to the “north” or the “east”). This gives us the “directed” percolation
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Fig. 3. Photograph of a drunken ant placed on a square lattice, a fraction of whose bonds are too narrow
for the ant to pass. This arti�cial experiment – christened the “ant in the labyrinth” by de Gennes – is
a prototype model for investigating how the laws of di�usion are changed when the substrate is a fractal
object. (This photograph is courtesy of S. Alexander.)

problem, which has a critical dimension one lower than normal percolation, or the
“directed” lattice animal problem, which has a critical dimension also one lower than
the original lattice animal problem. This directed percolation is fascinating. Suppose
we notice that the bottom of our necktie has strayed into our full co�ee cup. We
know that this table disaster is not a complete disaster because the co�ee stops rising
up the necktie when a pinning path emerges, and the statistics of this pinning path
are identical to those of a directed percolation cluster (see Ref. [18] and references
therein).

3. Why to care about percolation phenomena: practical reasons

3.1. The problem of anomalous di�usion

Imagine we make an ant drunk; this is illegal in the US – only people, not animals,
can be legally encouraged to get drunk. What happens if we place this drunken ant
on a percolation cluster (Fig. 3) and it executes the classic drunkard’s walk? How is
Fick’s law of di�usion modi�ed? Fick’s law predicts that the mean-square displacement
of this drunk animal is linear in time (certainly true in percolation if the fraction of
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occupied sites is one). On the other hand, if the fraction of occupied sites is exactly
at the threshold, and the drunk animal is stumbling around on the fractal incipient
in�nite cluster, then much of the time this animal reaches the edge of the incipient
in�nite cluster and must turn back – making the “di�usion” less rapid. Its di�usion is
characterized by an exponent dwalk, the fractal dimension of its walk, which is found
also to stick at the value dwalk = 6 for all lattice dimensions down to 6, whereupon
dwalk breaks free, and actually takes on its Fick value, dwalk = 2 only at one dimen-
sion (where the incipient in�nite cluster is a “Euclidean” one-dimensional non-fractal
object).
When we consider any dynamical process occurring on a percolation substrate, we

must remember that this process is taking place on a fractal. Fractals have the fea-
ture that their density is actually decreasing as we move away from the origin. Thus
the e�ective density seen by the drunken ant decreases as a function of time, so
as it stumbles away from where it started it goes slower and slower than it would
if the substrate were non-fractal. That is why this fractal dimension dwalk is greater
than 2.

3.2. The problem of localized vibrations

If we tap a three-dimensional percolation cluster with p = 1, it will vibrate – at
the normal mode frequencies. If we tap a percolation cluster at p = pc we will have
localized vibrations, and their statistical properties can be described by means of a
spectral dimension dspectral [19] that is related to the original fractal dimensions of the
fractal object and the random walk on the fractal object, thereby connecting vibrations
and random walks. This number sticks at the value 4

3 down to six dimensions, below
which it may or may not stay at that value.

4. Three recent applications of percolation phenomena

4.1. Fluid 
ow in porous media

Half of the world’s oil is still underneath the earth, and a major problem is how
to extract it. A number of methods are used. One is to drill not one but two holes
and then push water down one of them so that oil can be extracted from the other.
The oil resides in some kind of connected cluster underneath the earth and the water
pushes the oil up so that it can be more easily extracted out of the second hole some
distance away. It is therefore of interest to oil people to understand the statistics of
this connected cluster underneath the earth.
The chemical distance or minimal path, ‘, between two sites is de�ned as the

shortest path on a percolating cluster connecting the two sites [20]. If we look at a
large percolation cluster we see that the minimum path is traced in white from the top
to the bottom (see Fig. 4), and it is evident to the eye that this minimum path is a
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Fig. 4. The incipient in�nite percolation cluster that forms at the percolation threshold, highlighting the
path that connects one point to another using the minimum number of bonds. This “minimum path” is a
fractal object whose dimension is not known exactly even for the case of a two-dimensional cluster (but
is approximately 1.13). The average chemical distance scales with exponent dmin, where various estimates
of dmin are dmin ≈ 1:130 ± 0:005 [21] and dmin ≈ 1:1307 ± 0:0004 [22,23]. (This �gure is courtesy of S.
Schwarzer.)

fractal object with a dimension somewhat larger than unity (see, e.g., Refs. [21–23] and
references cited therein). Notice also in Fig. 4 the singly connected bonds (indicated
in red), which have a dimension of 0.75 [11,12].
The quantity of interest here is the conditional probability, P(‘|r), that two sites taken

from the same cluster, separated by Euclidean distance r, are a chemical distance ‘
apart. For example, in oil recovery the �rst passage time from the injection well to a
production well a distance r away is related to P(‘|r). There has been an extensive
theoretical and computer work done on studying the scaling of P(‘|r) [1,24], and the
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complete scaling form of P(‘|r) – including �nite-size e�ects, and o�-critical behavior
is recently becoming clear [25].
The breakthrough time – the time needed for the �rst bit of oil to come out is another

important quantity that is only just now beginning to be studied [26]. This quantity
appears to be connected to a subset of the incipient in�nite cluster, the “backbone”,
which is de�ned to be the subset carrying oil from one point to another. Associated
with this backbone is a unique fractal dimension dbackbone whose value has recently
been calculated very accurately [22].
Thus by considering a practical problem, one is led to consider new features of

percolation clusters and new fractal dimensions to characterize these features – the
above example being the concept of the “minimum path” and “backbone” and their
fractal dimensions. We have invoked an increasing number of fractal dimensions. We
started out with only two, corresponding to the fractal dimension of the cluster and the
fractal dimension of the singly connected red bonds. Each new application brings in
a new dimension: dwalk for di�usion, dspectral for localized fracton vibrations, and now
dmin and dbackbone for the oil �eld problem.
We go to one last example and pass an electrical current through our system. We

assume that each bond in the percolation cluster is a unit resistor, pass a current through
the cluster, and measure the current as a function of p (a procedure pioneered 15 years
ago in Ref. [27]). If p is less than the threshold, no current 
ows through a big system.
Above the threshold, a current begins to 
ow, and an exponent t describes the way in
which this current increases with p−pc. The converse problem is that each bond in a
cluster is a superconductor and the non-cluster bonds are unit resistors [28]. If p = 0
there are only normal bonds. We start to add superconducting bonds until we reach the
threshold at which there is a connected path of superconducting links, and the current
goes to in�nity with an exponent s. These two exponents, s and t, are also related by
fractal dimensions.
Related to this electrical problem is the problem of 
uid 
ow. The model used in the

electrical problem is also a good model for the problem of 
uid 
ow. To some degree,
the equations for 
uid 
ow are very similar to those for electrical current. In the limit
of low Reynolds number, they are the same; in the limit of high Reynolds number,
they are not. What happens when we actually solve the Navier–Stokes equation as a
function of Reynolds number? This has been done by Andrade and his collaborators
using methods of computational 
uid dynamics [29]. They �nd that when the Reynolds
number is low, the 
ow “�nds” all the connected paths on the backbone from one end to
the other. When the Reynolds number is high, it does not easily discover the best paths
to take, and they smash into the walls (very much like a crowd in a Tokyo subway
station), creating zones of recirculation. Corresponding to this qualitative picture is
a di�erence in behavior of the basic distribution function. Instead of a log-normal
distribution there is a power-law function for the relevant distribution [29].
The concept of fractals and the use of percolation models to describe disordered me-

dia represent today important ingredients to analyse and predict properties of anoma-
lously di�usive systems of transport. For example, a recent study concerning a system
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in which there occurs both di�usion and reaction in a percolation geometry suggested
that the fractal geometry of the porous media can have a strong in
uence on the
reactive e�ectiveness of porous catalysts [30].

4.2. Connectivity in water

Connectivity is also a fundamental feature of liquid water, since liquid water is
characterized by a high degree of hydrogen bonding. Each water molecular is bound
together with other water molecules, resulting in clusters of strongly bonded molecules
in the water network [31]. Remarkably, these o�-lattice (continuum) clusters formed by
strongly interacting water molecules have the identical critical properties as on-lattice
random percolation clusters [32]. These clusters may “condense” at low enough tem-
peratures [33] giving rise to a second critical point in the volume–temperature–pressure
phase diagram at a temperature of about 220 K and at about 1 kbar of pressure [34]
– approximately the pressure at the bottom of the Mariana Trench. This second criti-
cal point – if it exists – would provide a parsimonious explanation for all of water’s
unusual properties, such as the familiar volume minimum at 4◦C, below which the
volume starts to rise [35].

4.3. Connectivity and human behavior

Connectivity is a fundamental feature of some human behavior. Makse et al. have
studied experimental data on how people behave when they are “linked together” to
form cities [36,37]. They �nd that the development units (people, capital, and resources)
that form a city have features of gradient percolation of Sapoval and collaborators, i.e.,
the units have a larger probability of occurring near the center [38]. Gradient percolation
refers the fact that the fraction of occupied sites is not homogeneous, but depends on
where you are in the system. In the case of cities we let this be a monotonic function
that decreases exponentially from the center.
The development units also interact with each other; they are not completely in-

dependent. To model this, we combine gradient percolation with Coniglio’s correlated
percolation [39], thereby marrying Sapoval to Coniglio and creating a Coniglio–Sapoval
percolation model. Thus the probability that a site will be occupied by a develop-
ment unit is an exponentially decreasing function of the distance from the center,
and the development units are placed with a correlation parameter, i.e., they are not
added at random, but each location is a�ected by the neighborhood’s current occupancy
[36,37].
Does this correlated gradient percolation model �t the data? Data in this area are

not trivial to obtain. We have two sets: Berlin for the years 1875, 1920 and 1945, and
London for 1981. The correlation is readily apparent, since if there were no correlation,
the exponent describing the area distribution function N (A) would be 2.45 and the data
in fact have an exponent 2.06 characteristic of correlated percolation [36,37].
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5. Summary

In summary, percolation is the study of connected objects. We can approach perco-
lation as a worthwhile occupation in itself and discover the parameters that quantify
percolation clusters, such as dfractal, and dred. When we study the theory of percola-
tion, we �nd these parameters are related to scaling powers: yH = dfractal, yT = dred.
When we study the applications of percolation we begin to discover new parameters
are needed, such as dwalk, dspectral, dbackbone, and dmin. When we study applications,
we enrich our knowledge of percolation in ways we would not if we kept the topic
in splendid isolation. Applications provide grist for the mill – real stimulation for the
mind – and increase the probability of making new discoveries.
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