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Abstract

This paper discusses some of the similarities between work being done by economists and by computational physicists
seeking to contribute to economics. We also mention some of the differences in the approaches taken and seek to justify these
different approaches by developing the argument that by approaching the same problem from different points of view, new
results might emerge. In particular, we review two such new results. Specifically, we discuss the two newly-discovered scaling
results that appear to be “universal”, in the sense that they hold for widely different economies as well as for different time
periods: (i) the fluctuation of price changes of any stock market is characterized by a probability density function (PDF), which
is a simple power law with exponent −4 extending over 102 standard deviations (a factor of 108 on the y-axis); this result is
analogous to the Gutenberg–Richter power law describing the histogram of earthquakes of a given strength; (ii) for a wide range
of economic organizations, the histogram that shows how size of organization is inversely correlated to fluctuations in size with
an exponent ≈ 0.2. Neither of these two new empirical laws has a firm theoretical foundation. We also discuss results that are
reminiscent of phase transitions in spin systems, where the divergent behavior of the response function at the critical point (zero
magnetic field) leads to large fluctuations. We discuss a curious “symmetry breaking” for values of Σ above a certain threshold
value Σc; here Σ is defined to be the local first moment of the probability distribution of demand Ω—the difference between
the number of shares traded in buyer-initiated and seller-initiated trades. This feature is qualitatively identical to the behavior of
the probability density of the magnetization for fixed values of the inverse temperature.  2002 Published by Elsevier Science
B.V.

1. Introduction

One prevalent paradigm in economics is to marry
finance with mathematics, with the fruit of this mar-
riage the development of models. In physics, we also
develop and make use of models or, as they are
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sometimes called, “artificial worlds”, but many physi-
cists are fundamentally empirical in their approach to
science—indeed, some physicists never make refer-
ence to models at all (other than in classroom teach-
ing situations). This empirical approach has led to ad-
vances when theory has grown out of experiment. One
such example is the understanding of phase transi-
tions and critical phenomena [1]. Might this “empirics
first” physics paradigm influence the way physicists
approach economics? Our group’s approach to eco-
nomic questions has been to follow the paradigm of
critical phenomena, which also studies complex sys-
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tems comprised of many interacting subunits, i.e. to
first examine the empirical facts as thoroughly as pos-
sible before we begin to construct models.

2. Fluctuations in finance

As do economists, physicists view the economy
as a collection of interacting units. This collection is
complex; everything depends on everything else. The
interesting problem is: how does everything depend
on everything else? Physicists are looking for robust
empirical laws that will describe—and theories that
will help understand—this complex interaction [2–8].

To a physicist, the most interesting thing about
an economic time series—e.g., the S&P 500 stock
average index—is that it is dominated by fluctuations.
If we make a curve of the values of the S&P 500 over a
35-year period, we see a fluctuating signal. Statistical
physicists are particularly interested in fluctuating
signals. The nature of this fluctuation immediately
suggests to a physicist a model that was developed 100
years ago by Bachelier: the biased random walk [9].

A one-dimensional random walk is a drunk with a
coin and a metronome. At each beat of the metronome,
the coin is flipped—heads means one step to the right,
tails one step to the left. If we look at our S&P 500
plot placed alongside a graph of a one-dimensional
biased random walk—it is biased because it uses a
“biased coin” that has a slight tendency to go up rather
than down—we physicists see a reasonable visual
similarity. In fact, many economic pricing models—
e.g., Black and Scholes—use this biased random walk.

Still there are certain points in the S&P 500 plot—
such as October 19, 1987 (“Black Monday”), or the
15 percent drop over the week following the events of
11 September 2001—that are not mirrored anywhere
in the biased random walk model. Nowhere do we
see a drop anywhere near the 30 percent drop of
Black Monday. This could not occur in a biased
random walk—the probability that a walk will move
two steps in the same direction is p2, three steps is
p3 , and so on—so the probability of many steps in
the same direction is exponentially rare, and virtually
impossible.

Then how do we quantify these S&P 500 fluctua-
tions? We begin by graphing the values of the fluctu-
ations as a function of time. We place the plot of the

empirical data next to the predictions of Bachelier’s
model. The fluctuations in the model are normalized
by one standard deviation. Note that the biased random
walk has a probability density function (PDF) that is a
Gaussian, so the probability of having more than five
standard deviations is essentially zero—you can see
that a line drawn at five standard deviations is outside
the range of the fluctuations.

If we normalize the empirical data we see a differ-
ence. A line drawn at five standard deviations is not
outside the range of the fluctuations—there are many
“shocks” that exceed five standard deviations. A bar
placed on the positive side at five standard deviations
also has 30 or 40 hits—fluctuations that equal or ex-
ceed five standard deviations in the positive direction.
Some, such as Black Monday, are more than 34 stan-
dard deviations. The exponential of (−1/2)(34)2 is
approximately 10−267/2.

Because big economic shocks affect the economy
around the world (“everything depends on everything
else”), the possibility of an economic “earthquake” is
one that we must take seriously. Big changes in stocks
affect not only people with large amounts, but also
those on the margins of society. One person’s portfolio
collapse is another’s physical starvation; e.g., literal
starvation in some areas was one result of the recent
Indonesian currency collapse.

Another example is the recent Merriwether LTCM
(Long Term Capital Management) collapse, caused
in part by the use of models that do not take into
account these catastrophic rare events. Thus there are
many reasons we physicists might be interested in
understanding economic fluctuations.

3. One possible conceptual framework

We shall see that our analysis of empirical data
shows that those catastrophic rare events are a part
of the overall picture: they are not simply inexplica-
ble disasters beyond any possible understanding. Al-
though this sounds as though we physicists think we
can contribute to economics, it is possible that the con-
verse may be even more true. If we join economists in
studying economics, we may stumble onto some ideas
that will help us back in our more traditional research
areas of physics. An example is turbulence. If one stirs
a bucket of water, energy is added to the system on
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a big scale. This energy then dissipates over progres-
sively smaller scales. This is an unsolved physics prob-
lem; many empirical facts can be stated, but little can
be said about understanding it [10–12].

One could hypothesize that the economy is per-
haps analogous to this example of turbulence. One
can add information on a big scale to an economic
system—e.g., the news of who wins a presidential
election—and that information is dissipated on smaller
and smaller scales. The way that you handle the “tur-
bulence” associated with this dissipation of informa-
tion in a financial market may help us understand how
to approach turbulence in our physics research. As at-
tractive as this analogy might appear intuitively, it is
not so accurate quantitatively, since the actual laws of
turbulence are not at all the same as the empirical laws
of economics [11,12], despite early claims to the con-
trary [10].

Much of physics comes down to solving a differen-
tial equation, i.e. most functions in physics have some
kind of characteristic scale. Once you have determined
the scale, you can express the function in an exponen-
tial form—which has the wonderful property that the
derivative of the function is also an exponential. In par-
ticular, the parameter r sets the scale of the problem.
If r is positive, the function grows—and tells you the
doubling time for the quantity of interest. Solutions to
this look like Gaussians, and Gaussians are wonderful,
tractable functions.

Such systems with scales describe almost every-
thing in nature, including disordered things. Even rain-
drops on a sidewalk almost always have a characteris-
tic scale. (If one “zooms in” or “zoom out”, one can
find the scale.) But there is a set of systems in nature
that lack a scale. This set is described by power laws.

The framework for our approach to systems with
many interacting subunits is something that is usually
called “scale invariance”. These systems vary greatly
from systems that do have scales [1,13].

We are all familiar with algebraic equations such
as

x2 = 4, (1a)

and we know the solution is a number, ±2. Most
of us are also familiar with functional equations,
which are statements not about relations between
numbers, but about the functional form of a function
f (x). Algebraic equations have solutions that are

numbers, but functional equations have solutions that
are functional forms. Power law functions are the
solutions of certain functional equations of the form

f (λx) = λpf (x). (1b)

In a functional equation, the converse also holds,
i.e. every function that is of this power-law form also
obeys this functional equation. This applies to a large
number of contexts, in particular, to physical systems
that have been tuned to be near critical points. An
example is a binary mixture of two fluids in which the
temperature has been tuned to be a special value called
the critical temperature. At that temperature, there
occur fluctuations in density in the binary mixture that
extend over all length scales up to and including the
wavelength of light. If you shine a flashlight on a
tube of the binary mixture, you see an eerie glow—
because the density fluctuations are so big in spatial
extent, they become comparable to the wavelength
of the light that is interacting with them. When that
occurs, you see something that is visible—“critical
opalescence”. The same conceptual framework that
describes this system appears to be able to describe
economic systems [14].

4. Quantifying finance fluctuations

One topic we physicists are interested in is sym-
metry. An example of traditional symmetry is sodium
chloride. One can displace the lattice an amount equal
to exactly two lattice constants and the configuration
will remain the same. One can rotate it 90 degrees, or
invert it, and the configuration will remain the same.
Not only are these properties fascinating to mathe-
maticians, they are also very relevant to solid state
physics. This simple symmetry and the mathematics
and physics that are built on it have led to extremely
useful inventions, e.g., the transistor.

The scale-invariance symmetry involved here is just
as much a symmetry as the translational invariance
symmetry in sodium chloride. We do not know how
useful this scale-invariance symmetry will ultimately
prove to be. Over the past 30 years physicists have
used the theme of scale-invariance symmetry to un-
derstand systems near their critical points. Previous to
this period of time, this class of problems was one no
one could solve: there were many, many length scales,
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not just one. The length scales could run from one
nearest-neighbor spacing out to approximately 5000
(approximately the wavelength of light). The elements
that make up this system are molecules that interact
only over a short range—almost entirely with nearest
neighbors. But this nearest-neighbor interaction prop-
agates a small amount of torque through the system of
nearest-neighbor interactions, so that the entire system
is somewhat affected.

This is beginning to sound like economics, in
which “everything affects everything else”, And in
economics, the first thing a physicist would do is look
for the correlations. If we look at a graph of the au-
tocorrelation function, we see a measure of the quan-
tity G, which is a price change over some time hori-
zon �t . If we look at how G is now correlated with
G at a time τ later, we measure that quantity as a
function of τ , and as the size of τ increases, the cor-
relation decreases. It is remarkable that this decrease
happens in a regular fashion. How do we interpret
this decrease? If we put the autocorrelation function
in logarithmic units and the time lag in linear units,
we see that the data fall on an approximate straight
line This means that the function is decaying expo-
nentially, which means it does indeed have a charac-
teristic scale [15–17]. So the autocorrelation function
is not scale invariant. This differs from systems near
their critical points in which the autocorrelation func-
tions are scale invariant.

5. Statistical features of price fluctuations

The decay time in this economic example is short
(4 minutes), so one cannot easily “make money” on
these correlations [15,16]. A little less well-known
is the measure of the volatility [16,17]. One way to
quantify volatility is to replace G (the price change)
with the absolute value of G. The data now are not
at all linear on log-linear paper, but they are lin-
ear on log–log paper. And, of course, a power-law
y = xp is linear on log–log paper, because logy =

p logx . The slope of the log–log plot p is the value
of the exponent. These exponents turn out to be
fundamental quantities. In this case, p = −0.3. The
data are straight from about 200 minutes out to
about 105 minutes—a range of almost 1000. With the
data graphed, one can see the approximate region in

which the data are straight—the data are not straight
over all regions. Qualitatively, we have known for
a long time that there are long-range correlations in
the volatility, e.g., volatility “clustering” and “persis-
tence”, but this graph helps quantify this known em-
pirical fact.

If we cannot find an ordinary correlation near
a critical point, we must try something else. For
example, we might simply dump all of our data
“on the floor”. After we do that, the data no longer
have time ordering nor do they have long-range or
short-range power-law correlations in the volatility of
the autocorrelation function itself. Now we pick the
data points up off the floor and make a histogram.
Mandelbrot did this in 1963 with 1000 data points—
a tiny number by today’s standards—for cotton-price
fluctuations [14]. He concluded that those data were
consistent with a Lévy distribution, i.e. a power-
law distribution in that histogram—a so-called “fat
tail”.

In 1995, Mantegna and Stanley decided to test this
result using data with �t shorter than the daily data
available in 1963 [15]. We used approximately 1 mil-
lion data points: three orders of magnitude greater
than Mandelbrot’s data set. Instead of Mandelbrot’s
daily returns on cotton prices, we had returns approxi-
mately every 15 seconds on the S&P 500 index. We
found that on a log-linear plot (i) the histogram of
the G data points for the S&P 500 clearly is not a
Bachelier/Black–Scholes Gaussian, and (ii) although
the center of the histogram agrees fairly well with
Mandelbrot’s Lévy distribution, it begins to disagree
after a few standard deviations. This disagreement led
us to develop a class of mathematical processes called
truncated Lévy distributions—which has attracted the
attention of a number of mathematicians, who have
carried this concept far further than we could [18–
23].

What about “universality”, the notion in statistical
physics that many laws seem to be remarkably in-
dependent of details? A physics example is that dra-
matically different materials behave exactly the same
near their respective critical points. Binary mixtures,
binary alloys, ferromagnets, even biological systems
that involve switching, all behave the same way. An
analog of this universality appears in economics. For
example, Skjeltorp [24] did a study that utilized the
Mantegna approach. Instead of 1,500,000 points from
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the S&P 500 (15-second intervals spread over six
years), Skjeltorp did a parallel study for the Norwe-
gian stock exchange and got almost exactly the same
result.

We assumed that the reason we saw the truncated
Lévy distribution while Mandelbrot did not was be-
cause we had more data—by three orders of magni-
tude. Gopikrishnan et al. recently acquired a data set
three orders of magnitude larger still (of order 109)—
one that records every transaction of every stock. They
found that when their data were graphed on log–log
paper, the result was linearity [25–28]. This is the log
of the cumulative distribution, the same quantity Man-
delbrot plotted for cotton. But where Mandelbrot’s
straight line had a slope of about 1.7 (well inside the
Lévy regime, which stops at slope 2.0), Gopikrish-
nan’s straight line has a slope of ≈ 3.0 (far outside the
limit for a Lévy distribution). The fact that these data
are approximately linear over two orders of magnitude
means that fluctuations that are as much as 100 stan-
dard deviations are still conforming to the same law
that describes the smaller fluctuations. This is remi-
niscent of the Gutenberg–Richter law that describes
earthquakes [29–31]. Thus it would seem that these
very rare events, which are conventionally treated as
totally unexpected and unexplainable, have a precise
probability describable by the same law that describes
much more common events. These rare events occur
with a frequency 8 orders of magnitude less than the
common, everyday event.

This means that Mandelbrot’s results for cotton
(103 points) are at total odds with Gopikrishnan’s
results for the S&P 500 (109 points). Why this
difference? Is it simply because Mandelbrot did not
have enough data to draw reliable conclusions? Or do
commodities intrinsically have fatter tails? In recent
work with data from British Petroleum, it appears that
commodity data may have a slightly smaller slope—
consistent with the possibility that perhaps there is not
one universal behavior for everything, but at least two
separate universal behaviors—one for commodities
and one for equities [32]. This smaller slope is still
above 2, so the commodity data are not in the Lévy
regime (even current data on cotton display a slope
above 2).

6. Some similarities with “diffusion in a tsunami
wave”

Over this past year, we and our collaborators have
been trying to understand these exponents using pro-
cedures similar to those used in critical phenomena,
e.g., we relate one exponent to another and call the re-
lation a scaling law, or we derive some microscopic
model.

In particular, there appears to be an intriguing ana-
log not with the classic diffusion process studied in
1900 by Bachelier, [9] but rather with a generalization
called anomalous diffusion. It is plausible that clas-
sical diffusion does not describe all random motion.
The Brownian motion seen in the behavior of a grain
of pollen in relatively calm water becomes something
quite different if the grain of pollen is in a tsunami
wave. The histograms would certainly be perturbed by
a tsunami. A tsunami is an apt verbal metaphor for
such economic “earthquakes” as the Merriwether dis-
aster, so why not explore the stock market as an exam-
ple of anomalous diffusion?

In one-dimensional classic diffusion, a particle
moves at constant velocity until it collides with some-
thing. One calculates, e.g., the end position of the
particle, and (of course) finds a Gaussian. Within a
fixed time interval�t , one might calculate a histogram
for the number of collisions p(N), and also find a
Gaussian. And if one calculates a histogram of the
variance W 2 , one also finds a Gaussian. The fact that
these are relatively narrow Gaussians means that there
is a characteristic value, i.e. the width of that Gaussian,
and that this is the basis for classical diffusion theory.

The corresponding quantity in the stock market to
the displacement x is the price. At each transaction
there is a probability that the price will change, and
after a given time horizon there is a total change G.
We’ve seen the histogram of G values—the cumula-
tive obeyed an inverse cubic law, and therefore the pdf,
by differentiation, obeys an inverse quartic law.

What about these histograms? Apparently no one
had calculated these previously. Plerou et al. set about
using the same data analyzed previously for G to
calculate the histograms of N and W 2. They also
found power laws—not Gaussians, as in classic dif-
fusion. That means there is no characteristic scale for
the anomalous diffusion case (there is a characteristic
scale for the classic diffusion case) and for an obvi-
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ous reason. If you are diffusing around in a medium—
such as the “economic universe” we live in—in which
the medium itself is changing, then the laws of diffu-
sion change and, in particular, they adopt this scale-
free form. Further, the exponents that describe p(N)

and p(W 2) appear [33,34] to be the analogs of expo-
nents in critical phenomena in the sense that they seem
to be related to one another in interesting ways.

7. Some similarities with critical point phenomena

Stock prices respond to fluctuations in demand, just
as the magnetization of an interacting spin system
responds to fluctuations in the magnetic field. Periods
with large number of market participants buying
the stock imply mainly positive changes in price,
analogous to a magnetic field causing spins in a
magnet to align. Recently, Plerou et al. [36] addressed
the question of how stock prices respond to changes in
demand. They quantified the relations between price
change G over a time interval �t and two different
measures of demand fluctuations: (a) Φ , defined as
the difference between the number of buyer-initiated
and seller-initiated trades, and (b) Ω , defined as the
difference in number of shares traded in buyer and
seller initiated trades. They find that the conditional
expectations 〈G〉Φ and 〈G〉Ω of price change for a
given Φ or Ω are both concave. They find that large
price fluctuations occur when demand is very small
—a fact which is reminiscent of large fluctuations
that occur at critical points in spin systems, where
the divergent nature of the response function leads to
large fluctuations. Their findings are reminiscent of
phase transitions in spin systems, where the divergent
behavior of the response function at the critical point
(zero magnetic field) leads to large fluctuations [1].
Further, Plerou et al. [37] find a curious “symmetry
breaking” for values of Σ above a certain threshold
value Σc; here Σ is defined to be the local first
moment of the probability distribution of demand
Ω , the difference between the number of shares
traded in buyer-initiated and seller-initiated trades.
This feature is qualitatively identical to the behavior of
the probability density of the magnetization for fixed
values of the inverse temperature.

8. Cross-correlations in price fluctuations of
different stocks

We know that a stock price does not vary in
isolation from other stock prices, but that stock prices
are correlated. This fact is not surprising because
we know that “in economics everything depends on
everything else”. How do we quantify these cross-
correlations of one stock with another? If we take
the G values of four companies out of the 1000 that
we have studied—corresponding to the shrinking or
growing of each of these four companies in, say, a
30-minute interval. How does the behavior of these
four companies during that half-hour interval affect
your response to their price activity? If two of the
companies were Pepsi and Coke, there would probably
be some correlation in their behaviors.

In order to quantify these cross-correlations, we be-
gin by calculating a cross-correlation matrix. If we
have 1000 firms, we have a 1000× 1000 matrix C
each element Cij which is the correlation of firm i

with firmj . This large number of elements (1 million)
does not frighten a physicist with a computer. Eugene
Wigner applied random matrix theory 50 years ago to
interpret the complex spectrum of energy levels in nu-
clear physics [35,38–47,49]. We do exactly the same
thing, and apply random matrix theory to the matrix C.
We find that certain eigenvalues of that 1000× 1000
matrix deviate from the predictions of random matrix
theory, which has not eigenvalues greater than an up-
per bound of ≈ 2.0. Furthermore, the content of the
eigenvectors corresponding to those eigenvalues cor-
respond to well-defined business sectors. This allows
us to define business sectors without knowing any-
thing about the separate stocks: a Martian who cannot
understand stock symbols could nonetheless identify
business sectors [47,48].

9. Statistical physics and firm growth

In the economy, each firm depends on every other
firm, and the interactions are not short-ranged nor
are they of uniform sign. For example, Ford Motor
Company is in trouble because they have been selling
their Explorer vehicle with extremely unsafe tires—
and the price of their stock is going down. Prospective
buyers purchase General Motors cars instead. There is
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thus a negative correlation between the stock prices of
the two companies. But now General Motors needs to
hire more workers to make a larger number of cars,
and the McDonald’s near the assembly plant has many
more customers at lunchtime—a positive. Sometime
later the situation may change again. So we can say
that the “spins” all interact with one another, and that
these interactions change as a function of time.

Nevertheless, the general idea of a critical phenom-
enon seems to work. If the firms were spread out in a
kind of chain, the correlations among them would de-
cay exponentially. Instead, the firms interact with each
other much the same way that subunits in critical phe-
nomena interact with each other. This fact motivated
a study carried out about five years ago by a group
of physicists interacting with an economist [50–53].
They calculated the fluctuations in business firms from
one year to the next. They found that if they broke the
fluctuations into bins by size a tent-shaped distribu-
tion function was produced for each day of trading.
The width of the tent was narrower for large firms than
the width of the tent for small firms. This is not sur-
prising, since a small firm has a potential to grow or
shrink much more rapidly than a larger firm. When the
widths of these tent-shaped distribution functions were
plotted on log–log paper as a function of histogram
size, the decreasing function turns out to be a straight
line—corresponding to a power-law behavior in that
function. The exponent in that power-law is ≈ 0.2. The
linearity extends over a number of decades, indicating
that the data collapse onto a single plot irrespective
of scale. This new result, which appears to be quite
robust, has caught the attention of John Sutton [54],
one of the leading economists at the London School of
Economics, and of a number of other economists.

10. Universality in company growth

Takayasu et al. have demonstrated that the above
results are universal by moving outside the realm of
US economies and studying firm behavior in other
parts of the world [55].

Buldyrev et al. have shown that organizations (such
as business firms) that are organized like trees will
fluctuate in size [53]. The hierarchical structure is set
up so that instructions from the top of the hierarchy
propagate down to the branching lower levels of

the structure. Within that structure is a disobedience
factor—those lower down do not always obey the
directives handed down from those above them. This
factor is, of couse, crucial to the survival of the system.
If employees always did only and exactly what they
were told, any small mistake put into the system by
a manager would grow and do an increasing amount
of damage as it propagated through the expanding tree
structure of the organization. On the other hand, the
probability of an instruction being disobeyed cannot
be one—or chaos would result. The propensity to
disobey can be neither infinitesimal nor unity. The
“obeying probability” needs to settle at a point at
which the organization can maintain both its integrity
and self-corrective flexibility. And the behavior of the
exponent describing this probability is very similar to
the behavior of critical exponents.

This result is fairly robust, not only as far as
business firm fluctuations are concerned, but also in
the size of countries. Lee et al. extend the same
analysis used for business firms to countries—and
with the same exponent [56]. Data can therefore be
graphed on the same curve both for firms and for
countries—where country size is measured by GDP.

We can see a similar pattern in the funding of
university-based research. We researchers compete for
research money the same way business firms compete
for customers. Plerou et al. analyzed the funding of
research groups over a 17-year period in the same
way fluctuations in firm size were analyzed [57]. The
results were very similar with the data collapsing onto
the same curve.

As a final example, we mention the case of fluctu-
ating bird populations in North America. In this case
the exponent is 0.35 instead of 0.2. But, nevertheless,
there seems to be some kind of property of organiza-
tions that we do not understand well [58].

11. “Take-home message”

So—what have we learned? First, that the approach
we have emphasized is an empirical approach where
one first seeks to uncover features of the complex
economy that are challenges to understand. We find
that there are two new universal scaling models in
economics: (i) the fluctuation of price changes of
any stock market is characterized by a PDF which
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is a simple power law with exponent α + 1 = 4 that
extends over 102 standard deviations (a factor of 108

on the y-axis); (ii) for a wide range of economic
organizations, the histogram that shows how size of
organization is inversely correlated to fluctuations in
size with an exponent β ≈ 0.2.

Neither of these two new laws has a firm theoretical
foundation. This situation parallels the situation in the
1960s when the new field of critical phenomena also
did not have a firm theoretical foundation for its new
laws, but was awaiting the renormalization group. It is
my hope that some of you in this room will rise to the
challenge and try to find a firm theoretical foundation
for the structure of the empirical laws that appear to be
describing (i) finance fluctuations, and (ii) economic
organizations.
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