
Monofractal and Multifractal Approaches
to Complex Biomedical Signals

H. E. Stanley,* L. A. N. Amaral,** A. L. Goldberger,*
S. Havlin,** P. Ch. Ivanov*t and C.-K. Pengt

* Center for Polymer Studies and Department of Physics
Boston University, Boston, MA 02215, USA

^Harvard Medical School, Beth Israel Deaconess Medical Center
Boston, MA 02215 USA

+ Gonda Goldschmid Center and Department of Physics
Bar-Ran University, Ramat Can, Israel

Abstract. Even under healthy, basal conditions, physiologic systems show erratic fluc-
tuations resembling those found in dynamical systems driven away from an equilibrium
state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic
systems are being constantly perturbed by external and intrinsic uncorrelated noise?
Or, do these fluctuations actually contain "hidden" information about the underlying
nonequilibrium control mechanisms? We report some recent attempts to understand
the dynamics of complex physiologic fluctuations by adapting and extending concepts
and methods developed very recently in statistical physics. Specifically, we focus on
interbeat interval variability as an important quantity to help elucidate possibly non-
homeostatic physiologic variability because (i) the heart rate is under direct neuroau-
tonomic control, (ii) interbeat interval variability is readily measured by noninvasive
means, and (iii) analysis of these heart rate dynamics may provide important practical
diagnostic and prognostic information not obtainable with current approaches. The
analytic tools we discuss may be used on a wider range of physiologic signals. We first
review recent progress using two analysis methods—detrended fluctuation analysis and
wavelets—appropriate for quantifying monofractal structures. We then describe very
recent work that quantifies multifractal features of interbeat interval series, and the
discovery that the multifractal structure of healthy subjects is different from that of
diseased subjects. We also discuss the application of fractal scaling analysis to the dy-
namics of heartbeat regulation, and report the recent finding that the scaling exponent
a is smaller during sleep periods compared to wake periods.

INTRODUCTION

A central task of statistical physics is to deal with macroscopic phenomena that
result from microscopic interactions among many individual components [1]. This
problem, which is at the root of many of the contributions to this conference, is a
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problem on which much progress has been made in the last third of this century. In
particular, physiologic systems under neuroautonomic regulation [2,3], such as heart
rate regulation, are good candidates for such an approach, since (i) the systems
often Include multiple components, thus leading to many degrees of freedom, and
(ii) the systems usually are driven by competing forces, e.g., parasympathetic versus
sympathetic stimuli. Therefore, it seems reasonable to consider the possibility
that dynamical systems under neuroautonomic regulation may exhibit temporal
structures that are similar, under certain conditions, to those found in physical
systems. Indeed, new conceptual frameworks and corresponding methodologies
are being developed in order to deal with three particularly vexing features of
physiologic time series:

(i) Nonstationarity. Traditional methods of statistical analysis assume that the
statistical properties of a signal are the same throughout the signal [4]. This is not
true for many signals of interest in physiology—e.g., the statistical properties of the
heart rate change when a subject rises to a standing position. Such nonstationarity
problems arise in other contexts in the discipline of statistical physics, and novel
techniques such as detrended fluctuation analysis (DFA) [5] and wavelets [6-8] have
been successfully developed to study nonstationary signals. Hence we are exploring
the degree to which the solutions found in statistical physics can be usefully applied
to physiologic signals.

(ii) Nonlinearity, Traditional methods of analysis also assume that to a large
degree the system can be viewed as linear, so that departures from linearity can
be treated perturbatively. This is not true for most physiologic systems, which are
intrinsically nonlinear. A salient feature of nonlinear systems is that their compo-
nents interact with each other, and therefore their outputs are not proportional to
the strength of the inputs. The field of statistical physics has in the past 10 years
focused on nonlinear systems, and has developed a conceptual framework within
which a wide range of nonlinear phenomena can be usefully treated. Hence we are
seeking to uncover which of these methodologies can be usefully applied and care-
fully adapted to data. In particular, multifractal methods [9,10] offer a new and
potentially promising avenue for quantifying features of a range of physiological
signals that differ in health and disease.

(iii) Nonequilibrium phenomena. From the time of Claude Bernard [11] and Wal-
ter Cannon [12], it has been assumed that physiologic systems possess feedback and
control mechanisms that serve to restore an equilibrium-like state when a system
is perturbed away from some set point. Recent research, however, has shown that
physiologic systems are inherently out-of-equilibrium systems [13]. Nonequilibrium
statistical mechanics has made advances in recent years that have yet to be applied
in the physiologic domain.

The statistical methods we are developing are particularly attractive for the
analysis of heart rate time series because they can be reliably applied to complex
signals from stochastic, deterministic, or mixed systems. Further, these techniques
are specifically designed to cope with the output of highly nonstationary process-
es. As such, these methods complement approaches derived from the analysis of
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deterministic systems which may be less appropriate for nonstationary data [14-16].

INFORMATION IN NONSTATIONARITY
PHYSIOLOGIC SIGNALS

A major problem in contemporary physiology is the presence of nonstationarity in
time series. The signals obtained under constantly varying conditions raise serious
challenges to both technical and theoretical aspects of time series analyses.

Representative examples of complex dynamical behavior under physiologic and
pathologic conditions are cardiac interbeat time series—the output of a spatially
and temporally integrated neuroautonomic control system. These time series show
erratic fluctuations and "patchiness." These fluctuations are usually ignored in
conventional medical studies that focus on averaged quantities. In fact, these fluc-
tuations are often labeled as "noise" to distinguish them from the true "signal" of
interest. In the conventional approach it is assumed that there is no meaningful
structure in apparent noise and, therefore, one does not expect to gain any under-
standing about the underlying system through the study of these nonequilibrium
fluctuations. However, by adapting and extending methods developed in modern
statistical physics and nonlinear mathematics, we have recently found that the
physiologic fluctuations exhibit unexpected hidden scaling structure. Furthermore,
these patterns change with pathological perturbations. These findings raise the
possibility that understanding the origin of such temporal structures and their al-
terations may (i) elucidate certain basic features of heart rate control mechanisms,
and (ii) have practical value in clinical monitoring.

LIMITATIONS OF TRADITIONAL TECHNIQUES

Averages, Standard Deviations and Distribution Functions

A technique widely used to analyze time series is the study of the moments of
the distribution of measured values. Visual inspection makes clear the existence of
differences in the dynamics generating signals from a normal individual and from
a subject with congestive heart failure. However, the signals might have the same
averages and standard deviations. Hence additional methods are required if these
two signals are to be distinguished.

The Power Spectrum of Nonstationary Signals

A quantity widely used to measure correlations in a time series is the power
spectrum, which measures the relative frequency content of a signal. A power
spectrum calculation assumes that the signal studied is stationary, and when ap-
plied to nonstationary time series can lead to misleading results. To illustrate this
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point, we analyze two artificial signals: one is stationary—two different frequencies
are present at all times. The other is nonstationary—one frequency is present in
the first half of the signal and another frequency in the other half. The calculation
of the power spectrum for these signals leads to almost identical results! Similarly,
the presence of linear or higher order polynomial trends can mask the frequency
content of a signal. Since the power spectrum is incapable of distinguishing be-
tween these types of behavior, it must not be used as the only form of analysis for
nonstationary signals.

MONOFRACTAL ANALYSIS: DETECTING AND
QUANTIFYING LONG-RANGE CORRELATIONS

To quantitatively describe noisy cardiac signals is not an easy task. Techniques
for analysis must be selected carefully in order to extract robust features hidden in
these complex fluctuations. We have developed several complementary algorithms
in the last few years for this purpose. We will first discuss some interesting results
obtained by applying these new methods.

Measurement of Long-Range Correlations in Physiologic
Interbeat Interval Dynamics

An important question is whether the "heterogeneous" structure of physiologic
time series arises trivially from external and intrinsic perturbations which push the
system away from a homeostatic set point. An important alternative hypothesis is
that the fluctuations are, at least in part, due to the underlying dynamics of the
system. The key problem is how to decompose subtle fluctuations (due to intrin-
sic physiologic control) from other nonstationary trends associated with external
stimuli,

To this end, our multidisciplinary team introduced the detrended fluctuation
analysis (DFA) method [5]. The advantages of DFA over conventional methods are
that it permits the detection of long-range correlations embedded in a seemingly
nonstationary time series and also avoids the spurious detection of apparent long-
range correlations that are an artifact of nonstationarity. The DFA method has
been tested on control time series that consist of long-range correlations with su-
perposition of a nonstationary external trend. It has also been successfully applied
to detect long-range correlations in highly heterogeneous DNA sequences [5,17-19].
Of note is a recent independent review of fractal fluctuation analysis methods which
determined that DFA was one of the most robust methods [20].

Briefly, a moving window of size n is used to study how the fluctuation F(n)
grows with n for the interbeat interval time series. The slope of the line relating
log F(n) to log n determines the scaling exponent (self-similarity parameter) a.
The full computational details of the DFA method are described in Refs. [5,17].
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Alteration of Correlation Properties in Pathologic States

Assessing correlations under pathologic conditions is likely to be particularly in-
formative for patients with congestive heart failure since these individuals have
abnormalities in both the sympathetic and parasympathetic control mechanisms
[21] that regulate beat-to-beat variability. Previous studies have demonstrated
marked changes in short-range heart rate dynamics in heart failure compared to
healthy function, including the emergence of intermittent relatively low frequen-
cy (~ 1 cycle/minute) heart rate oscillations associated with the well-recognized
syndrome of periodic (Cheyne-Stokes) respiration, an abnormal breathing pattern
often associated with low cardiac output [21]. Of note is the fact that patients with
congestive heart failure are at very high risk for sudden cardiac death.

To study the alteration of long-range correlations with pathology, we analyzed
cardiac interbeat data from three different groups of subjects: (i) 29 adults (17 male
and 12 female) without clinical evidence of heart disease (age range: 20-64 years,
mean 41), (ii) 10 subjects with fatal or near-fatal sudden cardiac death syndrome
(age range: 35-82 years) and (iii) 15 adults with severe heart failure (age range:
22-71 years; mean 56). Data from each subject contains approximately 24 hours of
EGG recording encompassing ~ 105 heartbeats.

For the normal control group, we observed a = 1.00±0.10 (mean value ± S.D.).
These results indicate that healthy heart rate fluctuations exhibit long-range power-
law (fractal) correlation behavior over three decades, similar to that observed in
many dynamical systems far from equilibrium [22,23]. Furthermore, both patho-
logic groups show significant deviation of the long-range correlations exponent a
from the normal value, a = 1. For the group of heart failure subjects, we find that
a = 1.24 ±0.22, while for the group of sudden cardiac death syndrome subjects, we
find that a = 1.22 ±0.25. This result is consistent with our previous finding [24,25]
that there is a significant difference in the long-range scaling behavior between
healthy and diseased states. Of particular note, we obtained similar results when
we divided the time series into three consecutive subsets (of ~ 8 hours each) and
repeated the above analysis [26], Therefore our findings are not simply attributable
to different levels of daily activities. Our results have been independently verified
in Ref. [27].

Differences in Correlation between Sleep and Awake Stages

It is known that circadian rhythms are associated with periodic changes in key
physiological processes [2,28,29]. Here, we review a recent study [30] asking if there
are characteristic differences in the scaling behavior between sleep and wake cardiac
dynamics. Typically the differences in the cardiac dynamics during sleep and wake
phases are reflected in the average (higher in sleep) and standard deviation (lower
in sleep) of the interbeat intervals [29]. Such differences can be easily observed
in plots of the interbeat intervals recorded from subjects during sleep and wake
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periods. The hypothesis is that sleep and wake changes in cardiac control may
occur on all time scales and thus could lead to systematic changes in the scaling
properties of the heartbeat dynamics. Elucidating the nature of these sleep-wake
rhythms could lead to a better understanding of the neuroautonomic mechanisms
of cardiac regulation.

Ivanov et al. [30] analyzed 30 datasets—each with 24h of interbeat intervals—
from 18 healthy subjects and 12 patients with congestive heart failure [31]. The
nocturnal and diurnal fractions of the dataset of each subject correspond to the 6h
(n ~ 22,000 beats) from midnight to Gam and and from noon to 6pm.

The detrended fluctuation analysis (DFA) method [5] was applied to quanti-
fy long-range correlations embedded in the nonstationary heartbeat time series.
Reference [30] reported that at scales above PS Imin (n > 60) the data during
wake hours display long-range correlations over two decades with average expo-
nents aw PS 1.05 for the healthy group and aw PS 1.2 for the heart failure patients.
For the sleep data, Ref. [30] found a crossover at scale n PS 60 beats, followed by
a scaling regime extending over two decades characterized by a smaller exponent:
as PS 0.85 for the healthy group and as PS 0.95 for the heart failure group. Al-
though the values of the sleep and wake exponents vary from subject to subject,
Ref. [30] found that for all individuals studied, the heartbeat dynamics during sleep
are characterized by a smaller exponent.

As a control, an identical analysis was performed on two surrogate data sets ob-
tained by reshuffling and integrating the increments in the interbeat intervals of the
sleep and wake records from the same healthy subject. Both surrogate sets display
uncorrelated random walk fluctuations with a scaling exponent of 1.5 (Brownian
noise). A scaling exponent larger than 1.5 would indicate persistent correlated be-
havior, while exponents with values smaller then 1.5 characterize anticorrelations (a
perfectly anticorrelated signal would have an exponent close to zero). Our results
therefore suggest that the interbeat fluctuations during sleep and wake phases are
long-range anticorrelated but with a significantly greater degree of anticorrelation
(smaller exponent) during sleep. These results suggest that the observed sleep-wake
scaling differences are due to intrinsic changes in the cardiac control mechanisms.

The robustness of the above results was tested by analyzing 17 datasets from
6 cosmonauts during long-term orbital flight on the Mir space station [32]. Each
dataset contains continuous periods of 6h data under both sleep and wake condi-
tions. Reference [30] found that for all cosmonauts the heartbeat fluctuations ex-
hibit anticorrelated behavior with average scaling exponents consistent with those
found for the healthy terrestrial group: aw PS 1.04 for the wake phase and as PS 0.82
for the sleep phase. This sleep-wake scaling difference is observed not only for the
group averaged exponents but for each individual cosmonaut dataset. Moreover,
the scaling differences are persistent in time, since records of the same cosmonaut
taken on different days (ranging from the 3rd to the 158th day in orbit), exhibit a
higher degree of anticorrelation during sleep.

The finding of stronger heartbeat anticorrelations during sleep is of interest from
a physiological viewpoint, since it may motivate new modeling approaches and
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supports a reassessment of the sleep phase as a surprisingly active dynamical state.
Perhaps the "restorative" functions of sleep may relate to an increased reflexive-type
responsiveness of neuroautonomic control, not just at one characteristic frequency,
but over a broad range of time scales.

Recent work by Ivanov et al. [13] indicates that key statistical characteristics of
the healthy cardiac dynamics can be successfully reproduced by a stochastic nonlin-
ear feedback mechanism. The present observation of sleep-wake scaling differences
poses a new challenge to such modeling approaches, which could require consider-
ing reciprocity in the activity of the sympathetic and parasympathetic branches of
the autonomic nervous system during sleep and wake phases, as well as different
correlation times of the sympathetic and parasympathetic impulses,

WAVELET ANALYSIS OF HEARTBEAT INTERVALS

Time series of beat-to-beat heart rate intervals obtained from digitized electrocar-
diograms are known to be nonstationary and exhibit extremely complex behavior
[33-35]. A typical feature of these signals is the presence of "patchy" patterns which
change over time. Heterogeneous properties may be even more strongly expressed
in certain cases of abnormal heart activity. Traditional approaches—such as the
power spectrum and correlation analysis [36,37]—are not suited for such nonsta-
tionary sequences, and do not carry information stored in the Fourier phases.

To address these problems, we present an alternative method—"cumulative vari-
ation magnitude analysis" [38]—to study the subtle structure of physiological time
series. This method comprises sequential application of a set of algorithms based on
wavelet and Hilbert transform analysis. First, we apply the wavelet transform, be-
cause it does not require stationarity and preserves the Fourier phase information.
The wavelet transform is sometimes called a "mathematical microscope" because
it allows one to study properties of the signal on any chosen scale a. However,
a wavelet with too large a value of scale a (low frequency) will filter out almost
the entire frequency content of the time series, thus losing information about the
intrinsic dynamics of the system. We focus our "microscope" on scale a = 8 beats
which smoothes locally very high-frequency variations and best probes patterns of
specific duration (« | — 1 min). The wavelet transform is attractive because it can
eliminate local polynomial behavior in the nonstationary signal by an appropriate
choice of the analyzing wavelet ^.

The wavelet transform is thus a cumulative measure of the variations in the heart
rate signal over a region proportional to the wavelet scale, so study of the behavior
of the wavelet values can reveal intrinsic properties of the dynamics masked by
nonstationarity.

The second step of the cumulative variation magnitude analysis is to extract the
instantaneous variation amplitudes of the wavelet-filtered signal by means of an
analytic signal approach [36,39] which also does not require stationarity. Let s ( t )
represent an arbitrary signal. The analytic signal, a complex function of time, is
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defined by S(t) = s ( t ) + is(t) = A(t)^\ where s(t) is the Hilbert transform [40] of
s(t). The instantaneous magnitude A(t) and the instantaneous phase of the signal
<f>(t) are defined as A(t) = ^s2(t) + s2(t) and <f>(t) = tan"1 ( s ( t ) / s ( t ) ) .

We study the distribution of the amplitudes of the beat-to-beat variations for
a group of healthy subjects (N = 18; 5 male, 13 female; age: 20 — 50, mean
- 34) and a group of subjects [31] with obstructive sleep apnea [41] (N = 16
males; age: 32 — 56, mean - 43). We begin by considering night phase (12pm-
6am) records of interbeat intervals (« 104 beats) for both groups to minimize
nonstationarity due to changes in the level of activity. Inspection of the distribution
functions of the amplitudes of the cumulative variations reveals marked differences
between individuals. These discrepancies are not surprising given the underlying
physiological differences among healthy subjects. To test the hypothesis that there
is a hidden, possibly universal structure to these heterogeneous time series, we
rescale the distributions and find for all healthy subjects that the data conform to
a single scaled plot ("data collapse"}. We are able to describe the distributions
using a single curve, indicating a robust, consistent scaling mechanism for the
healthy nonequilibrium dynamics. Such behavior is reminiscent of a wide class of
well-studied physical systems with universal scaling properties [1,9,3]. In contrast,
the subjects with sleep apnea show individual probability distributions which fail
to collapse.

The absence of data collapse demonstrates deviation from the normal heart be-
havior. We note that direct analysis of interbeat interval histograms does not lead
to data collapse or separation between the healthy and apnea group [42]. Moreover,
we find that the direct application of the Hilbert transform yielding the probability
distribution of the instantaneous amplitudes of the original signal does not clearly
distinguish healthy from abnormal cardiac dynamics. Hence the crucial feature of
the wavelet transform is that it extracts dynamical properties hidden in the cu-
mulative variations. We observe for the healthy group good data collapse with a
stable scaling form for wavelet scales a = 2 up to a = 32. However, for very small
scales (a = 1,2) the average of the rescaled distributions of the apnea group is in-
distinguishable from the average of the rescaled distributions of the healthy group.
Hence very high frequencies are equally present in the signals from both groups.
Our analysis yields the most robust results when a is tuned to probe the collective
properties of patterns with duration of ̂  | — 1 min in the time series (a = 8,10).
The subtle difference in the distributions of the cumulative variations between day
and night phases is also best seen for this scale range [43],

It has been hypothesized [42] that even if the interbeat variations are different
(e.g. smaller) during illness, the pattern of heart rate variability might be otherwise
very similar to that during health, so that the interbeat variations for normal and
abnormal cardiac dynamics, once normalized, would have the same distribution.
Our study clearly rejects this hypothesis, showing the presence of scaling in the
distributions of the variation amplitudes for the healthy and a breakdown of this
scaling for abnormal dynamics. Moreover, the stability of this scaling form indicates
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that the underlying dynamical mechanisms regulating the healthy heart beat have
similar statistical properties on different time scales. Such statistical self-similarity
is an important characteristic of fractal objects. The wavelet decomposition of
beat-to-beat heart rate signals can be used to provide a visual representation of
this fractal structure. The wavelet transform, with its ability to remove local trends
and to extract interbeat variations on different time scales, enables us to identify
self-similar patterns (arches) in these variations even when the signals change as a
result of background interference. Data from sick heart lack these patterns.

The study of Ivanov et al. [38] uncovers a previously unknown nonlinear feature
of healthy heart rate fluctuations. Prior reports of universal properties of the nor-
mal heart beat and other physiological signals relate to long-range correlations and
power law scaling. However, these properties, detected by Fourier and fluctuation
analysis techniques, ignore information related to the phase interactions of compo-
nent modes [8]. The nonlinear interaction of these modes accounts for the patchy,
non-homogeneous appearance of the heartbeat time series and appears to be re-
lated to the recently reported multifractal properties of the heartbeat dynamics
[44] . This finding suggests that for healthy individuals, there may be a common
structure to this nonlinear phase interaction.

MULTIFRACTAL ANALYSIS: APPLICATION TO
PHYSIOLOGIC SIGNALS

The DFA method can measure only one exponent characterizing a given signal.
This fact implies that the method is more appropriate for the study of monofractal
signals. Monofractals are homogeneous in the sense that they have the same scaling
properties, characterized by a single scaling exponent [9,45-49]. On the other hand,
multifractal signals or objects require an infinite number of indices to characterize
their scaling properties. Multifractals can be decomposed into many—possibly
infinitely many—sub-sets characterized by different exponents h. The singularity
spectrum, D(h), quantifies the fractal dimension of the sub-set characterized by
the exponent h. Thus, multifractal signals are intrinsically more complex, and
inhomogeneous, than rnonofractals.

Multifractal structures have been uncovered in a number of classical physical
problems such as voltage drops across a random resistor network [50], spatial dis-
tribution of the dissipation field of fully developed turbulence [51], viscous fingering
[52,53], and diffusion limited aggregation [10,54]. However, in physics and other
applied sciences, fractals appear not only as singular objects (measures) but also
as singular functions generated by dynamical systems. There have been only a few
attempts to extend the concept of multifractality to singular functions: for velocity
in turbulence [55-57] and for rough surfaces [58].

Physiologic signals are generated by complex self-regulating systems that process
inputs with a broad range of characteristics. Monofractal signals are homogeneous
and have "linear" properties. Many physiologic time series—such as interbeat

141

Downloaded 28 Aug 2007 to 128.197.27.5. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



interval sequences—are in fact inhomogeneous, suggesting that different parts of
the signal have different scaling properties. In addition, there is evidence that
heartbeat dynamics exhibits nonlinear properties [30,38,43]. Up to now, robust
demonstration of multifractality for nonstationary time series has been hampered
by problems related to a drastic bias in the estimate of the singularity spectrum
due to diverging negative moments. Moreover, the classical approaches based on
the box-counting technique and structure function formalism fail when a fractal
function is composed of a multifractal singular part embedded in regular polynomial
behavior.

We recently adopted this new methodology to human heartbeat interval series
obtained from electrocardiogram records [44]. Our initial findings include several
encouraging results:

• (i) The heart rate of healthy humans is a multifractal with nonzero fractal
dimension for sub-sets characterized by singularity exponents in the interval
-0.1 to 0.5.

• (ii) Records for patients with a nearly terminal pathology, congestive heart
failure, show a significant loss of multifractal complexity displaying a smaller
range of values of h.

^From a physiologic perspective, the detection of rubust multifractal scaling in
heart rate dynamics is of interest for a number of reasons. First, previous analyses
have focused only on the quantification of a single scaling exponent (monofractal)
behavior to account for the apparently I// spectrum of healthy interbeat intervals
over a wide range of time scales. We show for the first time that the healthy heart-
beat is even more complex than previously suspected, requiring multifractal scaling
with multiple exponents for its characterization. Second, our analysis indicates that
the observed multifractality is related to nonlinear features of the healthy heartbeat
dynamics, which are encoded in the Fourier phases [38,44]. Third, we find a loss of
multifractal complexity in a major pathologic condition—namely congestive heart
failure—suggesting possible bedside applications. Fourth, our results are notable
because they pose a challenge to ongoing efforts to develop realistic models of heart
rate control and other processes under neuroautonomic regulation. There is cur-
rently no precedent in physiology to account for such complex behavior which in
physical systems has been connected with turbulence and related multiscale phe-
nomena. Our findings raise the intriguing possibility that the control mechanisms
regulating the heartbeat interact as part of a coupled cascade of feedback loops in
a system operating far from equilibrium.
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