+1 617 353 93393 F.001

JAN-28-2009 09:B2 PHYSICS DEPT-BOSTON UNIV
iy

i JF ya .’
] i-‘ﬂk i t}”“% iy
L _ . . m_..-/"

Introduction to Econophysics: The What and Why
of “Financial Flows”

H. E. Stanley', L. A. N. Amara]!, X. Gabaix2, P. Gopikrishnan!, V. Plerou!

1. Center for Polymer Studies and Department of Physics Boston University, Boston, MA 02215 USA.
2. Department of Economics, Massachusetts Institute of Technology Cambridge, MA 02142 TUSA.

Abstract

In this talk, we discuss some of the similarities between work being done by
economists, and by physicists seeking to contribute to economics. We also mention
some of the differences in the approaches taken, and justify these different approaches by
developing the argument that by approaching the same problem from different points of
view new results might emerge. In particular, we review some recent results, for example
the finding that there are two new universal scaling models in economics: (i) the fluctu-
ation of price changes of any stock market is characterized by a PDF which is a simple
power law with exponent 4 that extends over 10° standard deviations (a factor of 108
on the y-axis); (ii) for a wide range of economic organizations, the histogram that shows
how size of orga.hization is inversely correlated to fluctuations in size with an exponent
5 1/6. Neither of these two new laws has a firm theoretical foundation. We also discuss
results that are reminiscent of phase transitions in spin systems, where the divergent
behavior of the response function at the critical point (zero magnetic field) leads to large
fluctuations.

1. Introduction the realm of the tractable. By observing the
behavior of actual financial markets, through

According to the economist Neil A. Chriss—who the collection and analysis of time series of fi-

is affiliated with ICor Brokerage Incorporated in New

) nancial data,' one ultimately eliminates many
York:

models that are a priori possible but contrary

“The aim of modern financial theory (or at
least that part of modern finance having to do
with financial markets) might be described
as an attempt to produce theoretical mod-
els describing the behavior of financial mar-
kets, with an eye toward causal mec'ha,nisms,
statistical laws, and even predictive power.
Starting with assumptions about the behav-
- lor of rational economic agent, one makes
_restrictions' on the set of possible laws de-
- scribing financial market. Adding simplify-
* ing assumptions such as frictionless markets,
an absence of transaction costs, and unlim-
ited short selling, the analysis is brought into

to observed behavior” [1].

Thus one prevalent paradigm in economics is to
mary finance with mathematics, with the fruit of this -
marriage the development of models. In physics, we
also develop and make use of models (or " “artificial
worlds”). However a large number of physicists are
fundamentally empirical in our approach to science—
indeed, some physicists never make reference to mod-
els at all (other than in classroom teaching situations)-
This empirical approach has led to advances when the-
ory has grown out of experiment; one such example
is the understanding of phase transitions and critical
phenomena. Such a basic and deep grounding in em-



B L P e e T e

JAN-28-2009 09:B2

pirical facts could have an influence on the way physi-
cists approach economics. Qur approach has been to
follow the paradigm of critical phenomena, which also
studies complex systems comprised of many interact-
ing subunits, i.e., to first examine the empirical facts
as thoroughly as possible before we begin to construct

models.
2. Fluctuations in Finance

A physicist views the economy as a collection
of interacting units. This collection is complex; ev-
erything depends on everything else. The interesting

“problem is: how does everything depend on everything

else? Physicists are looking for empirical laws that will
describe, and theories that will help understand, this
complex interaction [2, 3, 4, 5]. '

To a physicist, the most interesting thing about
economics 1s that it is dominated by fluctuations, e.g.,
stock averages such as the S&P 500. If we make a
curve of the values of this index over a 35-year pe-
riod, we see a fluctuating signal. Statistical physicists
are particularly interested in Auctuating signals. The
nature of this fluctuation immediately suggests to a
physicist a model that was developed 100 years ago by
Bachelier: the biased random walk [6].

A one-dimensional random walk is a drunk with a
coin and a metroriome. At each beat of the metronome
the coin is flipped—heads means one step to the right,
tails one step to the left. If we look at our S&P 500 plot
placed alongside a graph of a one-dimensional biased
random walk—it is biased because it uses a “biased
coin” that has a slight tendency to go up rather than
down-—we physicists see a reasonable visual similarity.
In fact, many economic pricing models—e.g., Black
and Scholes—use this biased random walk in a slightly
dressed-up form.

But there are certain points in the S&P 500 plot,

such as October 19, 1987, that are not mirrored any-
where in the biased random walk model—nowhere do

we see a drop anywhere near the 30 percent drop of .

Black Monday. This could not occur in a biased ran-
dom walk—the probability that a walk will move two
steps in the same direction is p?, three steps is p*, and

\_~0 on—s0 the probability of many steps in the same

direction is exponentially rare, virtually impossible.
Then how do we quantify these S&P 500 fluctua-

tions? We begin by graphing the values of the fluctu-

ations as a function of time. We place the plot of the
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empirical data next to the predictions of Bachelier’s
model. The fluctuations in the model are normalized
by one standard deviation. Note that the biased ran-
dom walk has a PDF that is a Gaussian, so the prob-
ability of having more than five standard deviations is
essentially zero—you can see that a line drawn at five
standard deviations is outside the range of the fluctu-
ations.

If we normalize the empirical data we see a differ-
ence. A line drawn at five standard deviations is not
outside the range of the fluctuations—there are many
“shocks” that exceed five standard deviations. A bar
placed on the'positive side-at five standard deviations
also has 30 or 40 -hits—fluctuations that equal or ex-
ceed five standard deviations in the positive direction.
Some, such as Black Monday, are moré than 34 stan-
dard deviations. The exponential of (~1/2)(34)? is
approximately 10~267/2,

Because big economic shocks affect the economy
around the world (“everything depends on everything
else”), the possibility of an economic “holocaust” or
“meltdown” is one that we must take seriously. Big
changes in stocks affect not only people with large
amounts, but also those who have very little—those on
the margins of society. One person’s portfolio collapse
is another’s physical starvation; e.g., literal starvation
in some areas was one result of the recent Indonesian
currency collapse.

Another example is the recent Merriwether
LTCM (Long Term Capital Management) collapse,
caused in part by the use of models that do not take
into account those catastrophic rare events. Thus
there are many reasons we physicists might be inter-
ested in understanding economic fluctuations.

3. One Possible Conceptual Framework

We shall see that our analysis of empirical data
shows that those catastrophic rare events are a part
of the overall picture-—that they are not simply inex-
plicable disasters beyond any possible understanding.
Although this sounds as though we physicists think
we can contribute to economics, it is possible that the
converse may turn out to be even more true. If we

Jjoin economists in studying economics, we may stum-

ble onto some ideas that will help us back in our more

traditional research areas of physics. .An example is

turbulence. If I stir a bucket of water, energy is added

_ to the system on a big scale. This energy then dis-
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sipates over progressively smaller scales. This is an
unsolved physics problem; many empirical facts can
be stated, but little can be said about understanding
it [7, 8, 9.

One could hypothesize that the economy is per-
haps analogous to this example of turbulence. One
can add information on a big scale to an economic
system—e.g., the news of who wins a presidential
election—and that information is dissipated on smaller
and smaller scales. The way that you handle the “tur-
bulence” associated with this dissipation of informa-
tion in a financial market may help us understand how
to approach turbulence in our physics research. As at-
tractive as this analogy might appear intuitively, it is
not so accurate quantitatively since the actual laws of
turbulence are not at all the same as.the empirical laws
of economics [8, 9], despite early claims to the contrary
[7]

Almost all physics comes down to solving some
kind of differential equation, i.e., most functions in
physics have some kind of characteristic scale. Once
you have determined the scale, you can express the
function in some kind of exponential form—which has
the wonderful property that the derivative of the func-
tion is also an exponential. In particular, the param-
eter r sets the scale of the problem. If r is positive,
the function grows—and tells you the doubling time
for the quantity of interest. Solutions to this look
like Gaussians, and Gaussians are wonderful, tractable
functions.

" Such systems with scales describe almost every-
thing in nature, including disordered things. Even
raindrops on a sidewalk almost always have a char-
acteristic scale. (If I “zoom In” or “zoom out,” I can
find the scale.) But there is a set of systems in nature
that lack a scale. This set is described by power laws.

The framework for our approach to systems with
many interacting subunits is something that is usually
called “scale invariance.” These systems vary greatly
from those systems that do have scales [10, 11].

We are all familiar with algebraic equations, such
as z* = 4, and we know the solution is a number,
+2. Most of us are also familiar with functional equa-
f.it'ms," which are statements, not about relations be-
tween numbers, but about the functional form. Alge-
bfai-‘(i:i éqiiations have solutions that are numbers, but
fﬁnﬁtidﬁgl:équations have solutions that are functional
féfr’iis}.‘ Power law functions are the solutions of certain
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functional equations of the form f(Az) = A f(z).
Ina functional equation, the converse also holds,
i.e., every function that is of this power-law form also
obeys this functional equation. This applies in a large
number of contexts, in particular, in physical systems
that have been tuned to be near critical points. An
example is a binary mixture of two fluids in which
the temperature has been tuned to be a special value
called the critical temperature. At that temperature
there occur fluctuations in density in the binary mix-
ture that extend over all length scales up to and includ-
ing the wavelength of light. If you shine a flashlight
on a tube of the binary mixture, you see movement—
because the density fluctuations are so big in spatial
extent they become comparable to the wavelength of
the light that is interacting with them. When that
oceurs, you see something that is visible—“critical
opalescence.” The same conceptual framework that
describes this system appears to be able to describe
economic systems [12]. o

4. Quantifying Finance Fluctuations

One topic we physicists are interested in is sym-
metry. An example of traditional symmetry is sodium
chloride. [ can displace the lattice two lattice constants.
and the configuration will remain the same. I can ro-
tate it 90 degrees, or invert it, and the configuration
will remain the same. Not only are these properties
fascinating to mathematicians but they are also very
relevant to solid state physics. This simple symme-
try and the mathematics and physics that are built
on it have led to extremely useful inventions, e.g., the
transistor.

The scale-invariance symmetry involved here is
just as much a symmetry as the translational invari-
ance symmetry in sodium chloride. How useful this.
scale-invariance symmetry will ultimately prove to be
we do not know. Over the past 30 years physicists

. have used the theme of scale-invariance symmetry to

understand systems near their critical points. ‘Previ-
ous to this period of time, this class of problems was
one 1o one could solve—there were many, many length
scales, not just one scale. The length scales could
run from one nearest-neighbor spacing out to approxi-
mately 5,000 (approximately the wave-length of light).
The elements that make up this system are molecules
that interact only over a short range—almost entirely
with nearest neighbors. But this nearest-neighbor in-
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teraction propagates a small amount of torque through
the system of nearest-neighbor interactions, so that
the entire system is affected somewhat.

This is beginning to sound like economics, in
which “everything affects everything else.” And in éco-
nomics, the first thing a physicist would do is look for
the correlations. If we look at a graph of the autocor-
relation function, we see a measure of the quantity G,
which is a price change over some time horizon At. If

we look at how G now is correlated with G at a time 7-

later, we measure that quantity as a function of 7, and
as the size of T increases, the correlation decreases. It
is remarkable that this decrease happens in a regular
fashion. How do we interpret this decrease? If we
put the autocorrelation function in logarithmic units
and the time lag in linear units, we see that the data
fall on an approximate straight line This means that
the function is decaying exponentially, which means
it does indeed have a characteristic scale {13, 14, 15].
So the autocorrelation function is not scale invariant.
This differs from systems near their critical points in
which the autocorrelation functions are scale invariant.

5. Statistical Features of Price Fluctuations

The decay time in this economic example is short
(4 minutes), so one cannot easily “make money” on
these correlations [13, 14]. A little less well-known
is the measure of the volatility [14, 15]. One way to
quantify volatility is to replace G (the price change)
with the absolute value of G. The data now are not
at all linear on log-linear paper, but they are linear on
log-log paper. And, of course, a power-law y = z” is
linear on log-log paper, because logy = plogz. The
slope of the log-log plot p is the value of the exponent.
These exponents turn out to be fundamental quanti-
ties. In this case p = —0.3. The data are straight from
about 200 minutes out to about 10° minutes—a range
of almost 1000. With the data graphed we can see the
approximate region in which the data are straight—the
data are not straight over all regions. Qualitatively, we
have known for a long time that there are long-range
correlations in the velatility, e.g., volatility “cluster-
ing” and “persistence,” but this graph helps quantify
this known empirical fact.

So, if we cannot find an ordinary correlation near
a critical point, we must try something else. For ex-
ample, we might simply dump all of our data “on the
floor.” After we do that, the data no longer have time
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ordering nor do they have long-range or short-range
power-law correlations in the volatility of the autocor-
relation function itself. Now we pick the data pdi’nts
up off the floor and make a histogram. Mandelbrot did
this in 1963 with 1000 data points—a tiny number by
today’s standards—for cotton-price fluctuations [12].
He demonstrated that those data were consistent with
a Lévy distribution, i.e., a power-law distribution in
that histogram—a so-called “fat tail.”

In 1995, Mantegna and I decided to test this re-
sult using data with At shorter than the daily data
available in 1963 [13]. We used approximately 1 mil-

" lion data points—three orders of magnitude greater

than Mandelbrot’s data set. Instead of Mandelbrot’s
daily returns on cotton prices, we had returns ap-
proximately every 15 seconds on the S&P 500 in-
dex. We found that on a log-linear plot (i) the his-
togram of the 7 data points for the 5&P 500 clearly
is not a Bachelier/Black-Scholes Gaussian, and (ii) al-
though the center of the histogram agrees fairly well
with Mandelbrot’s Lévy distribution, it begins to dis-
agree after a few standard deviations. This disagree-
ment led us to develop a class of mathematical pro-
cesses called truncated Lévy distributions—which has
attracted the attention of a number of mathemati-
cians, who have carried this concept far further than
we could [16, 17, 18, 19, 20, 21]. e

What about “universality,” the notion in sta~

tistical physics that many laws seem to be remark-

ably independent of little details? A good example
is that dramatically different materials behave exactly
the same near their respective critical points. Binary
mixtures, binary alloys, ferromagnets, even biological
systems that involve switching, all behave the same
way. We are finding the analog of this universal-
ity in economics. For example, Skjeltorp [22] did a
study that utilized the Mantegna approach. Instead
of 1,500,000 points from the S&P 500 (15 second i in-

tervals spread over six years), SkJeltorp did a pa.rallel:
study of the Norwegian stock” exchange—and got a.l-

most exactly the same restilt.

We assumed that the reason we saw the trun~
cated Lévy distribution while Mandelbrot did not was

because we had more data—»by ‘three orders of mag-

 nitude. Goplkrmhnan and Plerou recently acqmred a,

data set three orders ‘of magmtude larger still {of or-.
der 10°)—one that records’ e'uer-y transactlon of every’
stock. They found that when thelr data were graphed
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on log-log paper the result was linearity [23, 24, 25, 26].
This is the log of the cumulative distribution—the
same quantity Mandetbrot plotted for cotton. But
where Mandelbrot’s straight line had a slope of about
1.7 (well inside the Lévy regime, which stops at slope
2.0), Gopikrishnan’s straight line has a slope of ~ 3.0
(far outside the limit for a Lévy distribution). The fact
that these data are approximately linear over two or-
ders of magnitude means that fluctuations that are as
much as 100 standard deviations are still conforming
to the same law that describes the smaller fluctuations.
This is reminiscent of the Gutenbefg-Richter law that
describes earthquakes. Thus it would seem that these
very rare events, which are conventionally treated as
totally unexpected and unexplainable, have a precise
probability describable by the same law that describes
much more common events. These rare events occur
with a frequency 8 orders of magnitude less than the
common, everyvday event.

This means that Mandelbrot’s results for cot-
ton (10® points) are at total odds with Gopikrish-
nan’s results for the S&P 500 (10° points). Why
this difference? Is it simply because Mandelbrot had
too few data? Or do commodities intrinsically have
fatter tails? In recent work with data from British
Petroleurn, it appears that commodity data may have
a slightly smaller slope—consistent with the possibil-
" ity that perhaps there is not one universal behavior
for everything, but at least two separate universal
behaviors—one for commodities and one for equities
[27]). This smaller slope is still above 2, so the com-
modity data are not in the Lévy regime (even current
data on cotton display a slope well above 2).

6. Some Similarities with Diffusion in a
Tsunami Wave

Over this past year, we have been trying to un-
derstand these exponents using procedures similar to
those used in critical phenomena, e.g., we relate one
exponent to another and call the relation a scaling law,
or we derive some microscopic model and call it renor-
malization group.

In particular, there appears to be an ana.log with
anomalous diffusion. It is plausible that classical diffu-
smn does not describe all random motion. The Brow-
man motion seen in the behavior of a grain of pollen
in relatwely calm water becomes something quite dif-
ferent if the grain of pollen is in a tsunami wave. The
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histograms would certainly be perturbed by a tsunami.
A tsunami is an apt verbal metaphor for such economic
“earthquakes” as the Merriwether disaster. So why not
explore the stock market as an example of anomalous
diffusion. '

In one-dimensional classic diffusion, a particle
moves at constant velocity until it collides with some-
thing. One calculates, e.g., the end position of the
particle, and {of course) finds a Gaussian. Within a
fixed time interval Af, one might calculate a histogram
for the number of collisions p(N), and also find a Gaus-
sian. And if one did a histogram of the variance W2,
one would also find a Gaussian. The fact that these
are relatively narrow Gaussians means that there is a
characteristic value, i.e., the width of that Gaussian,
and that this is the basis for classical diffusion theory.

The corresponding quantity in the stock market

~ to the displacement z is the price. At each transaction

there is a probability that the price will change, and
after a given time horizon there is a total change G.
We've seen the histogram of G values—the cumulative
obeyed an inverse cubic law, and therefore the pdf, by
differentiation, obeys an inverse quartic law.

What about these histograms? Apparently .n"q
one had calculated these previously. Plerou et al. set
about using the same data analyzed previously for G
to calculate the histograms of N and W?2. They also
found power laws—not Gaussians, as in classic diffu-
stion. That means there is no characteristic scale for
the anomalous diffusion case (there is a characteristic
scale for the classic diffusion case), and for an obvious
reason. If you are diffusing around in a medium—such
as the “economic universe” we live in—in which the

- medium itself is changing, then the laws of diffusion

change and, in particular, they adopt this scale-free
form. Further, the exponents that describe p(/V) and
p{W?) appear (28, 29] to be the analogs of exponents
in critical phenomena in the sense that they seem to
be related to one another in interesting ways. -

7. Some Similarities with Critical Point -
Phenomena

Stock prices respond to fluctuations in demand;
just as the magneﬁization of an interacting spin systen
responds to fluctuations in the magnetic field. Periods
with large number of market participants buying. the
stock imply mainly positive changes in price, analo-
gous to a magnetic field causing spins in a magnet
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‘0 align. Recently, Plerou et al. [31] addressed the

\-/questlon of how stock prices respond to changes in

demand. They quantified the relations between price
change G over a time interval At and two different
measures of demand fluctuations: (a) @, defined as the
difference between the number of buyer-initiated and
seller-initiated trades, and (b) Q, defined as the dif-
ference in number of shares traded in buyer and seller
initiated trades. They find that the conditional expec-
tations (G)e and (G)q of price change for a given & or
§1 are both concave. They find that large price fluctua-
tions occur when demand is very small — a fact which
is reminiscent of large fluctuations that occur at criti-
cal points in spin systems, where the divergent nature
of the response function leads to large fluctuations.
Their findings are reminiscent of phase transitions in
spin systems, where the divergent behavior of the re-
sponse function at the critical point (zero magnetic
field) leads to large fluctuations [11].

8. Cross-Correlations in Price Fluctuations
of Different Stocks

=" We know that a étock price does not vary in iso-

lation from other stock prices, but that stock prices
are correlated. That, of course, is not surprising be-
cause we know that (from the very beginning of this
presentation) “in economics everything depends on
everything else.” How do we guantify these cross-
correlations of one stock with another? If we take
the G values of four companies out of the 1000 that
we have studied—corresponding the the shrinking or
growing of each of these four companies in, say, a 30-
minute interval. How does the behavior of these four
- companies during that half-hour interval affect your
response to their price activity? If two of the com-

& panies were Pepsi and Coke, there would probably be

- some correlation in their behaviors. One way to make
. money is to trade off these correlations. If you see one
- - of them drop in price and the other does not, there s a

E good chance that the one that dropped will eventually

come back up, will revert to the mean.
“ In order to quantify this, we begin by calcu-
If we have 1000
a\_/ls we have a 1000 x 1000 matrix.
number of elements (1 million) does not frighten a
é physicist with a computer. Eugene Wigner applied
: random matrix theory 50 years ago to interpret the

- lating a cross-correlation matrix.
This large

CompIex spectrum of energy levels in nuclear physics
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(30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42). We do ex-
actly the same thing, and apply random matrix theory.
We find that certain eigenvalues of that 1000 x 1000
matrix deviate from the predictions of random matrix
theory, which has not eigenvalues greater than an up-
per bound of ~ 2.0. Furthermore, the content of the
eigenvectors corresponding to those eigenvalues corre-
spond to well-defined business sectors. This is not sur-
prising, but it does allow us to define business sectors
without knowing anything about the separate stocks,

9. Statistical Physics and Firm Growth

The economy is a little like a spin glass [43]. In
the economy, each firm depends on every other firm,
and the interactions are not short-ranged nor are they
of uniform sign. For example, Ford Motor Company
is in trouble because they have been selling their Ex-
plorer vehicle with extremely unsafe tires—and the
price of their stock is going down. Prospective buy-
ers purchase General Motors cars instead. There is 7
a negative correlation between the stock prices of the
But then General Motors needs to
hire rore workers to make a larger number of .cars,
and the McDonald’s near the assembly plant has many,
more customers at lunchtime—a positive correlation

two companies.

in growth. Sometime later the situation may change,
again. So we can say that the “spins” all interact with.
one another, and that these interactions change as a
function of time. o
Nevertheless, the general idea of a critical phe-,
nomenon seems to work. If the firms. were spread
out in a kind of chain, the correlations among them
would decay exponentially. Instead, the firms iﬁtera,cj;,‘,
with each other much the same as. critical phenom-
ena interact with each other. This fact motivated a
study carried out about five years ago by a.group of
physicists interacting with economist Michael Salinger
[44, 45, 46]. They calculated the fluctuations in bu§i—,
ness firms from one year to the next. They.found that
if they broke the fluctuations into bins by. size a tent-
shaped distribution function was produced.for each
day of trading. The width of the tent was. narrower
for large firms than, the width of the tent for small
firms. This is not surprising, :since a. small firm has a
potential to grow or shrink much more rapidly. than
a larger firm.. When the, w1dths -of these tent-shaped

distribution functions were plotted.on log-log paper as

a function of histogram.size, the. decreasing function

F.006
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turns out to be a straight line—corresponding fo a
power-law behavior in that function, and the exponent
in that power-law is = 0.2. The linearity extends over
a number of decades, indicating that the data collapse
onto a single plot irrespective of scale. That was a new
result, and this result appears to be quite robust—and

has caught the attention of John Sutton [47], one of

the leading economists at the London School of Eco-
nomics, and number of other economists far more than
anything we have done in finance.

10. Universality in Economic Fluctuations

Takayasu et al. have demonstrated that the
above results are universal by moving outside the
realm of US economies and studying firm behavior in
other parts of the world [48].

Buldyrev et al. have shown that organizations
(such as business firms) that are organized like trees
will fluctuate in size [46]. The hierarchical structure
is set up so that instructions from the top of the hi-
erarchy propagate down to the branching lower levels
of the structure. Within that structure is a disobedi-
ence factor—those lower down do not always obey the
directives handed down from those above them. This
factor is, of couse, crucial to the survival of the sys-
tem. If employees always did only and exactly what
they were told, any small mistake put into the sys-
tem by a manager would grow and do an increasing
amount of damage as it propagated through the ex-
panding tree structure of the organization. On the
other hand, the probability of an instruction being dis-
obeyed cannot be one—or chaos would result. So the
propensity to disobey can be neither infinitesimal nor
unity. The “obeying probability” needs to settle at a
point at which the organization can maintain both its
integrity and self-corrective flexibility. And the behav-
ior of the eprnent describing this probability is very
similar to the behavior of critical exponents.

This result is fairly robust, not only as far as
b_usiness firm fluctuations are concerned, but also in
the size of countries. Lee et al. extend the same anal-
ysis'used for business firms to countries—and with the
same exponent {49]. Data can therefore be graphed on
the same-¢urve both for firms and for countries—where
country size is measured by GDP.

= "We ‘can see a similar pattern in the funding of
university-based research. We researchers compete for
résearch’ money the same way business firms compete
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for customers. Plerou et al. analyzed the funding of
research groups over 17-year period in the same way
fuctuations in firm size were analyzed [50]. The results
were very similar with the data collapsing onto the
same curve,

 Asafinal example, we consider the case of fluctu-
ating bird populations in North America. In this case
the exponent is 0.35 instead of 0.2. But, nevertheless,
there seems to be some kind of property of contact
organizations that we do not understand well [51].

11. “Take-Home Message”

So-what have we learned? Firstly, that the ap-
proach we have emphasized is an empirical approach
where one first seeks to uncover features of the com-
plex economy that are challenges to understand. We
find that there are two new universal scaling models
in economics: (i) the fluctuation of price changes of
any stock market is characterized by a PDF which is a
simple power law with exponent a+1 = 4 that extends
over 102 standard deviations (a factor of 10% on the y-
axis); (i) for a wide range of economic organizations,
the histogram that shows how size of organization is
inversely correlated to fluctuations in size with an ex-;
ponent 3 = 1/6.

Neither of these two new laws has a firm theoret-,

ical foundation. This situation parallels the situation
in the 1960s when the new field of eritical phenomena,
also did not have a firm theoretical foundation for its
new laws, but was awaiting the renormalization group.
It is my hope that some of you in this room will rise to
the challenge and try to find a firm theoretical founda- '
tion for the structure of the empirical laws that appear
to be describing (i) finance fluctuations, and (ji) eco-
nomic organizations.
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