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Abstract—The pressure—volume (P-V) relationship of de-
gassed lungs during the first inflation is different from that in
consecutive inflations. We developed a mathematical model of
the P—V curve of the first inflation by assuming that (1) central
airways are open leading to many subtrees of n generations
that are initially closed; (2) an airway opens when inflation
pressure reaches the opening threshold pressure of that seg-
ment; and (3) the opening threshold pressures do not depend on
airway generation. In this model, airway opening occurs in
cascades or avalanches. To test the model which contains only
two parameters, n and a pressure, Py, , at which at least one
subtree completely opens, we measured the first inflation P-V
curves of 15 excised and degassed rabbit lungs. By fitting these
data, we found that n=17+5, P,,=23*4 cmH,0, and that
there is a wide distribution of threshold pressures for airways
with diameters <2 mm. Analysis of the P-V curve in a lung
which was lavaged with a liquid of constant surface tension
and in which airways are presumably open demonstrated that
the distribution of threshold pressures is narrow, and hence no
avalanches occur during inflation. We conclude that in normal
lungs the first inflation is dominated by avalanche behavior of
airway opening providing information on the global distribution
of threshold pressures and the average site of airway closure.
© 1998 Biomedical Engineering Society.
[S0090-6964(98)00404-4]
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INTRODUCTION

The pressure-volume (P-V) relationship of mamma-
lian lungs have been the object of numerous studies for
more than half a century,}®510:1217.20222627 Befgre any
P-V measurements are carried out in excised lungs, the
standard procedure is to first degas the lungs in a
vacuum chamber. Following this procedure, the P-V
loops are collected under various conditions. It is well
established that the very first inflation P—V curve of the
lung from its degassed state is completely different from
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all consecutive inflation curves. Unfortunately, very few
first inflation curves have been published. Frazer and
Weber® studied the P-V curves of excised rat lungs.
They showed that starting from the degassed state,
transpulmonary pressure (Py,) first increases rapidly
without noticeable change in V followed by a sudden
transition to a state where Py, is almost constant but V
increases steeply. This transition is in some cases so
sharp that the P—V curve is similar to a step change in
V. These data also revealed that Py, can even decrease
during inflation, provided the inflation flow rate is high.
To our knowledge, no quantitative description has been
offered as to why the first inflation is so different from
all consecutive ones. The goal of this study is to provide
a gquantitative analysis of the P—V relationship during
the first inflation.

We hypothesized that airway reopening dominates the
first inflation, whereas consecutive inflations are less in-
fluenced by airway reopening and are governed primarily
by the mechanical properties of the alveolar surface film
and the connective tissue of the parenchyma. We tested
this hypothesis by deriving a mathematical model of the
alveolar volume distribution during inflation based on the
concept that airways open collectively in bursts or
avalanches.??® We then used this model to analyze the
initial P—V curves starting from the degassed state of
excised rabbit lungs.

THEORY

We first briefly describe the mechanism of airway
opening which is based on the ensemble behavior of
airway openings in a tree structure.>? Next, we derive
the P-V relationship for the case of lung inflation from
the degassed state.

We simulated lung inflation by applying a transpul-
monary pressure Py, across the airway tree and gradually
increasing Py, at a uniform rate. Experiments on flexible
tube models® as well as in airways®! suggest that in order
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to open an airway segment a critical threshold pressure
must be overcome. When the pressure difference across
the airway segment reaches this critical value, the airway
opens in a fraction of a second which is negligible com-
pared to inflation time. Thus, we assign an opening
threshold pressure (py,) to each closed airway segment
and consider the opening process of one airway to be
instantaneous. The opening of one airway is a dynamic
and local process.®%" Airways do not open individually,
but in a sequence of avalanches.?® Thus, the dynamics of
airway opening in a tree cannot be handled as an isolated
phenomenon. The essence of this process is as follows.
When Py, exceeds the py, of an airway segment, that
airway opens almost instantaneously. However, one or
both daughter airways that had a py, smaller than Py, (or
had been opened) will also open almost simultaneously
with the parent (or be connected to the top of the tree).
This process of sequentially opening airways continues
to propagate until no more airways can be opened by the
current value of Py. The number of airways opened
depends on the size of the subtree and the distribution of
P, N the subtree and can thus vary considerably. Such a
process of bursts, triggered by overcoming a threshold, is
called an avalanche. The avalanche theory was based on
measured resistance of the terminal airways during infla-
tion which was found to decrease in discrete steps.'*°
The above avalanche model of airway openings predicts
that the distribution of the discrete jumps in the terminal
airway resistance is a power law in agreement with that
derived from experimental data®

Before applying the above ideas to the P-V relation-
ship along the first inflation curve, we first introduce two
normalized pressures: P is the ratio of Py, to the maxi-
mum Py, (P, ma) @t total lung capacity (TLC) represent-
ing the normalized externa pressure, and p is the nor-
malized opening threshold pressure, i.€., P= Pi/Ppmax-
Thus, both normalized pressures take values between 0
and 1. We model the airways as a binary branching tree
with N generations. We assume that at the beginning of
inflation, the first N—n generations constituting the cen-
tral airways, are open and al airways in the last n gen-
erations are closed.

The branching system in the central airways is not
necessarily symmetric; what is required is that the num-
ber of subtrees (L) so defined is large (note that L
=2N-" if the central part is symmetric). However, the
branching within a subtree is taken to be symmetric, that
is the number of alveoli attached to the terminal ends in
each subtree is 2". We further assume that subtree i(i
=1,..,L) has a maximum prssure, P, a which the
subtree completely opens. In other words, the opening
threshold pressures p; in subtree i are random variables
distributed in the interval from 0 to P, ; according to a
probability density distribution f(p); that is the shape of
f(p) is independent of i. Additionally, the P, ; values

are also random variables and are distributed uniformly
in the interval from Py, to 1. Thus P, represents the
lowest pressure at which at least one subtree will become
completely opened.

The volume contained in the airways is less than 10%
of the total lung volume. Hence we take lung volume to
be proportional to the number of aveoli, o, that are open
at a given P. We define an alveolus open if it is not
collapsed and there is a continuous pathway along which
al airway segments are open so that the alveolus is
connected to the trachea. If n is large, o can be suffi-
ciently approximated by its average value, which can be
calculated using the hierarchial structure of the tree.?

We first examine the P—V relations corresponding to
airway openings via avalanches in one subtree. If the
external pressure in the accessible region is P, then the
probability that an airway is open is equal to the area
under the probability density distribution f(p) from O to
P which is just the cumulative distribution function of
the thresholds pressures, F(P). In a given subtree i, if P
is less than P, ; then the probability that an airway is
open is a=F(P,Pxi) where we explicitly noted the
dependence of F on Py, ;. The reason is that in subtree
i, the opening threshold pressures are distributed be-
tween O and Pg,; and hence we require that
F(Pmaxi Pmaxi)=1. Let us assume now that in a
k-generation subtree the average number of open airways
is 0. Then, according to Fig. 1, the average number of
open airways at generation k+1, oy, 4, can be related to
oy as follows. There are three different possibilities for
ox+1: (A) When both k-generation subtrees are con-
nected, we obtain o ;=20 with probability «? since
the probability that an airway segment is open is a. (B)
and (C) Only one subtree is connected and oy 1= oy
with probability 2a(1—a). (D) No subtrees are con-
nected so that o, ;=0 with probability (1— a)2. Thus,
we can set up the following recursion relationship:

1= 220+ 2a(1— a) o+ (1— @)20=2a0.

)

This recursion relationship can be solved for an
n-generation tree yielding the number of open aveoli as

ﬁ — [2"F(P,Pmai)", O<P<P i,
0(P,Prai)=0y=
max, i k 2n, Pmax,i<P$1'

)

where we have substituted o with F(P,P i) as well as
included the case P> P, ; Which corresponds to a com-
pletely open subtree.

The total volume or the total number of open aveoli
is obtained by summing Eq. (2) over al subtrees
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B)

FIGURE 1. Schematic diagram of the avalanches in a tree.
Shaded and empty triangles denote subtrees of size o that
are connected and not accessible, respectively. Thick and
dashed lines are open and closed airways, respectively. (A)
Both subtrees become connected at generation k+1; (B)
and (C) only one subtree is connected; and (D) none of the
subtrees are connected. See the text for further explana-
tions.

2an
T P)= ;1 o(PPua)=2V"a(P)), (3

where the angular brackets denotes averaging over all
values of P ; as follows:

R T - 000
(o(P))= f 0(P,Prmai)dPma.  (4)

1- Plow Plow

Equation (4) cannot be solved for the general case, i.e.,
an arbitrary distribution of thresholds. We therefore ex-
amine two specia cases which yielded two different
model types.

Model 1

In this model, we assume that the probability density
distribution f(p) is uniform and therefore the cumulative
distribution of the thresholds is

P/Praxis O<P<Ppi,
FPPa)=| 1 o _poy O

To solve Eq. (4) using Eq. (5), we consider the two
cases, P<Py, and P>P,y,, Separately. For P<P,q,,
we obtain

—(PRD2n
(@(P)=1=p Sm=1) 7" (6)

For P>P,,, we split the integral in Eqg. (4) into two
parts:

- 1 P
<0'(P)>: l_Plow(J U(Papmax,i)dpmax

Plow

i 000
+ fp U(Pupma(,i)dpmax)!

and the two integrals can be easily evaluated using Eq.
2

n

1- Plow

_pn

[(P—Plow)Jrﬁ-

(o(P))= (7)

Equations (6) and (7) can be used to describe the com-
plete P—V relationship of the model as follows. For P
<P\ow, the volume or the average number of communi-
cating alveoli in a subtree is proportional to P". When
P~1>P,,,, the volume is dominated by the first term
in Eq. (7). The transition at P=P,,, is aso smooth, and
Egs. (6) and (7) as well as their derivatives with respect
to P are equal.

Finaly, when P=1, Eq. (7) gives 2", that is the
number of alveoli in one n-generational subtree. Thus,
we divide Egs. (6) and (7) with 2", to obtain the P-V
relationship where both volume V and pressure P are
normalized with their respective values at TLC:

1-n_
(1 F;oW)(n1 D P<Piow,
A=P) (-1
viP) 1 " P —P
- Pow<P=1.
TPy~ Powt g )]s Plow
()

Equation (8) constitutes our final model which is now
suitable to be compared with experimental data. There
are only two parameters in the model. The first is Pq,
which represents the lowest pressures at which one sub-
tree becomes fully open. The second parameter is n, the
order of the subtree in which we assumed that all
airways are closed at the beginning of inflation and
which opens via avalanches. The value of Py, primarily
determines where the step-like transition in volume oc-
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curs whereas n provides the sharpness of the increase in
volume.

Model 2

We now assume that the subtrees have identical
threshold pressure distribution, i.e., Ppai=1 (i
=1,..,N-n) and hence F(P,P,,;)=F(P). In this case,
we can also retain the general form of the cumulative
distribution of the threshold pressures, and the normal-
ized P-V curve is quite simple:

V(P)=F(P)". 9)

In this P—V model, the parameters are the order of the
tree, n, and any parameters necessary to specify F(P).
For simplicity, we only examine one special distribution:
f(p) is uniform between two values, a and b (where 0
<a<bh=<1) and zero outside. The corresponding P-V
model is

P—al"
V<P>=[m

(10)

Note that depending on the two parameters a and b, the
distribution may give rise to a threshold pressure distri-
bution which is either wide or quite narrow with a sharp
peak. The special case when a=0 and b=1, the P-V
model takes a particularly simple form with a single
parameter n, the order of the tree where closure occurs:

V(P)=P". (11)

METHODS
Lung Preparation

New Zealand White rabbits of either sex and body
weight between 1.8 and 3.0 kg were sacrificed by an
overdose of pentobarbital sodium. The chest wall was
opened and the lung, trachea and heart were excised en
bloc. After removal of excess tissues (e.g., heart, esopha-
gus, fat), a cannula was inserted into the trachea and the
lung was degassed in a vacuum chamber according to
Smith and Stamenovic®® after which they were slowly
brought back to atmospheric pressure.

Experimental Setup

Lung volume V was controlled with an apparatus for
continuous inflation—deflation of excised lungs described
previously.?! Briefly, the device consisted of two com-
municating concentric cylinders. Both cylinders were
half-filled with water. The water in the inside cylinder
moved air into the lung. The volume of the displaced
water was considered to be the volume of air entering

the lung. The change in water height in the inside cyl-
inder was measured by a pressure transducer and cali-
brated as the air volume. Transpulmonary pressure Py,
was measured in the tracheal outlet. Validyne model
MP45-28-871 (+50 cmH,0) pressure transducers and
Validyne CD19A carrier demodulators were used to
monitor pressure—volume P-V data. Both pressure and
volume signals during the first and second inflation and
deflation cycles were sampled at 53 Hz by Data Trans-
lations DT2811 DAS and analog-to-digital converter.
Data were stored by ALS 80486/25 MHz computer for
off-line analysis.

Protocol

The degassed lungs were suspended from the tracheal
cannula, attached to the apparatus for the P—V measure-
ments. The lungs were inflated to 30 cmH,0, then de-
flated to zero Py, and reinflated to 30 cmH,0. A single
cycle took ~90 s. Lungs trapping excess air were dis-
carded. All measurements were performed at the room
temperature of 27 °C. During measurements the lungs
were kept moist by frequent spraying with a physiologi-
cal saline solution. Measurements were made in 15
lungs.

Data Analysis and Modeling

To obtain normalized P-V curves, the measured
pressure and volume data were first scaled by the corre-
sponding pressures and volumes at TLC. There was a
small constant positive component of the volume signal
(corresponding to tissue volume) which was numerically
removed from the data. The normalized P-V curves
were then fit by the models given by Egs. (8) and (10)
using a global optimization algorithm* which minimized
the root-mean-square error between measured and model
simulated volume. The model parameters are given as
mean * one standard deviation and compared using
paired t tests.

RESULTS

Two typical examples of the P—V curves measured in
two excised rabbit lungs are shown in Fig. 2. Note that
in both cases the first inflation is qualitatively different
from the second inflation. The first inflation P-V curve
in Fig. 2(A) shows a steep increase in volume similar to
a power-law function. The first P-V curve in Fig. 2(B)
also shows a sharp increase in V. However, the pressure
then temporarily decreases and then increases again.
Seven out of the 15 lungs we studied displayed the
behavior shown in Fig. 2(B). Since the models given by
Egs. (8) and (10) are not consistent with this behavior,
we only analyzed the P-V curves of the eight lungs
which were similar to that in Fig. 2(A).
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FIGURE 2. Two representative examples of the normalized
pressure—volume curves. Inflation starts from the degassed
state at zero volume and negative pressure. Note that the
second inflation is very different from the first one. (A) P—V
curve of lung No. 16 where the volume is a power-law func-
tion of pressure; (B) P—V curve of lung No. 29 where pres-
sure displays a decrease after the initiation of volume in-
crease.

Figure 2(A) aso shows that following the sharp in-
crease in volume, the rate of change of this volume
increase starts decreasing at high pressures (>0.8).
Modd 2 being a simple power law [Eg. (10)] is not
consistent with this behavior whereas model 1 [Eq. (8)]
may give rise to this phenomenon. To be able to com-
pare the performances of the two models, we only fit the
data in the region where the rate of change in volume
increase did not decrease (P<0.85).

The models provided very good fits to these data as
exemplified in Fig. 3. The weights and TLCs of the
lungs, the inflation flow rates, the errors, and the optimal
parameters corresponding to both models are given in
Table 1. Except for lungs 15 and 21, model 1 tended to
provide smaller errors despite the fact that it has one less
parameter than model 2. The difference between the er-
rors was not statistically significant. The error did not
correlate significantly with weight, TLC, or inflation rate.

0.6 +

o Data
Model 1
------ Model 2

Volume

Pressure

FIGURE 3. Normalized pressure—volume curve of lung No.
16 (symbols) and the fit of model 1 defined by Eq. (8) (solid
line) and model 2 defined by Eq. (10) (dashed line).

The average order of the subtrees in which the model
assumed a complete closure at the beginning of the first
inflation was 17+5 in both models (their difference was
not statistically significant). In model 1, the relative pres-
sure threshold at which one subtree completely opens
was 0.79%0.12 which corresponds to Py, of 23.4+3.6
cmH,0O. The parameter b in model 2 correlated strongly
with Py, (correlation coefficient 0.97); however, b was
statistically significantly higher than Py, . Interestingly,
parameter a was very close to zero. There was no cor-
relation between the weight, TLC, or inflation rate and n.
However, there was a negative correlation between Py,
and TLC (correlation coefficient 0.91) and a weaker cor-
relation between Py, and inflation rate (correlation co-
efficient 0.64).

DISCUSSION

In this study we have developed two mathematical
models of airway opening based on statistical mechanical
principles and applied them to the first inflation of ex-
cised lungs from their degassed state. The basis of the
model is the statistical process of recruitment of aveoli
via an avalanche-like airway opening. Indeed, the re-
cruitment of lung units has recently been shown to ac-
count for much of lung hysteresis.® The significance of
the present modeling effort is that we quantified the
recruitment process which, based on global P—V mea-
surements made at the airway opening, alowed us to
predict the site of airway closure. It is noteworthy that
this information was independent of whether we ana
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TABLE 1. Weight of lungs, flow rates, and the parameters obtained from model fitting. W, weight of lobe; TLC, total lung
capacity; Flow, volumetric inflation rate; n, order of tree in the models; P, , &, and b are pressures defining the distribution of

thresholds (see the text). Error is 1073 times the root-mean-square error between data and models.

Model 1 Model 2

Lung W TLC Flow

# (9) (ml) (ml/s) n Plow Error n a b Error

9 8.4 82 7.1 18.8 0.87 6.6 17.8 0 0.93 16.9
14 8.8 73 8.3 175 0.96 7.0 17.7 0 0.97 75
15 11.7 77 12.6 15.1 0.97 143 20.4 0 0.95 11.0
16 9.9 81 13.3 8.3 0.81 7.2 8.3 0 0.89 7.2
21 7.6 95 17.9 254 0.54 29.4 24.9 0 0.61 8.7
23 10.5 98 12.8 18.7 0.66 35 135 0 0.79 3.9
27 14.0 97 12.6 16.0 0.61 5.3 185 0 0.69 6.5
32 9.4 86 134 16.0 0.89 3.6 16.2 0 0.93 3.2
Mean 10.0 86 12.3 17.0 0.79 9.6 17.2 0 0.85 8.1
SD 2.0 10 33 4.8 0.16 8.7 4.9 0 0.13 4.3

lyzed the P—V data with model 1 or model 2. This
indicates that the avalanche mechanism does capture the
essence of the data and hence with regard to the global
P-V relationship, the collective behavior of airway
opening may be more important than the manner in
which individual airways reopen. Before discussing the
physiological implications of our results we first evaluate
the relevance of the models with regard to severa
mechanisms that have been simplified or neglected from
the analysis.

Model Assumptions

The essence of the models is that they incorporate the
ensemble behavior of the airway opening in a tree struc-
ture: airways do not open individualy, the opening of
one airway can initiate the opening of subtended airways
leading to a cascade or avalanche of airway openings.>?®
Using this avalanche mechanism, we calculated the av-
erage number of alveoli that open as a function of pres-
sure. Since we used a symmetric binary tree in the cal-
culations, we derived closed-form solutions which
alowed us to analyze experimentaly obtained P-V
curves. Although the airway tree is asymmetric, we do
not expect that the symmetry assumption introduces se-
rious limitation in our case since the last 5-10 genera-
tions of the bronchia tree are not grossly asymmetric.®
Indeed, using numerical simulations, we have recently
shown that the distribution of recruited aveolar volumes
and hence the P-V curve does not depend on
asymmetry.?* Additionally, we also assumed that once
the pressure reaches the threshold value of the terminal
airways the subtended alveoli open immediately, that is,
we did not assign a separate opening threshold pressure
to the alveoli. Nevertheless, alveolar collapse can occur
independently of airway closure.® Although Hughes and
Rozenzweig® found that the pressure required to collapse

airways and aveoli are quite similar, their respective
opening threshold pressures could be quite different. The
large atelectatic areas on the surface of degassed lungs
clearly indicate massive aveolar collapse. In the present
models the opening of atelectatic areas is absorbed in the
threshold pressures of the last generation airways.

In model 1, another important assumption was that the
opening threshold pressures are distributed uniformly. In
model 2, we dtill have a uniform distribution between
two limits, a and b. However, if the difference between
b and a was small compared to unity, i.e., the full range
of inflation pressure, the distribution of threshold pres-
sures could be very sharp—more like a Gaussian. We
found that the parameter a always approached 0 and b
was close to 1. Thus, the data required that the distribu-
tion of the threshold pressures be wide and relatively
uniform. As an additional verification, we replaced the
uniform distribution in model 2 by an exponentia distri-
bution between 0 and 1. This model did not improve the
fits to the P—V data and aso predicted an almost uni-
form distribution.

These findings apparently contradict the predictions of
Gaver et al.’ who measured the relationship between py,
and opening velocity u in thin-walled flexible tubes
coated inside with liquids of different viscosity (u) and
surface tension (7). They found that if the capillary num-
ber (Ca=uu/vy) is smal, then py,~8v/R, where R is
the radius of the tube. This implies a deterministic rela
tionship between py, and R or the generation number
such that smaller airways are increasingly more difficult
to open. In a follow-up study, Naureckas et al.™® using
microfocal x-ray imaging, measured py, as a function of
airway diameter and found that their data could be well
approximated by pi,~87y/R. Our primary assumption in
model 2, on the other hand, was that the py, does not
have a generation number dependence. This, however,
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FIGURE 4. Normalized pressure—volume curves simulated
directly using avalanches in a tree where, at the beginning of
inflation, the first N=10 generations were assumed to be
open and the last n=10 generations were assumed to be
completely closed. The dotted line represents the cases
where the opening threshold pressures were distributed uni-
formly between 0 and 1. The dashed line is a model where
the threshold pressures were nonuniformly distributed in-
creasing hyperbolically with the increasing generation num-
ber toward the periphery (see the text). The open symbols
are the pressure—volume curve of lung No. 16 and the solid
line is the fit of model 1.

may not contradict the p;,~ /R relationship as explained
below.

The deterministic py~1/R relationship is different
from the spatial distribution of threshold parameters. In
the study by Naureckas et al.,® airways were selected
without regard to their spatial location or generation
number. Moreover, their data also demonstrate that for
airways with practically the same diameter, the corre-
sponding py, can easily vary as much as 30%-50%.
Thus, while py, can inversely depend on airway diam-
eter, its gpatia distribution can till be wide and rela-
tively uniform across the tree due to local variations in
the physical quantities determining py,. We recently
argued? that there are several mechanisms that can bal-
ance the strong generational dependence suggested by
Gaver et al.® These include geometry, local variations in
R, v, lining liquid thickness, airway wall thickness, air-
way wall elasticity, parenchymal tethering, and possibly
smooth muscle tone.

There are no direct experimental data on the spatial
distribution of py,. We therefore examined this problem
via simulating the P—V curve during the first inflation in
a model with N=10 and n=10, i.e, the first ten genera-
tions were open and the last ten generations were com-

pletely closed. We first distributed py, uniformly, then
calculated the P—V curve for the given py, distributions
directly, based on simulating the avalanches in the tree.
As shown in Fig. 4 (dotted line), when py, is uniformly
distributed, the ssmulated P—V curve is in good accord
with model 1 [Eqg. (8)]. Note that the P-V curve is
smooth since in essence it is the average of the P-V
curves in 2'° subtrees each having ten generations. For
comparison, in Fig. 4 we aso plotted the P-V curve of
lung No. 16 together with the fit of model 1. The simu-
lated and the measured P—V curves are in good quali-
tative agreement. We also studied the case in which py,
had a strong generational dependence. When the mean of
P is inversely proportional to the generation number,
the volume increases with pressure again as a power law,
but with an exponent that decreases as pressure increases
(Fig. 4, dashed line). Thus, strong generational depen-
dence of py, results in a P—V curve that is qualitatively
very different from the one with a uniform py, distribu-
tion and which is not consistent with any of the data
The main reason is that avalanches with a wide distribu-
tion of sizes do not occur in this model since as the
generation number increases, threshold pressures tend to
increase too and the likelihood that an avalanche pro-
ceeds through many generations is practically zero. Thus,
while our modeling results do not strictly suggest that
the distribution of threshold pressures is uniform in the
periphery of the lung (i.e., the shape of the distribution
could be quite different from a uniform one), the distri-
bution itself is wide enough between 0 and 1 so that
concerning the avalanche mechanism, the distribution is
not essentially different from a uniform one.

Model Parameters

Model 1 has two free parameters, n, the order of
completely closed subtrees and P,y,. With regard to
Piow, We note that it incorporates parallel subtrees into
the model with their maximum threshold pressures P
distributed between Py, and 1. This alows for certain
parts of the lung to be fully open and driven by the local
parenchymal elasticity while in other areas the opening
process still contributes with discrete volume elements to
the P—V curve. This was necessary since the parameter
Pow controls the location where the transition occurs
from an amost constant volume to an almost constant
pressure inflation. Additionaly, if Py, was unity, the
model would reduce to a single power law [Eq. (11)].
When P,,,<1, the model 1 deviates from a single power
law [Eq. (8)] as P approaches unity. As a consequence,
as Fig. 4 demonstrates, the model is able to produce the
inflection point also seen in the data and hence it does
not need to include an explicit term for the alveolar
surface film and tissue elasticity. Note that model 1 is
now fit to the entire P—V curve (in Fig. 3 both models
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are fit only up to P=0.85). Model 2, on the other hand,
is not able to follow the measured P—V curve to high
pressures. Thus, we tested the hypothesis that elasticity is
not necessary. A multiplicative compliance term (nor-
malized to 1) was included in Eq. (8) to account for the
P-V relation of the tissue which, however, did not sig-
nificantly improve the fits and often reduced the unique-
ness of the model parameters.

The parameter n is related to the size of the subtrees
that was predicted to be closed at the beginning of in-
flation. The average value of n is 17, independent of the
model. However, on an individua basis, this number
cannot be interpreted as the exact number of closed gen-
erations in the lung, but rather as some average genera-
tion number. The size of the airways that are initially
closed corresponding to generation 17 from the bottom is
not obvious since, to our knowledge, there is no system-
atic evaluation of the airway tree in rabbits. If we as-
sume that the last generation airways in our model cor-
respond to terminal bronchioles, then the diameter of
such an airway in a rat®® or a dog® lung would be in the
order of 1-2 mm at TLC. Studying the effects of paren-
chymal tethering on airway reopening Yap et al.?” were
able to produce airway closure by suction in airways
having diameters of 2—3 mm which remained closed
after eliminating the suction. Additionally, Hoppin et al.’
noted that isolated lung lobes open quite unevenly. Some
lobes open completely while others may remain entirely
collapsed from which they concluded that even lobar
bronchi can be intensely constricted. Overcoming such a
threshold pressure would then lead to avalanches whose
sizes can be a significant portion of a lobe. Furthermore,
according to the rat airway model?® the number of sub-
trees can be estimated to be between 40 and 100. This
number is sufficiently large to justify the assumption that
the maximum threshold pressures in the subtrees are
distributed between P, and 1 and that we calculate the
average behavior of these subtrees.

Physiological Implications

Having discussed the most important features and as-
sumptions of the model, we now address the different
behavior of the P—V curves seen in Figs. 2(A) and 2(B).
The P-V curve in Fig. 2(B) shows that following the
rapid increase in V, the pressure temporarily decreases
and then increases again. Our model is not consistent
with this behavior. One reason could be that we assumed
that the model is pressure driven whereas in the experi-
ment volume was controlled. The rate of pressure in-
crease has no effect on the model predictions since no
dynamics is built into the model. On the other hand, in
isolated rat lungs, Frazer and Weber® found that the
pressure always showed a temporary decrease after the
initiation of volume increase if the inflation flow rate

was high. We do not find any correlation between this
behavior and flow rate. However, our flow rates were
very similar in the two groups of lungs corresponding to
the two types of P—V curves shown in Fig. 2. We were
not specifically setting out to study this phenomenon and
hence the range of flow rates may not have been suffi-
ciently wide to find a correlation. On the other hand,
there was a negative correlation between flow rate and
Piow Which implies that by increasing flow rate, Pq,,
i.e., the pressure threshold at which a massive airway
opening is initiated, has a tendency to decrease. This has
two implications. First, we note that Gaver et al.® found
that py, increases linearly with the velocity of the air
finger opening a collapsed flexible tube. This is not sup-
ported by our results and hence the primary mechanism
for closure may be compliant collapse and not liquid
bridging in degassed lungs, a conclusion recently also
reached by Otis et al.®® Second, one may speculate that
the decrease in pressure in the transition zone [Fig. 2(B)]
could be due to the dynamics of airway reopening. So
far we have assumed that avalanches are an abrupt and
instantaneous process. However, opening of an airway
requires some time and hence the progression of ava
lanches may not occur instantaneously. When Py, in the
lung exceeds the py, of a branch, that airway opens and
conseguently the local air volume is redistributed into a
larger volume and the overall pressure or Py, is reduced.
The redistribution of air in the newly opened volume
could be faster than the time required to open the next
airway (which could otherwise be opened by the value of
Pyp). This is similar to a situation where the threshold
pressures are dynamically changed by the avalanches and
then parenchymal instabilities may develop as described
by Stamenovic.2® Thus, taking into account the dynamics
of gas redistribution may lead to a P—V relationship
with a negative compliance. Nevertheless, while the ex-
act mechanism for this instability is not clear, the ava
lanche mechanism still governs the transition from an
almost constant volume inflation to the rapid filling of
the lung at an amost constant pressure.

In an attempt to verify the model and to provide some
physiological implications of the results, we applied both
models to a condition which was not used to develop
these models. We fit the P—V curve of one lung which
was lavaged with 3-dimethyl siloxane, a liquid of con-
stant surface tension of 16 dyn/cm.% While modd 1 is
not able to fit the data, model 2 provided an excellent fit
as shown in Fig. 5. Interestingly, the order of the tree
was 2 and 1.2 in models 1 and 2, respectively. The range
over which the threshold pressures were distributed in
model 2 was very narrow, between 0.2 and 0.5. Thus,
since model 1 includes a uniform distribution between 0
and 1, these results imply that the distribution of thresh-
old pressures is rather narrow. Both models predict that
the avalanche behavior does not dominate the P-V



616 Suk! et al.

0.4 o Data g
Model 1 &
8

------ Model 2

Volume

0.0 0.1 0.2 0.3
Pressure

FIGURE 5. Normalized P-V curve of the inflation limb (sym-
bols) in a lung lavaged with 3-dimethyl siloxane, a liquid of
constant surface tension of 16 dyn/cm (Ref. 20) and the fits
of model 1 (solid line) and model 2 (dashed line).

curve as the maximum size of an avalanche would be 1
or 2. Additionally, the P-V curve is such that until a
transition pressure is reached (P=0.2) there is no vol-
ume change which is then followed by essentially a lin-
ear P-V curve (n isamost 1). If the threshold pressures
are determined by the py,~ y/R relationship,® then, since
v is constant not dependent on lung volume, the smallest
threshold pressure would then be directly proportional to
v of the lavage liquid. This is in good agreement with
the findings of Smith and Stamenovic® that the transi-
tion pressure is linearly related to the surface tension.
Their data also demonstrated that the slope of the linear
increase of the P—V curve did not depend very much on
the surface tension. In model 2, this slope is determined
by the width of the threshold distribution. Since this
width is small (0.3) compared to unity (i.e., when the
lung has natural surfactant), regions in the lung periphery
successively open, but not via avalanches. This picture is
consistent with the fact that lungs lavaged with a liquid
of high and constant surface tension do not trap air since
at low lung volumes, the high surface tension does not
alow the larger airways to close up before small airways
close.

In summary, we described the first inflation of de-
gassed, excised lungs with a relatively simple model that
provides information on the distribution of opening
threshold pressures and the range of airway closure in
the collapsed lung. Besides the fact that all mammals
undergo at least once such a P—V curve when they are
born,® these conditions can also occur following an in-

jury or surgery such as cardiopulmonary bypass. The
implications are that in order to open al airway path-
ways in a collapsed lung, the complete transition from
the state of increasing pressure at constant volume
through increasing volume at almost constant pressure to
a state where both increase must be achieved. Similar
closing and reopening phenomena occur in other organs
such as the heart. The importance of these phenomena
was emphasized by Sherman et al.:!° *‘the high value of
critical opening pressure may be responsible for myocar-
dia injury associated with ischemic cardiac arrest during
open-heart surgery.”” Therefore, the mechanism of filling
the lungs via the statistical process of airway reopening
described here may find more general applications than
only the P—V curve of the lungs.
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