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ABSTRACT 
In this opening introductory paper, we discuss the possibility that scale- 

invariant correlations may be a feature of biological and possibly even social 
systems. We illustrate this possibility by reviewing recent work at  Boston 
University. Specifically, we focus first on the apparent scale-invariant 
correlations in non-coding deoxyribonucleic acid (DNA) and show that this 
feature can be used to distinguish coding and non-coding DNA. We argue that 
the inflating a degassed lung is characterized by a cascade of avalanches, as the 
airways successively open, and that distribution functions characterizing this 
cascade are scale invariant. Moving from the lung to the heart, we find that the 
sequence of interbeat intervals is characterized by scale-invariant correlations in 
health, but not in disease. Moving from individual organs to entire organisms, we 
discuss recent experimental evidence that the foraging behaviour of the wandering 
albatross is governed by a scale-invariant Levy distribution. Finally, we enquire 
whether scale invariance describes not only animal behaviour but also human 
behaviour. To this end, we analyse data on urban growth patterns, on finance and 
on economics. For  all cases, we find empirical evidence of scaling behaviour. We 
conclude by asking why such complex systems might display scale invariance. 

5 1. INTRODUCTION 
Here we are going to look at some examples of scale-invariant correlations that 

are of interest to biological scientists and, possibly, to social scientists. 
At one time, it was imagined that the ‘scale-free’ phenomena are relevant to only 

a fairly narrow slice of physical phenomena (Stanley 1971). However, the range of 
systems that apparently display power-law and hence scale-invariant correlations has 
increased dramatically in recent years, ranging from base pair correlations in de- 
oxyribonucleic acid (DNA) (Peng et al. 1992), lung inflation (Suki et al. 1994, 
Barabksi ef al. 1996) and interbeat intervals of the human heart (Peng et al. 1993, 
1995) to complex systems involving large numbers of interacting subunits that dis- 
play ‘free will’, such as govern city growth (Makse et a/. 1995) and even economics 
(Mantegna and Stanley 1995, Stanley et nl. 1996). 
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1374 H. E. Stanley et al. 

3 2. SCALE INVARIANCE I N  NON-CODING DNA 

2.1. What is the puzzle? Why should we care? 
In the human cell, 97% of the DNA is not coding for protein. What is non- 

coding DNA doing? In the past, we were taught simply that DNA codes for protein. 
Now we know that actually only 3% of DNA codes for protein. The rest of the DNA 
seems to be doing nothing; sometimes it is even referred to as ‘junk’ DNA. However. 
we might say that, if this DNA is ‘junk’, it is not like the junk that we throw away. 
but more like the junk we do not know what to do with at present; so we store it in 
the attic. 

There seems to be little agreement among biologists about why the non-coding 
DNA is present. So why should we care about this puzzle‘? 

The practical reason to care is that worldwide the scientific community is spend- 
ing the equivalent of three gigadollars to sequence the three gigabases, one dollar per 
base, of the human genome, that is to uncover the sequence of DNA bases in the 
entire 46 chromosomes of a human being. If only 3% of these are coding for protein, 
we could reduce our time and budget by a factor of 30 if we examined only the 90 
megabases that are actually coding for protein. 

The scientific reason is familiar in biology: if it is there, it usually has a purpose. 
We have two eyes and know why, and two ears and know why. Now 97% of our 
DNA is in a non-coding form, and we do not understand why, but it is easy to be 
tempted to hypothesize that it is there for a reason-that it has some function. 

2.2. What have we done? 
We have modest results to report on both the practical and the scientific sides. 

First, we have taken advantage of the fact that there are long-range correlations in 
the non-coding DNA by devising a algorithm that enables us to identify the non- 
coding and, thus, by implication, the coding parts of DNA, and with a statistical 
accuracy comparable to other methods. Second, on the biological side we have some 
work that cautiously suggests that non-coding DNA has features in common with 
the statistical properties of a structured language. 

If we unwind a tiny piece of the double helix that constitutes DNA, we see that it 
consists of two strands, and that these strands have bases (sometimes called nucleo- 
tides) that have four letters of the alphabet: C, A, T and G. These four have the 
remarkable property that the base on one strand always ‘marries’ a given base on the 
other strand. In every instance, C is paired with G, and A is paired with T. Because 
of this pairing, DNA is able to replicate itself: by breaking the hydrogen bonds, 
followed by each strand making a complementary copy of itself. In the case of 
multiplying viruses, this takes place approximately every 20 min. Overnight, 30 
doublings take place; so each virus leads to lo9 children. 

If we want to describe all the hereditary information contained in, for example, a 
hair cell, we end up with a real sequence of letters that anyone can access from the 
GenBank using the internet. (Everyone in the Genome Project has agreed to make 
every sequence available to the entire world.) In about 41 years, the entire human 
genome will be available-about a million solid pages of data. What do we do with 
all that information? 

If we push a system to very near its critical point, we shall see scale-invariant 
fluctuations of all length scales up to and including the wavelength of light. If 
we shine a laser at a binary mixture near its critical point, it will scatter light, a 
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phenomenon discovered by Andrews (1869) in England about 100 years ago that we 
call ‘critical opalescence’. Andrews interpreted the phenomenon correctly, deducing 
that, near the system’s critical point, fluctuations of all length scales were present and 
also that. since among those present were huge fluctuations, there must be correla- 
tions between the constituents making up the binary mixture. If there were no 
correlations at  all, there would be no way to explain the presence of the huge 
(near the wavelength of light) fluctuations. 

The study of what is termed critical phenomena has became a very active field of 
scientific inquiry. The simple random walk, the motion of a small particle under- 
going Brownian motion, was first accurately measured experimentally by Jean Perrin 
(1915), French Nobel Prize Winner and pre-founder of the concept of fractals. He 
recognized that this trajectory had something in common with this critical point; 
there c)ccur fluctuations on all scales. In Perrin’s words, ‘Fresh irregularities appear 
every time I increase the magnification.’ Over the last 20 years or so, Sir Sam 
Edwards has carefully studied the simple random walk using field theory and 
other methods. This area has also received much attention by numerous experimen- 
talists in Europe and the USA, and the whole field of polymer physics, a field that 
seems to have nothing to do with the concept of the critical point, was found to have 
parallel properties. 

So it should not be too surprising that we find in DNA something in common 
with critical point phenomena. What do we do with the one million pages of data 
describing bases? We start by attempting some visual representation of the data. We 
can construct a ‘visual mountain range’ from the DNA sequence; we take an ‘up 
step’ each time that we have a C or a T and a ‘down step’ each time that we have an 
A or a G. When we do this, we get a landscape. This landscape for the muscle protein 
myosin represents 30 000 bases and differs in appearance from a landscape made up 
of an uncorrelated sequence of bases (also called an uncorrelated random walk). 
Although we can clearly distinguish by eye between the correlated and the uncorre- 
lated sequence, it is still necessary to analyse the data (Li and Kaneko 1992, Peng 
rt (11. 1992). In the case of critical phenomena, Buckingham, Fairbanks and Kellers 
were able to analyse data in such a way that the scale invariance was demonstrated 
quantitatively. In their now-classic graph, the specific heat as a function. of tempera- 
ture is plotted directly on three scales: degrees, millidegrees and microdegrees. The 
three graphs are fairly similar. A log-log plot gives a straight line over three or four 
orders of magnitude. 

To have an analogous form of quantitative measurement of this landscape, we 
must find some measure of the fluctuation of this landscape and observe how it 
depends on the length scale over which the fluctuations are measured. We usually 
find that the variation is power law in nature, and that the exponent N characterizing 
that power-law behaviour has a value of 1/2 for the uncorrelated sequence and for 
sequences with short-range correlations, and a value greater than or less than 1/2 
when there are long-range correlations. 

While everyone can easily obtain DNA sequences, i t  is difficult to analyse their 
statistical properties. The sequence of base pairs displays a huge amount of non- 
stationarity; there are patches of the DNA molecule where there is an excess of one 
kind of base and other patches where there is an excess of another kind of base. We 
cannot assume that we have ‘independent identically distributed random variables’, 
which textbook methods handle well. So it seems that we have two possibilities at 
this point: either to give up or to make up new methods. We have devised a method 
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1376 H. E. Stanley et al. 

that is sensitive to non-stationarity: ‘detrended fluctuation analysis’. It consists of 
making ‘window-boxes’ of a fixed size L, finding the straight-line regression that fits 
the data and measuring the fluctuations around that regression line (Peng et 01. 
1994). This is the key to avoiding the bad effect of non-stationarity. The analysis 
is repeated for successively larger window boxes, and a plot is made of the rms 
fluctuation around that trend line as a function of the window-box size. If the 
original sequence had no correlations, we would expect to find a straight line on 
log-log paper with a slope l/2. What we actually find is a straight line with a slope 
that is closer to 2/3. This straight line extends over approximately three orders of 
magnitude, similar to that in the work by Buckingham, by Fairbanks and by Kellers 
on critical phenomena. 

In biology, unlike physics, one plot does not a discovery make. We need to study 
more than one gene, and we need to use more than one method. When we directly 
measure the correlations or the power spectrum we find comparable exponents 
consistent with the exponent 2/3. 

Our work was independently verified by Richard Voss (1992), who repeated our 
work, but for the entire GenBank (about 25 000 sequences at that time), and not just 
for the 82 genes that we had first worked with, and more recently by Buldyrev et al. 
(1995), who studied even more sequences 3 years later. A group at  the National 
Institutes of Health acquired the first sequence of an entire chromosome and made 
the analogous analysis for that chromosome; the graph and the fluctuations exhibit 
the same exponent of 313, but the linearity extends not over three decades, but four. 

The upshot is that very careful tests by a variety of research groups have con- 
firmed that there is long-range correlation in DNA. This still leaves the question 
about coding against non-coding parts. If we look at the actual chromosome, we see 
that a chromosome consists of some parts that are coding interrupted by other parts 
that are non-coding. Even an individual gene inside has parts that are coding inter- 
rupted by parts that are non-coding. What kind of analysis would enable us to 
distinguish between the coding and non-coding? 

If we return to our original landscape, make a heavy red line for the subset of 
each gene that is actually coding and analyse the correlation properties of just the 
coding parts; stitching together all the little coding regions, we see a landscape that 
differs greatly from the original. This new and different landscape shows no long- 
range correlations. (Note that these two landscapes are of a sample of non-human 
DNA and exhibit a 25% : 75% coding : non-coding ratio, unlike human DNA which 
has a 3% : 97% coding : non-coding ratio.) When we do this procedure repeatedly for 
these same 82 genes, we find that the full gene has a slope of 213, but that the coding 
regions have a slope of only 1/2. 

What principle allows us to ‘stitch together’ coding regions in this analysis? Can 
we obtain data from regions that are 100% coding? Fortunately, in some simpler 
forms of life, one finds that the DNA is almost 100% coding. When we test that 
DNA. we find that the slope is indeed 112. 

Our discovery of a difference between coding and non-coding DNA has been 
confirmed recently by Arneodo et al. (1995). They analysed the same sequences as we 
did but compensated for the non-stationarity using wavelet methods. They found 
again that the non-coding DNA displays long-range power-law correlations and the 
coding DNA does not. 

If there is a difference between the statistical properties of coding and non-coding 
DNA, we ought to be able to build an algorithm to distinguish between these two in 
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Scale-invarinnt cowelutions in biological and sociul sciences 1377 

Figure 1. Beachcomber plot for a typical section containing about 10% of the yeast chromo- 
some 111, from base pair 30 000 to 60 000. The vertical yellow bars indicate the set of 
base pairs forming identified genes, while the white bars indicate less certain ‘putative 
genes’ determined from analysis of open reading frames. The exponent cy is calculated 
by the beachcomber method (Ossadnik et al. 1994). We form an observation box of 
length 800, place this box at the beginning of the chromosome and calculate the long- 
range correlation exponent cy for the 800 base pairs lying inside this box. Then we 
move the box 75 base pairs farther along the chromosome and again calculate CY for 
the 800 base pairs lying inside this box. Iterating this procedure, we obtain 3 15 OOO/ 
75 = 4186 successive values of a, each giving a ‘local’ measurement of the degree of 
long-range correlation. The red curve is obtained using rule 1, namely a ‘down’ step 
for A or G (purines) and an ‘up’ step for C or T (pyrimidine). We see that, when the 
box is covering coding regions, the value of a is generally small while, in between 
coding regions, there is frequently a peak in N. If cv were the same for coding and non- 
coding regions, we would expect the peaks and dips to occur with no evident correla- 
tion in the position of genes. We carried out this analysis for the entire chromosome. 

an unknown sequence of DNA. Why would we want to do that? Because the human 
genome project sequences DNA by machine; the machine spits out the letters and 
does not distinguish between coding and non-coding parts. Our algorithm slides 
down a DNA sequence with a window-box (covering, say, 1000 bases) that pauses 
after each successive base pair, allowing the computer to calculate the long-range 
exponent a for that window box. If the window-box overlaps a coding region, we 
would anticipate that cy = 1/2. If it does not overlap a coding region, we would 
anticipate that a > 1/2. That indeed is what one finds; there is a signal that oscillates 
up and down that tends to ‘dip’ when there are coding regions, in this case a 
chromosome in which each of the genes is alinost 100% coding (figure 1). This 
statistical device is not perfectly accurate (although its accuracy is comparable 
with that of other statistical methods) but it is less sensitive to errors. Occasional 
mess-ups do not change the outcome much. 

2.3. What is ihe junk’s purpose? 
Three years ago at the Bar-Ilan Conference. the long-range correlation properties 

of natural languages were reported (Schenkel et rrl .  1993). The fact that long-range 
correlation properties are present in both non-coding DNA and in natural languages 
of course does not mean that non-coding DNA has a language, but it does suggest 
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1378 H.  E. Stanley et al. 

that DNA has at least one property in common with natural languages. Because of 
Mantegna’s work with our group (Mantegna et nl. 1995), we have systematically 
applied methods of statistical linguistics to the coding and non-coding DNA. One 
conclusion is that non-coding DNA does indeed display some language-like fea- 
tures: a larger redundancy than coding DNA, and a power-law frequency-rank 
plot (in contrast, coding DNA has a logarithmic dependence of n-tuple frequency 
on rank). 

6 3. SCALE INVARIANCE OF THE HEALTHY HEARTBEAT 
The interesting music that you heard before this paper was presented was created 

by a high-school student, Z. Davids, who worked in our research group one recent 
summer. In the composition process he allowed the time interval between each beat 
of a particular human heart (using an actual sequence of beats from an electro- 
cardiogram) to determine the next pitch of the piece; if there was a long period 
between two beats, the algorithm would select a large change in pitch and, if 
the period was short, a small change in pitch. Interestingly, in the average human 
lifetime the heart seems to have the capacity to beat roughly three gigabeats 
without replacement or even repair. The time intervals between each beat of 
these three gigabeats also show a long-range power-law correlation, actually an 
anticorrelation (in the sense that, if there is, for whatever reason, an increase in 
beat rate at some point in time, there will be a corresponding decrease in rate in 
the future). 

Usually, when we consider our heartbeat rate, we only pay attention to the 
average number of beats during some given time interval. For example, a nurse 
takes our pulse and tells us our heartbeat rate is 60 beats per minute. 

However, just as in critical phenomena, in which there is information not only in 
the magnetization (the net number of spins up) but also in the fluctuations in the 
magnetization (which are directly proportional to the susceptibility of the magnet), 
in heartbeat rates there is information in the fluctuations of the time interval 
between each successive beat. If the heart beats 60 times per minute, then the 
interval is roughly 1 s per beat, but some intervals will be 0.95 s and others 1.05 s, 
and so on. 

Using the same analysis methods that we used for DNA, we find that, in the 
healthy heartbeat sequence of a healthy heart, long-range power-law correlations are 
present (Peng et nl. 1992, 1995; Ivanov et al. 1996, 1997). These correlations show 
considerable scale invariance and extend out for as long a period of time as the data 
record, typically one day or about lo5 heartbeats. 

9 4. SCALE INVARIANCE IN LUNG INFLATION 

In contrast with compact objects, scale-invariant or ‘fractal’ objects have a very 
large surface area. In fact, they are composed almost entirely of ‘surface’. This 
observation explains why fractals are ubiquitous in biology, where surface phenom- 
ena (Bunde and Havlin 1994, 1996, BarabBsi and Stanley 1995) are of crucial impor- 
tance. 

Lungs exemplify this feature (figure 2). The surface area of a human lung is 
almost as large as a tennis court. The mammalian lung is made up of self-similar 
branches with many length scales, which is the defining attribute of a fractal surface. 
The efficiency of the lung is enhanced by this fractal property, since with each breath 
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Figure 2. The dynamic mechanism responsible for filling the lung involves ‘avalanches’ or 
‘bursts’ of air that occur in all sizes, instead of an exponential distribution, one finds a 
power-law distribution (Suki et nl. 1994). The underlying cause of this scale-free dis- 
tribution of avalanches is the fact that every airway in the lung has its own threshold 
below which it is not inflated. Shown here is a diagram of the development of ava- 
lanches in the airways during airway opening. The left side shows the classic view of 
the lung, but the right side is colour coded to show the successive avalanches. Note 
that the last avalanche (blue) opens up about 20% of the total lung volume, thereby 
significantly increasing the total surface area available for gas exchange. 

oxygen and carbon dioxide have to be exchanged at the lung surface. The structure 
of the bronchial tree has been quantitatively analysed using fractal concepts 
(Shlesinger and West 199 1). In particular, fractal geometry could explain the 
power-law decay of the average diameter of the airways with the generation number, 
in contrast with the classical model which predicts an exponential decay (Weibel and 
Gomez 1962). 

Not only is the geometry of the respiratory tree described by fractal geometry, 
but also so are the time-dependent features of inspiration. Specifically, Suki and co- 
workers (Suki et al. 1994, 1997, Barabasi et al. 1996, Sujeer et al. 1997) studied 
airway opening in isolated collapsed dog lungs. During constant-flow inflations, 
they found that the terminal airway resistances decreases in discrete jumps, and 
that the probability distribution function n(x) of the relative size x of the jumps 
and the probability distribution n ( t )  of the time intervals t between these jumps 
follow a power law over nearly two decades of x and t with exponents of 1.8 and 2.5 
respectively. To interpret these findings, they developed a branching airway model 
in which airways, labelled i j ,  are closed with a uniform distribution of opening 
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1380 H. E. Stanley et al. 

threshold pressures P. When the ‘airway-opening’ pressure Pa, exceeds P, of an 
airway, that airway opens along with one or both of its daughter branches if 
P, < Pa, for the daughters. Thus, the model predicts ‘avalanches’ of airway open- 
ings with a wide distribution of sizes, and the statistics of the jumps agree with those 
of n(x) and n(t) measured experimentally. They concluded that power-law distri- 
butions, arising from avalanches triggered by threshold phenomena, govern the 
recruitment of terminal airspaces. 

Recently, it has become possible to solve numerically the full Navier-Stokes 
equations for an arbitrary geometry, using the FLUENT software package. 
Andrade et r i l .  (1997a,b) have used this package to solve for a range of fluid flow 
problems. In particular. they have found a potential explanation to the open ques- 
tion concerning the morphogenesis of the lung structure. A commonly held belief is 
that the asymmetric structure of the lung arises solely from geometrical constraints, 
but Andrade et al. suggested a possible different origin for this structure, since 
the asymmetry of the bronchial tree can be a result of the fluid flow asymmetry 
combined with the requirement of homogeneous ventilation (figure 3). 

Figure 3. Contour plot of the stream function in a five-generation tree for a value of 
Reynolds number Re = 4800 in the range of normal breathing. The distribution of 
streamlines a t  the outlet branches is uniform a t  low Re, but highly non-uniform a t  
high Re. The trachea is a t  the top of this figure. and only half of the lung is shown for 
reasons of structural symmetry. The colours correspond to  the value of the air velo- 
city. One might a t  first expect that the flow would bifurcate equally a t  each structural 
bifurcation but, as the simulations demonstrate, the flow ‘remembers’ the flow in its 
grandparents in the sense that it is larger for the branch of the bifurcation that is 
parallel to its grandparent, owing to the effects of inertia which become larger at high 
Re. The text discusses possible implications of this finding; in order to  achieve honio- 
geneous ventilation, it is possible that the lung evolved with a structural asymmetry 
such that the branches that receive small flows subtend proportionally small sub- 
regions. 
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Figure 4. Two wandering albatross, whose wing span is up to 4m, and which can circle the 
entire globe a t  low latitudes, travelling 8000 117 before returning to its ‘family’. The 
flight patterns of these giant seabirds are found to have well defined statistical proper- 
ties corresponding to those of a Levy flight (Peterson 1996, 1997, Viswanathan r t  a/ .  
1996, 1997). 

0 5.  SCALE INVARIANCE OF ANIMAL BEHAVIOUR 
The wandering albatross, a giant seabird, was recently the subject of a popular 

work written by Peterson (1996, 1997) (figure 4). The occasion was an analysis done 
in collaboration with three workers at the British Antarctic Service, who have been 
leg-banding these birds with tracking devices (Viswanathan et al. 1996). On analys- 
ing the data, we found that the migratory paths of these birds obey Levy flight 
statistics, and recently we found that other foraging animals obey well defined 
statistical rules (Viswanathan et a f .  1997). 

Recently. Keitt and Stanley (1997) have applied to a 30 year data set on bird 
populations the same sort of techniques used to describe long-term data sets on 
economics and finance. They find statistical properties that are remarkably similar 
and consistent with the idea that ‘every bird species interacts with every other bird 
species’, just as the economic analysis supports the notion that ‘every firm interacts 
with every other firm’. This empirical result is not without interest, since it serves to 
cast doubt on models of bird population (and of economic systems) in which one 
partitions the entire data set into strongly interacting and weakly interacting 
subsets and then ignores or oversimplifies the interactions in the weakly interact- 
ing subset. 

§ 6. SCALE INVARIANCE IN HUMAN BEHAVIOUR: URBAN GROWTH PATTERNS 

Predicting urban growth is important for the challenge that it presents to theo- 
retical frameworks for cluster dynamics (Benguigui and Daoud 1991, Batty and 
Longley 1994, Benguigui 1995). Recently, the model of diffusion-limited aggregation 
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1382 H. E. Stanley et a/.  

(DLA) has been applied to describe urban growth (Batty and Longley 1994) and 
results in tree-like dendritic structures which have a core or ‘central business district’ 
(CBD). The DLA model predicts that there exists only one large fractal cluster that 
is almost perfectly screened from incoming ‘development units’ (people, capital, 
resources, etc), so that almost all the cluster growth occurs in the extreme peripheral 
tips. In recent work (Makse et ul. 1995) an alternative model to DLA that better 
describes the morphology and the area distribution of systems of cities, as well as the 
scaling of the urban perimeter of individual cities, has been developed. The results 
agree both qualitatively and quantitatively with actual urban data. The resulting 
growth morphology can be understood in terms of the effects of interactions 
among the constituent units forming a urban region and can be modelled using 
the correlated percolation model in the presence of a gradient. 

In the model, one takes into account the following points: 

(i) Urban data on the population density p ( r )  of actual urban systems are 
known to conforin to the relation (Clark 1951) p ( r )  = po exp (-XY), where 
I’ is the radial distance from the CBD situated at the core, and X is the 
density gradient. Therefore, in our model the development units are posi- 
tioned with an occupancy probability p(f) = p ( r ) / p o  that behaves in the 
same fashion as is known experimentally. 

(ii) In actual urban systems, the development units are not positioned at r m -  
d o i ~  Rather, there exist correlations arising from the fact that, when a 
development unit is located in a given place, the probability of adjacent 
development units increases naturally, that is each site is not independently 
occupied by a development unit but is occupied with a probability that 
depends on the occupancy of the neighbourhood. 

In order to quantify these ideas, we consider the correlated percolation model 
(Coniglio et ul. 1977, Prakash e ta / .  1992). In the limit where correlations are so small 
as to be negligible, a site at  position r is occupied if the occupancy variable u(r) is 
smaller than the occupation probability p( r ) :  the variables u( r) are uncorrelated 
random numbers. To introduce correlation among the variables, we convolute the 
uncorrelated variables u(r) with a suitable power-law kernel (Prakash ef ul. 1992) 
and define a new set of random variables q(r) with long-range power-law correla- 
tions that decay as 7, where r f Irl. The assumption of power-law interactions is 
motivated by the fact that the ‘decision’ for a development unit to be placed in a 
given location decays gradually with the distance from an occupied neighbourhood. 
The correlation exponent Q is the only parameter to be determined by empirical 
observations. 

To discuss the morphology of a system of cities generated in the present model, 
we performed simulations of correlated urban systems for a fixed value of the density 
gradient A, and for different degree of correlations. The correlations have the effect 
of agglomerating the units around a urban area. In the simulated systems the largest 
city is situated in the core, which is regarded as the attractive centre of the city, and is 
surrounded by small clusters or ‘towns’. The correlated clusters are nearly compact 
near their centres and become less compact near their boundaries, in qualitative 
agreement with empirical data on actual large cities such as Berlin, Paris and 
London (Batty and Longley 1994, Frankhauser 1994). 

So far, we have argued how correlations between occupancy probabilities can 
account for the irregular morphology of towns in a urban system. As can be seen in 
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figure 5, the towns surrounding a large city such as Berlin are characterized by a wide 
range of sizes. We are interested in the laws that quantify the town size distribution 
N ( A ) ,  where A is the area occupied by a given town or 'mass' of the agglomeration; 
so we calculate the actual distribution of the areas of the urban settlements around 
Berlin and London and find that, for both cities, N ( A )  follows a power law. 

This new result of a power-law area distribution N ( A )  of towns can be under- 
stood i n  the context of our model. Insight into this distribution can be developed by 
first noting that the small clusters surrounding the largest cluster are all situated at 
distances r from the CBD such that p ( r )  < p c  or r > rf .  Therefore, we find N ( A ) ,  the 
cumulative area distribution of clusters of area A .  to be 

Here, n ( A , p )  - A P g ( A / A o )  is defined to be the average number of clusters con- 
taining A sites for a given p at a ,fixed distance y, and r = 1 + 2 / d f .  Here, 

Figure 5. Qualitative comparison between actual urban data and the predictions of the 
correlated gradient percolation model. (a) Three steps of the growth with time of 
Berlin and surrounding towns. Data are shown for the years 1875, 1920 and 1945 
(from top to bottom). (b) Dynainical urban simulations of the model. 
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1384 H. E. Stanley et al. 

Ao(r )  - Ip(r) - yJd lY  corresponds to the maximum typical area occupied by a clus- 
ter situated at a distance r from the CBD, while g ( A / A o )  is a scaling function that 
decays rapidly (exponentially) for A > Ao. The exponent v = .(a) is defined by 
( ( r )  - lp(r) - pCJ-”, where [ ( r )  is the connectedness length that represents the 
mean linear extension of a cluster at a distance r > r,- from the CBD. 

5 7. SCALE INVARIANCE OF HUMAN BEHAVIOUR: FINANCE AND ECONOMICS 
About 35 years ago, Benoit Mandelbrot (1963) wrote an article about fluctua- 

tions in cotton prices. This proved to be a seminal work and has been described in 
many popular books about fractals. In it, he points out the possibility of scaling in 
financial indices. We have extended his analysis to data sets available now 
(Mantegna and Stanley 1995) and confirmed the presence of scale invariance 
(figure 6). Furthermore, it appears that the distribution function conforms to a 
truncated Levy flight distribution (a Levy distribution with a exponential truncation 
in the wings) (Mantegna and Stanley 1994). Recently, the general approach of 
Mantegna and Stanley has been extended to study the scale invariance of one mea- 
sure of the volatility of a financial index (Cizeau et d. 1997, Liu et d. 1997). 

Economics is different from finance, and we have also looked at economic data. 
Specifically, in collaboration with a card-carrying economist, Michael Salinger, we 

I -4 ‘ 
-1 .o -0.5 0.0 0.5 1 .o 

Figure 6. Demonstration of scale invariance in financial time series. Mantegna and Stanley 
(1995) analysed the probability distribution P ( Z )  of the S&P Index variations Z ( t )  
observed at  time intervals At, which ranges from 1 to 1OOOmin. By increasing At, a 
spreading of the probability distribution characteristic of a random walk is observed. 
Shown is a scaled plot of the probability distributions shown. All the data collapse 
onto the At = 1 min distribution by using the scaling transformations appropriate to 
those of a Levy distribution, with o! = 1.40. The points outside the average behaviour 
define the noise level of that specific distribution. 
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Figure 7. Stanley et a/. (1996) analysed the fluctuations in the 1 year growth rates of the sales 
and of the 1 year growth rates of the number of employees as functions of the initial 
values. They calculated histograms for the probability that a firm grows at a rate r 
from one year to the next. They found distinct histograms depending on the size of the 
firm, with larger firms having histograms with a smaller standard deviation. Shown is 
the data collapse obtained when the histograms are scaled by this standard deviation. 

studied the possibility that all the companies in a given economy might interact, 
more or less, like an Edwards-Anderson spin glass. As in an Edwards-Anderson 
spin glass, each spin interacts with another spin, but not with the same coupling and 
not even with the same sign. 

If the sales in a given company .I- decreases by, for example, lo%, it will have 
repercussions in the economy. Some of the repercussions will be favourable; com- 
pany y ,  who competes with x, may experience an increase in market share. Others 
will be negative; service industries that provide personal services for company x 
employees may experience a drop-off in sales as employee salaries decline. There 
are positive and negative correlations for almost any economic change. The notion 
that we can view the economy as a complicated Ising system is possibly as old as 
Mandelbrot’s first work in this area. 

To approach this interesting bit of statistical ‘poetry’ and make sense of it, we 
first located and secured a database that listed the actual size of every firm in the 
USA. With this information, we did an analysis to determine how the distribution of 
firm size changes from one year to the next. We then made a histogram for each of 
three characteristic firm sizes. The largest firms have a very narrow distribution, 
plausible because the percentage of size change from year to year for the largest 
firms cannot be that great. On the other hand, a tiny company or a garage-based 
start-up can radically increase (or decrease) in size from year to year. The histograms 
have a width determined by the size of the firm. When this width is plotted on the .v 
axis of log-log paper as a function of the size of the firm on the x axis, the data are 
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approximately linear over right o r d m  qf mignitude, from the tiniest firms in the 
database to the largest. The width scales as the firm size to an exponent /3, with 
19 = 1/6. We can therefore normalize the growth rate and show that all the data 
collapse onto a single curve, demonstrating the scaling of this measure of firm size 
(figure 7). 

Why does this occur? We are working on that. We model this firm structure as an 
approximate Cayley tree, in which each subunit of a firm reacts to its directives from 
above with a certain probability distribution. This model, developed primarily by 
Sergey Buldryev, seems to be consistent with the critical exponent - 1/6 (Buldyrev 
et nl. 1997). More recently, Amaral et a/. (1997a,b) have proposed a microscopic 
model. 

5 8. DISCUSSION 
What is the point of this paper? Just to show that many different systems appear 

to develop scale-invariant correlations? If so, how do  we understand this empirical 
fact? 

Bak’s idea that systems self-organize themselves such that they are in effect near a 
critical point is an appealing unifying principle. Near a critical point, there is a 
delicate balance between the exponentially growing number of different one-dimen- 
sional paths connecting any two faraway subunits and the exponentially decaying 
correlations along each one-dimensional path (this concept is illustrated, for exam- 
ple, in figure 9.4 in the book by Stanley (1971)). If the control parameter (say, the 
coupling constant) is too small, the correlations die out so fast along each one- 
dimensional path that subunits far from one another are not well correlated. 
However, at a critical point, the exponentially large number of paths connecting 
each pair of subunits is sufficient to balance out the exponential decay along each 
path and the ‘correction factor’ wins out; this correction factor is the power law that 
governs the total number of one-dimensional paths connecting two distant subunits. 
The exponent in this correction factor depends primarily on the system dimension, 
and not at all on the actual arrangement of the subunits (lattice or no lattice). 

Could it be that somehow biological and social systems push themselves ‘up to 
the limit’, just as a sandpile is pushed to the limit before an avalanche starts, an 
image that has attracted recent attention in the debate between ‘self-organized criti- 
cality’ and ‘plain old criticality (for example Vespignani and Zapperi (1997) and 
references therein)? For example, in economics every subunit plays according to 
rules and pushes itself up against the limits imposed by these rules, but social systems 
display a variety of rich forms of ‘order’, far richer than we anticipate from studies of 
ferroniagnets and antiferromagnets (see, for example. some of the papers appearing 
in the work by Knobler et al. (1997)). Could such orderings arise from the complex 
nature of the interactions or from the range of different ‘sizes’ of the constituent 
subunits in the same way as, for example, one finds ordering in sandpiles when sand 
particles of two different grain sizes are dropped onto a heap (for example Makse 
et af. (1997a, 1997b))? These are questions that occupy us now, and questions that I 
would be delighted to discuss with any  readers. 
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