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H .  Eugene Stanley 

HE FUNDAMENTAL PRINCIPLES GOVERNING THE COMPLEX 

SYSTEM CALLED ECONOMICS ARE NOT COMPLETELY 

UNCOVERED. THIS OBSERVATION SEEMS T O  BE ALMOST G E N E W L Y  

ACCEPTED; FOR EXAMPLE, THE 23 AUGUST 1997 ISSUE OF THE 

ECONOMIST FEATURED T H E  COVER ARTICLE, “THE PUZZLING 

FAILURE OF ECONOMICS.” 

Then how can computational physicists contribute to the search for solutions 
to the puzzles posed by modern economics that economists theinselves cannot 
solve? An approach-not very commonly used in economics-is to begin empir- 
ically, with real data that you can analyze in some detail, but without prior mod- 
els. In economics, a great deal of real data is available. If you, moreover, have at 
your disposal the tools of computational physics and the computing power to carry 
out any number of approaches, this abundance of data is a great advantage. Thus, 
for physicists, studying the economy means studying a wealth of data on a well- 
defined complex system. Indeed, physicists in increasing numbers are finding 
problems posed by ecoiiomics sufficiently challenging to engage their attention, 
independent of any personal profit that might be made. Various terms have been 
applied to this new interdisciplinary subfield of physics. Some French physicists 
prefer the termphynance, while others prefer other terms. In an analogy with the 
terms biophysics, geophysics, and astrophysics, in 1994 or 1995 I introduced the term 
econophysics to attempt to legitimize why physics graduate students should be al- 
lowed to work on problems originating in economics. 

If we physicists have any prior bias, it  might be the lesson learned years ago 
when many of us worked on critical phenomena: Everything depends on every- 
thing else. A careful analysis of any system involves studying the propagation of 
correlations from one unit of the system to the next. We learned that these cor- 
relations propagate both directly and indirectly. At one time, it was imagined that 
“scale-free” phenomena are relevant to only a fairly narrow slice of physical phe- 
nomena. However, the range of systems that  apparently display power-law and 
hence scale-invariant correlations has increased dramatically in recent years. Such 
systems range from base-pair correlations in noncoding DNA, lung inflation, and 
iiiterbeat intervals of the human heart, to complex systems involving large num- 
bers of interacting subunits that display “free will,” such as animal behavior’ and 
even human behavior.* In particular, economic time series-for example, stock 
market indices or currency exchange rates-depend on the evolution of a large 
number of strongly interacting systems far from equilibrium, and belong to the 
class of complex evolving systems. Thus, the statistical properties of economic 
time series have attracted the interests of  many physicists. Space limitations mo- 

tivate me to focus mainly on the Boston 
group’s results; the work of other research 
groups is described elsewhere. 

E L Q ~ Q ~ ~ C  time series: carrelations 
or the tack thered 
The recent availability of “high-frequency” 
data lets us study economic ume series on a 
wide range of time scales varylng from sec- 
onds up to years. Consequently, researchers 
have applied a large number of methods 
known from statistical physics to charac- 
terize the ume evoluuon of stock prices and 
foreign exchange rates. 

Much of our recent work is based on 
analysis of the S&P 500 index, an index of 
the New York Stock Exchange (NYSE) that 
consists of the 500 largest companies in the 
US. It  is a market-value weighted index 
(stock price tlmes the number of shares out- 
standing), wlth each stock‘s weight in the in 
dex proportionate to its market The 
S&P 500 index is one of the most widely 
used benchmarks of US equity performance. 
Data typically cover a long period, such as 13 
years (from January 1984 to December 
1996), with a recording frequency of one 
minute or shorter. The total number of data 
points in this 13-year period exceeds one 
million, three orders of magnitude greater 
than Benoit Mandelbrot’s classic analysis of 
cotton price fluctuauons 

The  S&P 500 index Z(t) from 1984 to 
1996 tends to drift constantly upward on a 
sermlog graph-except during crashes, such 
as in October 1987 and May 1990. We an- 
alyze the difference of the logarithm of the 
index values G(t) = log, Z(t + At) - log, Z(t), 
where At is the time lag We count only the 
number of minutes during the stock mar- 
ket’s opening hours and remove the nights, 
weekends, and holidays from the data set 
That is, the market’s closing and next opeii- 
ing is continuous 

The  distributions of the increments of 
economic tlme series, both in stock market 
indices and foreign currency exchange rates, 
turn out to be nearly symmetric and have 
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market fluctuations 

the autocorrelatio 

rious artifact of th 

gives the exponent cx = 0.50. This tells us 
that the long-range correlations are due to 
the economic system’s dynamics and not 
simply due to the fat-tailed distribution, he- 
cause the distribution does not change 
when the data are shuffled. 

Histograms of price changes 
Although the correlations in the price change 
G(t) are not particularly novel, the his- 
tograms of price changes are. Because eco- 
nomic systems consist of a large number of 
interacting units, it is plausible that they 
might be amenable to scaling analysis. Man- 
delhrot in 1963 demonstrated that the his- 
togram of fluctuations in cotton prices obeys 
a scaling distribution, the Lhy  d i d h t i m 6  A 
recent study determined that the high- 
frequency fluctuations in the S&P 500 index 
also exhibit scaling behavi~r.~ Analyzing al- 
most one million records at one-minute in- 
tervals over six years of trading, Rosario N. 
Mantegna and I determined that fluctuations 
on a one-minute time interval were reflected 
in 10-minute, 100-minute, and 1,000-minute 
intervals.’ The distribution of index returns 
fits a Livy distribution with a sharp drop-off 
in the tails. These scaling properties mean 
that viewing stock market returns at one- 
minute intervals provides insight on the be- 
havior at l ,000-minute intervals. 

Thus, the L&y part of the S&P 500 dis- 
tribution agrees with Mandelbrot’s 1963 
cotton-price results, hut the tail truncation 
does not (presumably because the tail statis- 
tics in the low-frequency results are not 
above the noise level). Recently, Para- 
meswaran Gopikrishnan and his colleagues 
asked whether this discrepancy could he be- 
cause the S&P is an average over many 
firms.” To this end, they analyze a database 
documenting every trade in the three major 
US stock markets-the NYSE, the Ameri- 
can Stock Exchange (AMEX), and the Na- 
tional Association of Securities Dealers Au- 
tomated Quotation (NASDAQ)-for the 
entire two-year period of January 1994 to 
December 1995. They thereby extract a 

sample of approximately 40 million data 
points, which is much larger than the one 
million data points analyzed by Liu and his 
 colleague^^^^ and the approximately 1,000 
data points studied by Mandelbrot. Gopikr- 
ishnan and his colleagues find, remarkably, 
an asymptotic power-law behavior, with an 
exponent a 3 for the cumulative disuibu- 
tion (see Figure 1) that is well outside the 
Levy regime (0 < c1< 2).’O 

In summary, previous proposals for the 
histogram of index changes have included a 
Gaussian distribution, a Lkvy distribution,6 
and a truncated L&y distribution, where the 
tails become “approximately exp~nential.”~ 
The inverse cubic result differs from all 
three proposals. Unlike the Gaussian distri- 
bution and the truncated Livy distribution, 
it has diverging higher moments, and unlike 
the Gaussian distribution and the L6vy dis- 
tribution, it is not a stable distributlon. 

Economic organizations 
Economics is of course much broader than 
just analyzing economic time series. Many 
physicists imagine they can add new ideas 
on how to analyze a time series, but what 
about general questions in social science, 
which concerns itself with the organization 
of individuals-each with free will? Taking 
the same “empirical” approach, the Boston 
group has also studied a range of data on 
economic organizations-viewing the data 
through the special eyeglasses of critical 
phenomena (imagining that “everything 
depends on everything else”). Specifically, 
in collaboration with a card-carrying ecou- 
omist, Michael A. Salinger, we studied the 
possibility that all the companies in a given 
economy might interact, more or less, like 
an Edwards-Anderson spin glass.” In that 
spin glass, each spin interacts with every 
other spin-hut not with the same coupling 
and not even with the Same sign. 

For example, a 10% decrease in the sales 
of a given business firm will have repercus- 
sions in the economy. Some of the reper- 
cussions will be favorable-firm B. which 
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figure 1. A log-log plot of the cumulative probability distribution P(g) of the normal- 
ized price increments where g is calculated in units of a standard deviation. The lines 
are power-law fits to the data over the range from two to 100 standard deviations. 
The regression lines yield a = 2.93 and a = 3.02 for the positive and negative tails. (Fig- 
ure courtesy of Parameswaran Copikrishnan, Luis A.N. Amaral, and Martin Meyer.) 

competes with A, might experience an in- 
crease in market share. Others will be neg- 
ative-service industries that provide per- 
sonal services for firm A employees might 
experience a drop-off in sales because em- 
ployee salaries will surely decline. Almost 
any economic change has positive and neg- 
ative correlations. Can we view the econ- 
omy as a complicated spin glass? 

To approach this interesting bit of statis- 
tical “poetry” and make sense of it, Michael 
H.R. Stanley and Michael A. Salinger first 
located and secured a database-called 
Compustat-that lists the annual size of 
every US firm. With this information, they 
and their colleagues calculated histograms 
of how firm sizes change from one year to 
the next.” They then made 15 histograms 
for each of 15 bins of firm sizes. The largest 
firms have very narrow growth-rate distri- 
butions-plausible because the percentage 
of size change from year to year for the 
largest firms cannot be that great. On the 
other hand, a tiny firm or a garage-based 
start-up can radically increase (or decrease) 
in size from year to year. Thus, these 15 
histograms have widths that depend on the 
firm size. When this width is plotted on the 
y-axis of log-log paper as a function of firm 
size on the x-axis, the data are approxi- 
mately linear over eight orders of magni- 
tude, from the tiniest firms in the database 
to the largest. The  width scales with the 
firm size to an exponent p, with p = 1/6.” 
We can therefore normalize the growth 
rate and show that all the data collapse on a 
single curve-demonstrating the scaling of 
this measure of firm size. 

Why does this data collapse occur? Re- 
searchers are working on that. Sergey V. 
Buldyrev models this firm structure as an 
approximate Cayley tree, in which each 
subunit of a firm reacts to its directives 
from above with a certain probability dis- 
tribution.” More recently, Luis A.N. Ama-  
ral and his colleagues have proposed a mi- 
croscopic model that reproduces both the 
exponent and the distribution fun~ t ion . ‘~  

Hideki Takayasu and Kenji Okuyama ex- 
tended the empirical results to a wide range 
of countries and developed still another 
model,’4 

It is not impossible to imagine some very 
general principles of complex organizations 
are at  work here, because similar empirical 
laws appear to hold for data on a range of 
systems that at first sight might not seem to 
be so closely related. For example, instead 
of studying the growth rate of firms, you 
can study the growth rates of countries by 
analyzing the ratio of a country’s GDP 
(gross domestic product) in one year com- 
pared to its value in the previous year. The 
histograms of country GDP sizes appear to 
behave the same way as the histograms of 
firm sizes” (see Figure 2 ) ,  even with the 
same exponent value p = 1/6. Very recently, 
Vasiliki Plerou and her colleagues analyzed 
in the same way a database comprising re- 
search budgets of 7 19 US universities and 
found similar qualitative results, but a 
slightly larger exponent value, p = 1/4. 

Instead of a firm’s size at time t (or the size 
of a GDP or a university budget), you might 
analyze the population N,(t) of a species s in 
successive years. Such data exist for a 30-year 
period for every species sighted in North 
America. Very recently, Timothy H. Keitt 
and I have analyzed this database using the 
same sort of techniques used to describe 
long-term data sets on economics and fi- 
nance.’ We find statistical properties that are 
remarkably similar, and consistent with the 
idea that “every bird species interacts with 
every other bird species,” just as the eco- 
nomic analysis supports the notion that 
“every economic entity interacts with every 
other economic entity.” 

These empirical results are not without 
interest, because they cast doubt on mod- 
els of economic systems-and bird popu- 
lations-that partition the entire data set 
into strongly interacting and wea!dy inter- 
acting subsets and then oversimplify or ig- 
nore the interactions in the weakly inter- 
acting subset. 

-__ 
10‘ 

Price changes (in standard deviations) 

10-7,~+ , , , . , , #  ~ 

t can we say so far, other than just 
at apparently a number of natural 

questions in economics can be investigated 
quantitatively, using empirical analysis meth- 
ods not unlike those used in the study of crit- 
ical phenomena? And that the quantitative 
behavior of these complex economic sys- 
tems-comprising many animate submits- 
is not unlike that found in interacting sys- 
tems comprising many inanimate subunits. 
Can we understand why methods developed 
in, say, critical phenomena to quantify sys- 
tems comprising inanimate subunits should 
apparently apply to complex systems com- 
prising animate subunits? Indeed, the con- 
ceptual framework of critical phenomena is 
increasingly finding application in other 
fields, ranging from chemisq  and biology 
to econophysics and even liquid water. Why 
is this? One possible answer concerns the 
way in which correlations spread through- 
out a system comprising subunits in which 
“everything depends on everychng else.” 

The paradox is simply stated: our intu- 
ition suggests that the correlation C(T) be- 
tween subunits separated by a distance Y 
should decay exponentially with r-for the 
same reason the value of money stored in 
your mattress decays exponentially with 
time (each year it loses a constant fraction of 
its worth). Thus, we might expect that C(r) 
- e?‘t, where E ,  the correlation length, is 
the characteristic length scale above which 
the correlation function is negligibly small. 
Experiments and calculations on mathe- 
matical models confirm that correlations 
usually do decay exponentially. But, if the 
system is at its critical point, the rapid ex- 
ponential decay magically turns into a long- 
range power-law decay: magically 5 + -. 

So then how can correlations actually 
propagate an infinite distance, without re- 
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Figure 2. A test of the similarity of the results for the growth of firms and 
countries: (a) The conditional probability density of annual growth rates for 
countries and firms. All rescaled data collapse onto a single curve, showing 
that the distributions have indeed the same functional form. (b) Standard de- 
viation of the distribution of annual growth rates. The standard deviations 
decay with size with the same exponent for both firms and countries. The size 
is measured in sales for the firms and in CDP for the countries. The firm data 
include all 4,000 publicly-traded manufacturing firms from the 19-year period 
19741993,” while the CDP data include 152 countries for the 43-year period 
1950-1992.15 (Courtesy of Youngki Lee, Luis A. N. Amaral, David Canning, 
and Martin Meyer.) 

quiring a series of 
along the way? We car 
“infinite-range propagation” 
from the huge multiplicity 
paths that connect two 
tion between two spins 
interaction paths that 
creases exponentially with 
On the other hand, the 
teraction paths increases 
a characteristic length 
independent, depending 
lattice dimension. T h  
crease is multiplied by a 
power law that is negligible 
special circumstance- 
Right at the critical po 
caying power-law corrc 
number of interaction p: 
ligible, emerges as the 
off between the two warring 
fects. So, two spins are 
at an arbitrarily large se 

Will the power laws 
describe complex economic 
understood in analogous 
see-as the flip saying 
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