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Dedicated to the memory of Satyajit Ray

This article is based upon the Thirtieth Saha Memorial Lecture (delivered on 4 January
1992) and the Fourth Bose Memorial Lecture (delivered on 5 January 1992). I felt deeply
touched to have been so honored by invitations to deliver these lectures, especially in view
of the list of illustrious predecessors who have held this honor. At the outset I wish to
acknowledge that almost all of my work is connected in one way or another to random walks,
a topic about which I learned most from the classic 1943 review of the great Indian physicist
S. Chandrasekar. I also wish to acknowledge my personal debt to the great culture and music
of India, and to the many Indian scholars who have taught me their unique insights into the
mysteries of physics. In particular, I wish to dedicate this work to the late Bengali genius
Satyajit Ray, whose recent passing has left the world immeasurably poorer. It was my dream
while in Calcutta to have the opportunity of meeting this hero of mine, but his ill health at
that time prevented our meeting.

1. Introduction

In recent years, a wide range of complex structures of interest to scientists, en-
gineers and physicians have been quantitatively characterized using the idea of
a fractal dimension: a dimension - usually not an integer — that corresponds in
a unique fashion to the geometrical shape under study. The key to this progress
is the recognition that many random structures obey a symmetry as striking
as that obeyed by regular structures. This “scale symmetry” has the implica-
tion that objects look the same on many different scales of observation [1-23].
Nonspecialists are also familiar with fractals. Everyone has seen fractal objects
- probably at an early stage in life. Perhaps we once photographed scenery from
the back of a train and noticed that the photograph looked the same at all stages
of enlargement (fig. 1). Perhaps we noticed that the suburban railway system
of Paris has a ramified structure (fig. 2) which in fact turns out to be a fractal
object [24]. Perhaps we observed that snow crystals all have the same pattern,
each part of a branch being similar to itself. In fact, to “see” something at all -
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Fig. 1. Schematic illustration of scale invariance for a blow-up of the central portion of a photograph
taken from the rear of a train in Oklahoma.

Fig. 2. Sketch of the railway network of the greater Paris area. This includes the R.E.R. and
S.N.C.F, systems. After ref, [24].
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Fig. 3. First few stages in the aggregation rule which is iterated to form a Sierpinski gasket fractal.
After ref. [16].

fractal or nonfractal - requires that the nerve cells in the eye’s retina send a sig-
nal, and these retinal nerve cells are themselves fractal objects.

2. Nonrandom fractals

Fractals fall naturally into two categories, nonrandom and random. Fractals in
physics belong to the second category, but it is instructive to first discuss a much-
studied example of a nonrandom fractal — the Sierpinski gasket. We simply iterate
a growth rule, much as a child might assemble a castle from building blocks.
Our basic unit is a triangular-shaped tile shown in fig. 1a, which we take to be
of unit mass (M = 1) and of unit edge length (L = 1). The Sierpinski gasket
is defined - operationally — as an “aggrégation process” obtained by a simple
iterative process. In stage one, we join three tiles together to create the structure
shown in fig. 3b, an object of mass M = 3 and edge L = 2. The effect of stage
one is to produce a unit with a lower density. If we define the density to be

o(L) = M(L)/L? (1)

then the density decreases from unity to 3/4 as a result of stage one.

Now simply iterate - i.e., repeat this rule over and over ad infinitum. Thus in
stage two, join together - as in fig. 3c - three of the p = 3/4 structures constructed
in stage one, thereby building an object with ¢ = (3/4)2. In stage three, join
three objects identical to those constructed in stage two. Continue until you run
out of tiles (if you are a physicist) or until the structure is infinite (if you are a
mathematician!). The result after stage four — with 81 black tiles and 27 + 36 +
48 + 64 white tiles — may be seen in floor mosaics of the church in Anagni, Italy,
which was built in the year 1104 (fig. 4). Thus although this fractal is named
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Fig. 4. The floor of the cathedral in Anagni, Italy is adorned with dozens of mosaics, each in the
form of a Sierpinski gasket fractal. Shown here is a part of one mosaic, showing the fractal at its
fourth stage of iteration. The cathedral and its floor were built in the year 1104 and is possibly
the oldest man-made fractal object. (Courtesy of Rachel Stanley, who at the very young age of 10
spotted and photographed this very “old” fractal.)

after the 20th century Polish mathematician W. Sierpinski, it was universally
known some eight centuries earlier to every churchgoer of this village!

The citizens of Anagni did not have double-logarithmic graph paper in the
12th century. If they had possessed such a marvelous invention, then they might
have plotted the dependence of ¢ on L. They would have found fig. 5, which
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Fig. 5. (a) Sierpinski gasket fractal after four stages of iteration. (b) A log-log plot of g, the fraction
of space covered by black tiles, as a function of L, the linear size of the object. After ref. [26].

displays two striking features:

- o0 (L) decreases monotonically with L, without limit, so that by iterating suf-
ficiently we can achieve an object of as low a density as we wish, and

— 0 (L) decreases with L in a predictable fashion - a simple power law.

Power laws have the generic form y = Ax* and, as such, have two parameters,
the amplitude A and the exponent «. The amplitude is not of intrinsic interest,
since it depends on the choice we make for the definitions of M and L. The
exponent, on the other hand, depends on the process itself — i.e., on the “rule”
that we follow when we iterate. Different rules give different exponents. In the
present example, the exponent is given by the slope of fig. 5b,

logl —log(3/4) _log3

a=slope = = T " log2 log2

2, (2)

while A4 = 1 since p (L) = L*.
Finally we are ready to define the fractal dimension dr, through the equation

M(L) = AL%, (3)
If we substitute (3) into (1), we find
o(L) = AL%2, (4)

Comparing (2) and (4), we conclude that the Sierpinski gasket is indeed a fractal
object with fractal dimension

de = log3/log2 = 1.58... . (3)

Classical (Euclidean) geometry deals with regular forms having a dimension
the same as that of the embedding space. For example, a line hasd = 1, and a
square d = 2. We say that the Sierpinski gasket has a dimension intermediate
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between that of a line and an area — a kind of “fractional” dimension - and hence
the term fractal.

3. Random fractals

Real systems in nature do not resemble the floor of the Anagni church - in
fact, nonrandom fractals are rarely found in nature. Nature exhibits numerous
examples of objects which by themselves are not fractals but which have the
remarkable feature that, if we form a statistical average of some property such
as the density, we find a quantity that decreases linearly with length scale when
plotted on double-logarithmic paper. Such objects are termed random fractals,
to distinguish them from the nonrandom geometric fractals discussed in the
previous section.

In his book Les Atomes, the French physicist Jean Perrin in 1913 gave a first
vivid description of random fractals, using the example of the trail of a Brownian
particle. Perrin wrote, “Fresh irregularities appear each time we increase the
magnification” [25], which corresponds to finding “holes of all sizes” as in fig. 5.
He realized that this finding was remarkably universal - it describes not only the
trail of a Brownian particle (fig. 6), but also a range of other natural phenomena.
One of these is the coastline of Brittany — Perrin noted that the coastline has
a length that increases as the measuring stick used to measure its length gets
smaller. Years later, Mandelbrot showed that the fractal dimension d; provides
a quantitative measure of the roughness of such coastlines.

Fig. 7 is a computer simulation of a random walk with a constraint that the
trail not intersect itself. Note that this walk has holes of all size scales — small
holes, big holes, and even bigger holes. The trail of this constrained random walk
is a model of a polymer chain - a polymer is a string of smaller molecules called
monomers. A monomer itself is nor a fractal, but a long string of monomers is.

It is a fact that random fractals abound. Almost any object for which random-
ness is the basic factor determining the structure will turn out to be fractal over
some range of length scales — for much the same reason that the random walk
is fractal: there is simply nothing in the microscopic rules that can set a length
scale so the resulting macroscopic form is “scale-free” ... scale-free objects obey
power laws.

4. One random fractal: diffusion limited aggregation

Today, there are roughly of order 10° recognized fractal systems in nature,
though a decade ago when Mandelbrot’s classic Fractal Geometry of Nature [1]



Fig. 6. At the top appears the original document, hand-drawn by Jean Perrin, showing the actual
random motion at successive moments of a tiny Brownian particle observed under a microscope
[25]. The fractal nature of a “random walk” is seen more clearly from the lower image, generated on
a high-speed modern computer. This model is defined by the rule that a walker randomly chooses
each step to be North, East, South or West with equal probability. Note that a magnification of a
small part of the walk (sce inset) has the same appearance as the original pattern. Courtesy of B.
Duplantier. After ref. [22].
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Fig. 7. A typical random walk of 5000 steps, which is constrained not to intersect itself. Note that
there appear “holes of all sizes” in this random fractal, just as there appear holes of all sizes in
the deterministic fractal of fig. 5. Courtesy of P. Poole.

was written, many of these systems were not known to be fractal. Diffusion
limited aggregation (DLA) alone has about 50 realizations in physical systems
and much current interest on fractals in nature focuses on DLA [27]. DLA
structures arise naturally when studying many phenomena of current interest
to physicists and chemists, ranging from electrochemical deposition [28] and
dendritic solidification [29-31] to various “breakdown phenomena” such as
dielectric breakdown [32], viscous fingering [33], chemical dissolution [34]
and the rapid crystallization of lava [35].

Like many models in statistical mechanics, the rule defining DLA is simple.
At time 1, we place in the center of a computer screen a white pixel, and release a
random walker from a large circle surrounding the white pixel. The four perimeter
sites have an equal a priori probability p; to be stepped on by the random walker
(fig. 8a), so we write p; = % (i = 1,...,4). The rule is that the random walker
sticks irreversibly — thereby forming a cluster of mass M = 2.

There are now six possible sites, called growth sites (fig. 8b), but the proba-
bilities p; are no longer all identical: each of the growth sites of the two tips has
growth probability pmax = 0.22, while each of the four growth sites on the sides
has growth probability pmin = 0.14. Since a site on the tip is 50% more likely to
grow than a site on the sides, the next site is more likely to be added to the tip
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Fig. 8. (a) Square lattice DLA at time ¢t = 1, showing the four growth sites, each with growth
probability p; = 1/4. (b) DLA at time ¢ = 2, with 6 growth sites, and their corresponding growth
probabilities p;. After ref. [21].

— it is like capitalism, in that the rich get richer.

If the DLA growth rule is simply iterated, then we obtain a large cluster char-
acterized by a range of growth probabilities that spans several orders of magni-
tude - from the tips to the fjords. Fig. 9 shows such a large cluster, where each
pixel is shaded according to the time it was added to the aggregate. From the
fact that the “last to arrive” particles are never found to be adjacent to the “first
to arrive” particles, we conclude that the p; for the growth sites on the tips must
be vastly larger than the p; for the growth sites in the fjords.

Recently, several phenomena of biological interest have attracted the atten-
tion of DLA aficionados. These include the growth of bacterial colonies [36],
the retinal vasculature [37], neuronal outgrowth [38] (fig. 10), and the clas-
sic unresolved puzzle of how HCI, secreted at the base of gastric glands by pari-
etal cells, traverses the mucus layer to reach the lumen without acidifying the
mucus layer. The intriguing possibility that flow of HCI through mucus may in-
volve viscous fingering has received support by recent experiments demonstrat-
ing that injection of HCI through solutions of pig gastric mucin produces finger-
ing patterns which are strongly dependent on the pH, mucin concentration, and
acid flow rate [39]. Above pH 4, discrete fingers are observed, while below pH
4, HCI neither penetrates the mucin solution nor forms fingers. At low mucin
concentrations, tip-splitting fingers develop, while at mucin concentrations ap-
proaching those that occur in the mammalian stomach, tip-splitting fingers are
replaced by ‘dendritic’ fingers which form narrow channels through the mucin.
These results suggest that HCI secreted by the gastric gland can penetrate the
mucus gel layer (pH 5-7) through narrow fingers, whereas HCI in the stomach
interior (pH 2) is prevented from either diffusive or convective return to the
epithelium by the high viscosity of gastric mucus gel on the stomach interior.
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(b) _ _ T
Fig. 9. (a) Largé DLA cluster on a square lattice. Each cluster site is shaded according to the time
which the site joined the cluster. (b) Same cluster, except that now noise reduction and lattice
anisotropy are present, and the cluster takes on a general resemblance to a snowflake. After ref. [29].
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Fig. 10. Typical retinal neuron and its fractal analysis. After ref. [38].

5. Models and their “variants”

In this and the following section, we shall make the case that if one seeks to
understand completely the diffusion-limited aggregation (DLA) model, then one
may gain insight into the role of fluctuations in a range of systems described by
DLA, including fluid mechanical systems, as well as in dendritic solidification.
The detailed descriptions of some such systems requires suitably chosen variants,
such as DLA with anisotropy and noise reduction.

We first argue that we can approach these experimental subjects of classic
difficulty with the same spirit that has been used in recent years to approach
problems associated with phase transitions and critical phenomena [40,41]. This
approach is to carefully choose a microscopic model system that captures the
essential physics underlying the phenomena at hand, and then study this model
until we understand “how the model works”. Then we reconsider the phenomena
at hand, to see if an understanding of the model leads to an understanding of the
phenomena. Sometimes the original model is not enough, and a variant is needed,
and we shall see that this is the case here also. Fortunately, however, we shall
see that the same underlying physics is common to the model and its variants.

5.1. Archetype I: the Ising model and its variants

We begin, then, with the classic Ising model [42]. Over 1000 papers have
been published on this model, but only since 1977 have we known that if one
understands the Ising model thoroughly, one understands the essential physics of
many materials, since they are simply variants of the Ising model. For example, a
large number of systems are related to special cases of the n-vector model, which
in turn is a Ising model in which the spin variable s has not one component but
rather n separate components s;: § = (51,52,...,51).

The Ising model solves the puzzle of how it is that nearest-neighbor interactions
of microscopic length scale 1 A “propagate” their effect cooperatively to give
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Fig. 11. Schematic illustration of the analogy between: (a) the Ising model, which has fluctuations
in spin orientation on all length scales from the microscopic scale of the lattice constant a, up to
the macroscopic scale of the thermal correlation length &7; (b) percolation, which has fluctuations
in characteristic size of clusters on all length scales from a, up to the diameter of the largest cluster
— the pair connectedness length &; and (c) the DLA problem, whose clusters have fluctuations on
all length scales from the microscopic length do = y/L (y is the surface tension and L the latent
heat) up to the diameter of the cluster &;. Also shown, on the right side, is the analogy between
the scaling behavior of the three length scales &7, &, and &;.

rise to a correlation length {7 of macroscopic length scale near the critical point
(fig. 11a). In fact, {7 increases without limit as the coupling K = J/k T increases
to a critical value K. = J/k T,

K‘K°) . 6)

ﬁTNA(——I-(.—C—

The “amplitude” 4 has a numerical value on the order of the lattice constant a..
A snapshot of an Ising system shows that there are fluctuations on all length scales
from a, (=~ 1 A) to & (which can be from 102-10% A in a typical experiment).
Direct experimental evidence of this fact is shown in fig. 12, which is a snapshot
of a system belonging to the Ising universality class which is illuminated by
a beam of visible light. The fact that this light is strongly scattered (“critical
opalescence™) implies that there must be density fluctuations of a magnitude
comparable to the wavelength of the light.

5.2. Archetype 2: random percolation and its variants

In percolation [41], one randomly occupies a fraction p of the sites of a d-
dimensional lattice (the case d = 1 is shown schematically in fig. 11b). Again,
phenomena occurring on the local 1 A scale of a lattice constant are “amplified”
near the percolation threshold p = p. to a macroscopic length ¢,.
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Fig. 12. Behavior of the critical binary mixture cyclohexane-aniline (courtesy of R. A. Ferrell).
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Here p plays the role of the coupling constant K of the Ising model. When p
is small, the characteristic length scale is comparable to 1 A. However when p
approaches p,, there occur phenomena on all scales ranging from a, to ¢,, where
¢, increases without limit as p — pe,

o A(2E) ™ o

Again, the amplitude A is roughly a lattice constant (= 1 A).

Each phenomenon of thermal critical phenomena has a corresponding analog
in percolation, so that the percolation problem is sometimes called a geometric or
connectivity critical phenomenon. Any connectivity problem can be understood
by starting with pure random percolation and then adding interactions. Thus,
for example, we understand why the critical exponents describing the divergence
to infinity of various geometrical quantities (such as &, ) are the same regardless
of whether the elements interact or are noninteracting [41]. Similarly, the same
connectivity exponents are found regardless of whether the elements are con-
strained to the sites of a lattice or are free to be anywhere in a continuum [41].

The range of systems for which connectivity concepts are relevant is remarkably
large. Examples of recent interest in our research group include the hydrogen
bonded network of liquid water (see fig. 13) and processes that occur under
conditions in which a physical gelation phenomenon occurs simultaneously with
a phase separation phenomenon (fig. 14).

5.3. Archetype 3: the Laplace equation and its variants

Just as variations in the Ising and percolation problems were found to be
sufficient to describe a rich range of thermal and geometric critical phenomena, so
we have found that variants of the original Laplace equation V2¢ = 0 that enters
in the mathematical description of DLA are useful in describing puzzling patterns
in fluid mechanics, dendritic growth, and various breakdown phenomena.

In the Ising model, we place a spin on each pixel (site) ofalattice. In percolation
we allow each pixel to be occupied or empty. In fluid mechanics, we assign a
number - call it ¢ — to each pixel. We might think of ¢ as being the pressure or
chemical potential at this region of space.

The spins in an Ising model interact with their neighbors. Hence the state
of one Ising pixel depends on the state of all the other pixels in the system -
up to a length scale given by the thermal correlation length &r. The “global”
correlation between distant pixels in an Ising simulation arises from the fact that
neighboring pixels at { and j have a “local” exchange interaction J;;. Similarly,
the correlation in connectivity between distant pixels in the percolation problem
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Fig. 13. Snapshot of the connected network of liquid water. The enlargements indicate two
different local geometries. One enlargement shows the configuration associated with low mobility,
a conventional four-bonded molecule; here each of the two protons and two lone pairs of the
central water molecule are oriented directly at four adjacent neighbors. The other enlargement
shows a five-bonded configuration associated with higher mobility. Courtesy of B. Ostrovsky [43].

arises from the “propagation” of local connectivity between neighboring pixels.
In fluid mechanics, the pressure on each pixel is correlated with the pressure at
every other pixel because the pressure obeys the Laplace equation.

One can calculate an equilibrium Ising configuration by “passing through the
system with a computer” and flipping each spin with a probability related to
the Boltzmann factor. Similarly, one can calculate the pressure at each pixel
by “passing through the system” and re-adjusting the pressure on each pixel in
accord with the Laplace equation. If we were to arbitrarily flip the configuration
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Fig. 14. A model of a cross-linking polymer system quenched into the two-phase region. Note that
this system has the potential to be a “filter” of a mesh size given by the characteristic spacing
between the polymer strands. Courtesy of S. Glotzer [44].

of a single pixel in the Ising problem (from +1 to —1), we would significantly
influence the configuration of the system out to a length scale on the order of &r.
Similarly, if we were to arbitrarily impose a given pressure on a single point of a
system obeying the Laplace equation, we would drastically change the resulting
pattern out to a length scale that we shall call &;.

Does &, obey a “scaling form” analogous to egs. (6) and (7) obeyed by the
functions ¢ and &, for the Ising model and percolation? We believe that the an-
swer to this question is “yes”, although our ideas on this subject remain some-
what tentative and subject to revision.
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In both thermal critical phenomena and percolation the length L introduced
when we have a finite system size scales the same as the correlation lengths {7
(or&,). Hence for DLA we expect that there will be fluctuations on length scales
up to &;, where & itself increases with the cluster mass according to

1\ 1 , :
Er ~ A(M_) (df = — = fractal d1rnens1on). (8)

L

Here the amplitude A is again on the order of 1 A. Note that (8) is analogous
to (6) and (7) if we think of M — oo as being analogous to K — K., Note also
that v, = 1/d; plays the role of the critical exponents vr and v, of (6) and (7).
Suppose one tests this idea, qualitatively, by examining the largest DLA clusters
in detail. One finds that indeed there are fluctuations in mass on length scales
less than, say, the width W of the side branches. If one makes a log-log plot of
W against mass M, one finds the same slope 1/d; that one finds when one plots
the diameter against A [29].

6. Applications of DLA to dendritic growth
6.1. Fluid models of dendritic growth

By analogy with the Ising model and its variants, we can modify DLA to
describe a variety of phenomena of interest in fluid mechanics. One of the most
intriguing of these concerns a variation of the viscous fingering phenomenon in
which anisotropy is present. Ben-Jacob et al. [45] imposed this anisotropy by
scratching a lattice of lines on their Hele-Shaw cell. They found patterns that
strongly resemble snow crystals! If viscous fingers are described by DLA, then
can the Ben Jacob patterns be described by DLA with imposed anisotropy?

Nittmann and Stanley [29] attempted to answer this question — specifically,
they attempted to reproduce the Ben-Jacob patterns with suitably modified DLA.
A scratch in a Hele-Shaw cell means that the plate spacing b is increased along
certain directions, and the permeability coefficient k relating growth velocity to
VP is proportional to b2 (k « b?). Hence Nittmann and Stanley calculated DLA
patterns for the case in which there was imposed a periodic variation in the k,
and found patterns resembling snowflakes (fig. 9b).

6.2. Dendritic solid patterns: “‘snow crystals”

Of course, real dendritic growth patterns (such as snow crystals) do not oc-
cur in an environment with periodic fluctuations in & (x, y). Rather, the global
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asymmetry of the pattern arises from the /ocal asymmetry of the constituent wa-
ter molecules. Can this local asymmetry give rise to global asymmetry? Buka et
al. [45] replaced the Ben-Jacob experiment (isotropic fluid, anisotropic cell) by
the reverse: isotropic cell but anisotropic fluid!

To accomplish this, they used a nematic liquid crystal for the high viscosity
fluid. Thus the analog of the water molecules in a snow crystal are the rod-shaped
anisotropic molecules of a nematic. This experiment shows that the underlying
anisotropy can as well be in the fluid as in the environment.

Snow crystal formation is thought to involve mainly the aggregation of tiny
ice particles and droplets of supercooled water [46—-49]. To the extent that snow
crystals grow by adding water molecules previously in the vapor or liquid phase,
the growth rate is thought to be limited by the diffusion away from the growing
snow crystal of the latent heat released by these phase changes. Under conditions
of small Péclet number, the diffusion equation describing the space and time
dependence of the temperature field reduces to the Laplace equation. Thus a
reasonable starting point is DLA, independent of whether we wish to focus on
particle aggregation, heat diffusion, or both.

While the various deterministic models of snow crystals produce patterns
that are much too “symmetric”, the DLA approach suffers from the opposite
problem: DLA patterns are too “noisy”. That DLA is too noisy has long been
recognized as a defect of this otherwise physically appealing model. Recently, an
approach has been proposed [31] that retains the “good” features of DLA and at
the same time produces patterns that resemble real (random) snow crystals. We
introduce controlled amounts of noise reduction. We do not explicitly introduce
anisotropy - the only anisotropy present is the six-fold anisotropy arising from
the underlying triangular lattice.

The patterns obtained [31] have the same general features for all values of
s greater than about s = 100. The fjords between the 6 main branches contain
much empty space; some snow crystals have such wide “bays” but some do
not. A better model would seem to require some tunable parameter that enables
the complete range of snow crystal morphologies to be generated. One such
parameter, 7, has the desired effect of reducing the difference in the ratio of the
growth probabilities between the tips and fjords. Specifically, we relate by the
rule p; x (V¢)" the growth probability p; (the probability that perimeter site i
is the next to grow) to the potential ¢.

We used 7 to tune the balance between tip growth and fjord growth and found
growth patterns that resemble better the wide range of snow crystal morpholo-
gies that have been experimentally observed (fig. 15). Moreover, our values for
dr agreed with values we obtained by digitizing photographs of experimentally
observed snow crystals [31]. We found that the effect of tuning a surface tension
parameter o is to thicken the side branches, to round the sharpér points of the pat-



(a)

(b)

Fig. 15. Comparison between photographs of real snow crystals and some typical DLA computer
simulations with 4000 particles and a noise reduction parameter value s = 200. (a) n = | (dy &
1.5), (b) 7 = 0.5 (d;y = 1.85), and (c) n = 0.05 (d; = 2). The same values of d; are found for
the experimental patterns shown. After ref. [31].
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Fig. 16. Comparison between photographs of real snow crystals and some typical DLA computer
simulations with non-zero surface tension ¢. As in fig. 15, s = 200. (a) n = 1.0 and ¢ = 0.1,
(b) # =0.5and g = 0.5, and (¢} # = 0.1 and ¢ = 0.2. After ref. [31].
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tern, and to fill in the tiny holes that are present even for small values of 7 (fig. 16).

6.3. Dendritic solid patterns: growth of NHBr

Dendritic crystal growth has been a field of immense recent progress, both
experimentally and theoretically. In particular, Doughertyet al. {50] have made a
detailed analysis of stroboscopic photographs, taken at 20 s intervals, of dendritic
crystals of NH4Br (fig. 17a). Simulations based on DLA are shown in fig. 17b.
After each 333 particles are added, a contour has been drawn. The patterns
obtained strongly resemble the experimental patterns of fig. 17a. Side branching
arises from the fact that an approximately flat interface in the DLA problem
grows “trees” (which resemble “bumps” in the presence of noise reduction);
these compete for the incoming flux of random walkers. If one “tree” gets ahead,
it has a further advantage for the next random walker and so gets ahead still
more. Thus some side branches grow while others do not. The patterns we obtain
are reasonably independent of details of the simulation in that similar patterns
are obtained when we vary the surface tension parameter g over a modest range;
we can also alter the boundary conditions of the model with some latitude and
even allow for nonlinearity in the growth process (7 % 1).

Fig. 17. (a) Experimental pattern of dendritic growth, measured for NH,Br by Dougherty et
al. [50]. (b) DLA simulation with noise reduction parameter s = 200. After ref. [30].
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7. Long-range correlations in nucleotide sequences

Before concluding, I wish to offer two examples of recent work concerning bi-
ological applications of fractals. The first of these [51] represents an extension
of our group’s work on “correlated randomness” (random systems with long-
range correlations) [52]. DNA nucleotide sequences have been analyzed using
models — such as an n-step Markov chain — which incorporate the possibility of
short-range nucleotide correlations [53]. We are using a novel method for study-
ing the stochastic properties of nucleotide sequences by constructing a 1:1 map
of the nucleotide sequence onto a walk — which we term a DNA walk. We used
this mapping to provide a quantitative measure of the correlation between nu-
cleotides over long distances along the DNA chain. We discovered in the nu-
cleotide sequence a remarkably long-range power law correlation that is signifi-
cant because it implies a new scale invariant property of DNA. We found such
long-range correlations in intron-containing genes and in non-transcribed regu-
latory DNA sequences, but not in cDNA sequences or intronless genes.

For the conventional one-dimensional random walk model, a walker moves
either up (u(i) = +1) or down (u(i) = —1) one unit length for each step |
of the walk [54]. The DNA walk is defined by the rule that the walker steps
up (#(i) = +1) if a pyrimidine occurs at position a linear distance / along
the DNA chain, while the walker steps down (u(i) = —1) if a purine occurs
at position i. The question we ask is whether such a walk displays only short-
range correlations (as in an n-step Markov chain) or long-range correlations (as
in critical phenomena and other scale-free “fractal” phenomena).

This DNA walk provides a novel graphical representation for each gene and
permits the degree of correlation in the nucleotide sequence to be directly vi-
sualized (fig. 18). It naturally motivates a quantification of this correlation by
calculating the “net displacement” y (£) of the walker after ¢ steps, which is the
sum of the unit steps u (i) for each step i, y({) = Zf=1 u(i).

An important statistical quantity characterizing any walk is the root mean
square fluctuation F (£) about the average of the displacement. For the case of
an uncorrelated walk, the direction of each step is independent of the previous
steps. For the case of a correlated random walk, the direction of each step depends
on the history (“memory”) of the walker.

The calculation of F (£) can distinguish three possible types of behavior. (1)
If the nucleotide sequence were random, then F (£) ~ ¢!/2 (as expected for a
normal random walk). (i1) If there were a local correlation extending up to a
characteristic range (such as in Markov chains), then the asymptotic behavior
F(£) ~ ¢'? would be unchanged from the purely random case. (iii) If there is
no characteristic length (i.e., if the correlation were “infinite-range”), then the
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fluctuations will be described by a power law
F(£) ~¢°, (9)

with a # 1/2.

The power-law form of eq. (9) implies a self-similar (fractal) property in the
DNA walk representation. To visualize this finding, one can magnify a segment
of the DNA walk to see if it resembles (in a statistical sense) the overall pattern.
Fig. 19(top) shows the DNA walk representation of a gene while figs. 19(middle
and bottom) show successive magnifications of the central portion. Note the
similar fluctuation behavior on the two different length scales shown.

We made double-logarithmic plots of the mean square fluctuation F (£) as a
function of the linear distance £ along the DNA chain for representative genomic
and cDNA sequences across the phylogenetic spectrum. In addition, we analyzed
other sequences encoding a variety of other proteins as well as regulatory DNA
sequences. We discovered that remarkably long-range correlations (a > 1/2) are
characteristic of intron-containing genes and non-transcribed genomic regulatory
elements. In contrast, for cDNA sequences and genes without introns, we find
that « = 1/2 indicating no long-range correlation. Thus, the calculation of
F (¢) for the DNA walk representation provides a new, quantitative method to
distinguish genes with multiple introns from intron-less genes and cDNAs based
solely on their statistical properties. The finding of long-range correlations in
intron-containing genes appears to be independent of the particular gene or the
encoded protein ~ it is observed in genes as disparate as myosin heavy chain, beta
globin and adenovirus. The functional (and structural) role of introns remains
uncertain, and although our discovery does not resolve the “intron-late” vs.
“intron-early” controversy about gene evolution [55], it does reveal intriguing
fractal properties of genome organization that need to be accounted for by any
such theory.

Very recently, the idea of long-range correlations has been extended to the
analysis of the beat-to-beat intervals in the normal and diseased heart [56].

8. Territory covered by N diffusing particles

The last topic I wish to discuss is an application of basic ideas of random
walks to characterize the spread of a population. This concerns the solution of a
hitherto unsolved problem of interest in physics, chemistry, metallurgy and, of
course, ecology [57].

The mean number of distinct sites visited by a single random walker after a time
t is a quantity of longstanding interest since it is a direct measure of the territory
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covered by a diffusing particle. This quantity enters into the description of many
phenomena of interest in ecology [58], metallurgy [59], chemistry [60], and
physics [61]. Previous analysis [62] has been limited to the number of distinct
sites visited by a single random walker, S| (¢). The nontrivial generalization to
Sn (1), the mean number of distinct sites visited by N walkers, is particularly
relevant to the classic problem in mathematical ecology of defining the territory
covered by N members of a given species {58, 63] and is also related to the
study of the Smoluchowski model for the rate of chemical reactions of the form
A + B — B, taking into account the possibility of a number of B’s rather than
the single B envisaged by Smoluchowski [60]. We have recently obtained an
analytic solution to the problem of calculating S» (¢) on a d-dimensional lattice,
for d = 1,2,3. We have confirmed the analytic arguments by Monte Carlo and
exact enumeration methods. We found three distinct time regimes, and we found
Sy () in each regime. Moreover we also found a remarkable transition in the
actual geometry of the set of visited sites. This set initially grows with the shape
of a disk with a relatively smooth surface until it reaches certain size, at which
the surface becomes increasingly rough (see figs. 20 and 21). This phenomenon
may have been observed by Skellam [63], who plotted contours delineating the
advance of the muskrat population and noted that initially the contours were
smooth but at later times they become rough (see fig. 1 of ref. [63]).

Fig. 18. The DNA walk representations of (top) intron-rich human B-cardiac myosin heavy chain
gene sequence, (middle) its cDNA, and (bottom) the intron-less bacteriophage lambda DNA
sequence. Note the more compiex fluctuations for the intron-containing gene in (top) compared with
the intron-less sequences (middle) and (bottom). Note the more complex fluctuations observed
for the intron-containing gene in (top) as compared with the intron-less sequences (middle).
The very jagged contour of the DNA walk in {top), characteristic of intron-containing genes, is
associated with long-range correlations. After ref. [51].

Fig. 19. The DNA walk representation for the rat embryonic skeletal myosin heavy chain gene
(e = 0.63). (top) The entire sequence. {middle) The magnification of the solid box in (top).
(bottom) The magnification of the solid box in (middle). The statistical self-similarity of these
plots is consistent with the existence of a scale-free or fractal phenomenon which we call a fractal
landscape. Note that one must magnify the segment by different factors along the ¢ (horizontal)
direction and the y (vertical) direction; since F has the same units (dimension) as y, these
magnification factors M, and M) (along £ and y directions respectively) are related to the
scaling exponent « by the simple relation o = log(M, )/ log(M,) [e.g., from (top) to (middle),
log (M, )/ log(M;) = log(2.07)/log(3.2) = 0.63]. After ref. [51].
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Fig. 20. Snapshots at successive times of the territory covered by N random walkers for the case
N = 500 for a sequence of times. Note the roughening of the disc surface as time increases. The
roughening is characteristic of the experimental findings for the diffusive spread of a population
[63]. After ref. [57].

9. Concluding remarks

It 1s awe-inspiring that remarkably complex objects in nature can be quan-
titatively characterized by a single number, d;. It is equally awe-inspiring that
such complex objects can be described by various models with extremely simple
rules. It is also an intriguing fact that even though no two natural fractal objects
that we are likely to ever see are identical, nonetheless many fractals — such as
DLA - have a generic ‘form’ that even a child can recognize (indeed, the teach-
ing of recognizable structures that emerge “magically” from purely random mo-
tion (such as DLA) is finding its way into the school curriculum [64}). The
analogous statement holds for many random structures in nature - €.g., no two
snowflakes are the same yet every snowflake has a recognizable generic form.

Perhaps most awesome 10 a science student is the fact that geometrical models
- with no Boltzmann factors — suffice to capture features of real statistical me-
chanical systems. What does this mean? If we understand the essential physics
of an extremely robust model, such as the Ising model, then we say that we un-
derstand the essential physics of the complex materials that fall into the univer-
sality class described by the Ising model. In fact, by understanding the pure Ising
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Fig. 21. Photograph showing a superposition of the territory covered by N random walkers at
successive times. Note the roughening of the disc surface as time increases. Courtesy of P, Trunfio.

model, we can even understand most of the features of variants of the Ising model
(such as the n-vector model) that may be appropriate for describing even more
complex materials. Similarly, we feel that if we can understand DLA, then we are
well on our way to understanding variants of DLA. And just as the Ising model
is a paradigm for all systems composed of interacting subunits, so also DLA may
be a paradigm for all kinetic growth models. As for biology, our hope is that some
of the newer ideas of correlated spatial randomness [52], anomalous surface
roughening [65], etc. that we and many other groups have been developing will
prove useful in understanding the long-range correlations in intron nucleotide
sequences [51] and the beat-to-beat correlations in the normal heart [56]. Also,
we hope to better understand the nature of realistic surfaces; until now, most of
our work is restricted to 1 4+ 1 dimensions, but we are optimistic that novel visual-



28 H.E. Stanley / Fractal landscapes in physics and biology

Fig. 22. Photographs showing the fashion in which a surface grows in dimension 2 + 1. The colors
indicate the effective “elevation” of the surface, with white clouds indicating the highest elevation.
Courtesy of S.V. Buldyrev,

ization techniques will lead to progress for the case of 2 + 1 dimensions (fig. 22).
The neuron example is particularly intriguing: if evolution indeed chose DLA
as the morphology for the nerve cell, then can we understand “why” this choice
was made? What evolutionary advantage does a DLA morphology convey? Is it
significant that the Paris railway system evolved with the same morphology —
even the same fractal dimension - or is this fact just a numerical coincidence?
Can we use the answer to these questions to better design the next generation of
computers? These are important issues that we cannot hope to resolve quickly,
but already we appreciate that a fractal object is the most efficient way to obtain
a great deal of intercell “connectivity” with a minimum of “cell volume”, so the
next question is “which” fractal did evolution select, and why? Is it worth our
group’s “all-out effort” [66] seeking a deep understanding of both the fractal and
multifractal aspects of DLA, or should we be content with the present numerical
description of the parameters characterizing this idealized model system?
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