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Many recent advances have occurred in our understanding of the role of fluctuations in fluid 

mechanics and dendritic solidification. Our purpose here is to present a review of some of 

these. We shall argue that if one understands completely the simple diffusion-limited 

aggregation (DLA) model or the closely related dielectric breakdown model (DBM), one 

understands the role of fluctuations in a range of fluid mechanical systems, as well as in 

dendritic solidification. The detailed descriptions of some such systems requires suitably 

chosen variants, such as DBM with anisotropy and noise reduction. 

1. Introduction 

The theme I shall develop is that recent work on relatively simple non- 
deterministic models has some utility for describing experimentally observed 
phenomena in fluid mechanics and dendritic growth. I shall first make the case 
that we can approach these experimental subjects of classic difficulty with the 
same spirit that has been used in recent years to approach problems associated 
with phase transitions and critical phenomena. This approach is to carefully 
choose a microscopic model system that captures the essential physics underly- 
ing the phenomena at hand, and then study this model until we understand 
‘how the model works’. Then we reconsider the phenomena at hand, to see if 
an understanding of the model leads to an understanding of the phenomena. 
Sometimes the original model is not enough, and a variant is needed, and we 
shall see that this is the case here also. Fortunately, however, we shall see that 
the same underlying physics is common to the model and its variants. 

2. The Ising model and its ‘variants’ 

We begin, then, with the classic Ising model [l-2]. Over 1000 papers have 
been published on this model, but only since 1977 have we known that if one 
understands the Ising model thoroughly, one understands the essential physics 
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Fig. 1. Schematic illustration of the analogy between (a) the Ising model, which has fluctuations in 
spin orientation on all length scales from the microscopic scale of the lattice constant a, up to the 
macroscopic scale of the thermal correlation length t,, (b) percolation, which has fluctuations in 
characteristic size of clusters on all length scales from a, up to the diameter of the largest 
cluster-the pair connectedness length &,, and (c) the DLA/DBM problem, whose clusters have 
fluctuations on all length scales from the microscopic length d, = yl L ( y is the surface tension and 
L the latent heat) up to the diameter of the cluster 5,. Also shown, on the right side, is the analogy 
between the scaling behavior of the three length scales &, t,, and 5,. 

of many materials, since they are simply variants of the Ising model. For 
example, a large number of systems are related to special cases of the n-vector 
model, which in turn is a simple Ising model in which the spin variable s has 
not one component but rather n separate components si: s = (si, s2, . . . , sn). 

The Ising model solves the puzzle of how it is that nearest-neighbor 
interactions of microscopic length scale 1 A ‘propagate’ their effect coopera- 
tively to give rise to a correlation length ,$‘r of macroscopic length scale near the 
critical point (fig. la). In fact, [r increases without limit as the coupling 
K = JlkT increases to a critical value Kc = JlkT,, 

The ‘amplitude’ A has a numerical value of the order of the lattice constant a,. 
A snapshot of an Ising system shows that there are fluctuations on all length 
scales from a, (s 1 A) to lr (which can be lo*-lo4 A in a typical experiment). 

3. Random-site percolation on a lattice, and its variants 

In percolation, one randomly occupies a fraction p of the sites of a 
d-dimensional lattice (the case d = 1 is shown schematically in fig. lb). Again, 
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phenomena occurring on the local 1 A scale of a lattice constant are ‘amplified’ 
near the percolation threshold p = p, to a macroscopic length 5,. 

Here, p plays the role of the coupling constant K of the Ising model. When p 

is small, the characteristic length scale is comparable to 1 A. However, when p 

approaches pC, there occur phenomena on all scales ranging from a, to t,, 
where 5, increases without limit as p - p,, 

5,-a(Ejq”p. 
c 

(lb) 

Again, the amplitude A is roughly a lattice constant (-1 A). 
Each phenomenon of thermal critical phenomena has a corresponding 

analog in percolation, so that the percolation problem is sometimes called a 
geometric or connectivity critical phenomenon. Any connectivity problem can 
be understood by starting with pure random percolation and then adding 
interactions, or whatever. Thus, e.g., we understand why the critical exponents 
describing the divergence to infinity of various geometrical quantities (such as 
6,) are the same regardless of whether the elements interact or are non- 
interacting [3-41. Similarly, the same connectivity exponents are found regard- 
less of whether the elements are constrained to the sites of a lattice or are free 
to be anywhere in a continuum [4-61. 

4. The Laplace equation and its variants 

Just as variations in the Ising and percolation problems were found to be 
sufficient to describe a rich range of thermal and geometric critical phenomena, 
so we have found that variants of the original Laplace equation are useful in 
describing puzzling patterns in fluid mechanics, dendritic growth, and various 
breakdown phenomena (see table I). 

In the Ising model, we place a spin on each pixel (site) of a lattice. In 
percolation we allow each pixel to be occupied or empty. In fluid mechanics, 
we assign a number - call it C$ - to each pixel. We might think of 4 as being the 
pressure or chemical potential at this region of space. 

The spins in an Ising model interact with their neighbors. Hence, the state of 
one Ising pixel depends on the state of all the other pixels in the system - up to 
a length scale given by the thermal correlation length eT. The ‘global’ 
correlation between distant pixels in an Ising simulation arises from the fact 
that neighboring pixels at i and j have a ‘local’ exchange interaction Jii. 
Similarly, the correlation in connectivity between distant pixels in the percola- 
tion problem arises from the ‘propagation’ of local connectivity between 
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neighboring pixels. In fluid mechanics, the pressure on each pixel is correlated 
with the pressure at every other pixel because the pressure obeys the Laplace 
equation. 

One can calculate an equilibrium Ising configuration by ‘passing through the 
system with a computer’ and flipping each spin with a probability related to the 
Boltzmann factor. Similarly, one can calculate the pressure at each pixel by 
‘passing through the system’ and re-adjusting the pressure on each pixel in 
accord with the Laplace equation. If we were to arbitrarily flip the configura- 
tion of a single pixel in the Ising problem (from +1 to -l), we would 
significantly influence the equilibrium configuration of the system out to a 
length scale on the order of 5,. Similarly, if we were to arbitrarily impose a 
given pressure on a single point of a system obeying the Laplace equation, we 
would drastically change the resulting pattern out to a length scale that we shall 
call 5,. 

Does 5, obey a ‘scaling form’ analogous to eqs. (la) and (lb) obeyed by the 
functions ,$r and 5, for the Ising model and percolation? We believe that the 
answer to this question is ‘yes’, although our ideas on this subject remain 
somewhat tentative and subject to revision. 

The best way to see the fluctuations inherent in structures grown according 
to the Laplace equation is to first introduce some specific models. There are 
two models that were at once thought to be fully equivalent, although it is now 
recognized that the actual patterns produced by each have a different ‘suscep- 
tibility to lattice anisotropy’ [7-81. The first of these models is diffusion limited 
aggregation (DLA) [l]. H ere, one releases a random walker from a large circle 
surrounding a seed particle placed at the origin. When the random walker 

Table I 
A ‘Rosetta stone’ connecting the physics underlying (a) an electrical problem (dielectric 
breakdown), (b) a fluid mechanics problem (viscous fingering), and (c) a diffusion 
problem (dendritic solidification). 

(a) electrical (b) fluid mechanics (c) dendritic solidification 

Electrostatic potential: Pressure: Concentration: 
W, t) P(r, 4 c(r, t) 

Electric field: Velocity: Growth rate: 
Em -V4(r, t) u 0: -VP(r, t) u m -Vc(r, t) 

Conservation: 
V-E=0 v-v=0 v-v=0 

Laplace equation: 
v%p=o V2P=0 vc=o 
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touches a perimeter site of the seed, it ‘sticks’ (i.e., the perimeter site becomes 
a cluster site), and we have a cluster of mass M = 2. A second random walker 
is then released. This process continues until a large cluster is formed. 

In both thermal critical phenomena (or percolation) the length L introduced 
when we have a finite system size scales the same as the correlation lengths tr 
(or 5,). Hence, for DLA we expect that there will be fluctuations on length 
scales up to tL, where tL itself increases with the cluster mass according to 

[d, = t = fractal dimension] . 

Here, the amplitude A is again of the order of 1 A. Note that eq. (lc) is 
analogous to (la) and (lb) if we think of M + 00 as being analogous to K-* KC. 

Note also that V, = 1 ld, plays the role of the critical exponents V, and vP of (la) 
and (lb). Suppose one tests this idea, qualitatively, by examining the largest 
DLA clusters in detail. One finds that indeed there are fluctuations in mass on 
length scales less than, say, the width W of the side branches. If one makes a 
log-log plot of W against mass M, one finds the same slope l/d, that one finds 
when one plots the diameter against M’. 

5. Evidence for similarity of viscous fingering patterns and Laplace equation 

(DLA/DBM) patterns 

In the remainder of this talk, I shall describe in some detail the sorts of 
results we obtain from variants of the Laplace equation. First, it is necessary to 
describe the simplest system that produces patterns resembling interesting 
objects found in nature. Consider, e.g., the classic Saffman-Taylor viscous 
fingering problem. Here, one injects a low-viscosity fluid into a medium filled 
with high-viscosity fluid. In the limit that the viscosity ratio between the high- 
and low-viscosity fluids can be taken to be zero, we can assume that the 
pressure everywhere inside the low-viscosity fluid is a constant: P(i) = 1 for 
i E [cluster of pixels occupied by low-viscosity fluid]. The pressure everywhere 
else in the system will have a value given by the solution of the Laplace 
equation, (1~). This problem is modelled by the dielectic-breakdown model or 
DBM [lo] or diffusion-limited aggregation model or DLA [ll]. These two 
models have in common that both are solutions to the Laplace equation for the 
case in which the pressure is zero at inifinity and P = 1 on an object called the 
cluster. 

Daccord has made accurate measurements on the fractal dimension of 
viscous fingers in both lateral [12] and radial [13] geometries (fig. 2). He 
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Fig. 2. Schematic illustration of the lateral and radial Hele-Shaw cells. Shown are top views. The 
spacing between the plates is typically 1 mm or less (from Daccord et al. [13]). 

reduced the length scale normally imposed by surface tension by using liquids 
with zero inter-facial tension - the two fluids were water and viscous aqueous 
solution of polysaccharide (fig. 3). He found that the resulting patterns are 
indeed fractal, with a fractal dimension identical to that of DLA/DBM (fig. 4). 
Malay et al. [14] found analogous behavior where the cell itself introduced the 
randomness: he accomplished this by placing glass beads inside the cell at 
random. Chen and Wilkinson [15] imposed the randomness by studying viscous 
fingering inside a network of glass tubes whose diameter L was randomly 
chosen from a probability distribution IT(L). 

Not only is the fractal dimension the same for the fluid-mechanics problem 
and for the Laplace patterns, but so also are the multifractal properties the 
same. Multifractals arise when one defines some quantity on all the pixel sites. 
Perhaps the simplest example is that of a charged needle: if we assign to every 
pixel a number equal to the electric field, then the set {Ei} of field values for 
the perimeter sites of the needle form a multifractal set. The distribution n(E) 
giving the number of perimeter pixels with electric field E is characterized, like 
all distribution functions, by its moments 

z(q) = c n(E)E’ . (2) 
E 

As might be anticipated for a self-similar system, these moments scale with the 
mass A4 (or with the diameter L) 

q q) _ Mm(q) _ L-44) . 
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Fig. 3. The growth region of a radial viscous finger, a typical experimental pattern for which DLA 
is the appropriate model. The finger at time t = t, is shown in (a), white (b) displays the difference 
between the pattern at t = t + At and t = t, obtained experimentally by simply subtracting the 

images of the same finger photographed at slightly different times (after Daccord et al. [13]). 

Since M - Ldf, the exponents o and T are related by the fractal dimension d,, 

CL 
4 . 

WI 

For thermal and geometric critical phenomena, exponents analogous to the 
a(q) and ~(4) can be defined by considering a large L x L system at the 
critical point (K = KC) (or p = p,). One finds that the ratio of two successive 
exponents is a constant ‘gap’, so that there is no new information obtained by 
studying higher moments of the distribution. Connected with this simplicity is 
the fact that there is only one independent exponent in finite-size scaling at the 
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Fig. 4. Analysis of the fractal dimension typical of a radial viscous finger by the sandbox method 
(N is the number of occupied pixels in a L x L sandbox whose center is on an occupied pixel). The 
slope of the straight line shown is d, = 1.70 f 0.05, while for DLA d, is believed to be about 1.71 
(from Daccord et al. [13]). 

critical point (a second exponent arises if we wish to relate quantities that 
describe the approach to the critical point). 

In the case of the moments Zq, there is an infinite hierarchy of exponents in 
the sense that the ratio T( q + 1) /7(q) depends on q, 

T(4 + 1) 
T(4) =D(q). (4) 
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Fig. 5. This figure illustrates the harmonic measure for a 50 000 particle off-lattice two-dimensional 
aggregate. Fig. 5a shows the cluster. Fig. 5b shows all 6803 perimeter sites which have been 
contacted by at least one of lo6 random walkers (following off-lattice trajectories). Fig. 5c shows 
all of those perimeter sites which have been contacted 50 or more times and Fig. 5d shows those 
sites which have been contacted 2500 or more times. The maximum number of contacts for any 
perimeter site was 8197 so that p,,,,. = 8.2 X lo-’ (after Meakin et al. [19]). 

For the case of a long thin needle, the exponent D(q) sticks at the value z for 
small q, but for q above a critical value q = q,, D(q) becomes ‘unstuck’ and 
varies continuously with q. 

The same considerations apply to the fluid-mechanics problem. Here, the 
analog of the electric field E KVV is the growth probability pi MVP, where the 
index i runs over all perimeter sites i. Thus, pi is the probability that site i is the 
next to be added to the cluster. If we think of random walkers (fig. 5), then pi 

is the hit probability (the probability that site i is the next to be hit by a 



H. E. Stanley I Role of fluctuations in fluid mechanics 343 

28oor , , , , , , , , 
. 

24CO- ‘.. 
. . 

2m- *: 
.; 

’ z 1600- : 
. . 
’ = 12OO- :. 

. : 

600 - : :, 
‘:. 

400- - ‘-., 
Lb 

0. ’ * ’ ’ ’ Iur, ’ -1 
0 -2 -4 -6 -8 -10 -12 -14 -16 -16 

In P 

(4 

-2 
C 

200.0 

100.0 

0.0 
4.0 -8.0 -12.0 -16.0 - 20.0 

In P 

(b) 

Fig. 6. Comparison between the distribution functions n(p) for (a) simulated and (b) ‘experimen- 
tal’ viscous fingering patterns. Here n(p) dp is the number of perimeter sites with growth 
probabilities in the range [p, p + dp]. The simulated patterns and their growth probabilities were 
obtained using the dielectric breakdown model. The growth probabilities for the experimental 
patterns were obtained by numerically solving the Laplace equation in the vicinity of a digitized 
representation of the pattern with absorbing boundary conditions on the sites occupied by the 
pattern. Similar results were obtained for large (Y (corresponding to the ‘tips’) by directly 
subtracting two successive experimental patterns (after Amitrano et al. [40] and Nittmann et al. 

1411). 

random walker). Clearly, the set pi play a vital role in determining the 
dynamics of growth, since if we know all the pi for every perimeter site i at a 
given time t, then we can predict (in a statistical sense) the state of the system 
at time t + 1. 

Recently, considerable attention has focussed on the question of how a DLA 
aggregate grows. Such growth phenomena are completely characterized by 
assigning to each perimeter site i the number pi, the probability that site i is the 
next to grow. 

Theoretical evidence has been advanced recently to suggest that the numbers 
pi form a multifractal set: this set cannot be characterized by a single exponent 
(as in the case of the DLA aggregate itself), but rather an inifinite hierarchy of 
exponents is required. The physical basis for this fact is that the hottest tips of 
a DLA aggregate grow much faster than the deep fjords (which hardly grow at 
all); hence the rate of change of the pi differs greatly when i is a tip perimeter 
site than when i is a fjord perimeter site. 

Although there have been theoretical calculations of the multifractality of 
DLA [l&20], there had been no experimental tests of these predictions. We 
have recently carried out the first such tests, and found experimental confirma- 
tion of the broad outlines of the theory of multifractals [21]. 

There are many experimental realizations of DLA, and for the present work 
we will focus upon two-dimensional fractal viscous fingers since it is possible to 
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Fig. 7. Comparison of the critical exponents r(q) = (q - l)D( q) for (a) the theoretical and (b) 
‘experimental’ viscous fingering patterns. In both cases, r(q) was obtained numerically (see caption 
to fig. 6) (after Amitrano et al. [40] and Nittmann et al. [41]). 
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Fig. 8. Comparison between (a) theoretical and (b) ‘experimental’ plots of the function f(a) (after 
Amitrano et al. [40] and Nittmann et al. [41]). 

study the real-time growth using a movie camera and to digitize precisely the 
observed time development of the DLA fractal. By subtracting two successive 
‘snapshots’, we can obtain an accurate estimate of the appropriate normalized 
growth probability pi for each perimeter site of the finger (fig. 3). 

We first calculated the distribution function n(p), where n(p) dp is the 
number of perimeter sites with pi in the range [pi, pi + dp,]. This curve has a 



H.E. Stanley / Role of fluctuations in fluid mechanics 345 

long tail extending to the extremely small values of pi for perimeter sites deep 
inside fjords. We found good agreement between the experimental n(p) for 
viscous fingers (fig. 6a) and the corresponding theoretical n(p) calculated for 
DLA (fig. 6b). 

We next formed the moments 2, = C (pi)’ which are characterized by the 
hierarchy of exponents 7q defined through 2, = L -‘q, where L is a characteris- 
tic linear dimension. The experimental results (fig. 7a) show that when q is 
large rq is linear in q, but for q is small there is downward curvature in TV, 
showing that the fjords are characterized by different growth rates than the 
tips. It is conventional to also calculate the Legendre transform with respect to 

4 of rq, -f(a) = 44) - 4 a where (Y = drldq. Downward curvature in T(q) 

corresponds to upward curvature in -f(a) (fig. Sa). The experimental data of 
figs. 7a and 8b compare favorably with the theoretical DLA model calculations 
shown in figs. 7b and 8b. 

6. ‘Dendritic fluid patterns’: A variant of the fluid-mechanical model 

By analogy with the Ising model and its variants, we can modify DLA/DBM 
to describe other fluid-mechanical phenomena. One of the most intriguing of 
these concerns a variation of the viscous fingering phenomenon in which there 
is present anisotropy. Ben-Jacob et al. [22] imposed this anisotropy by scratch- 
ing a lattice of lines on their Hele-Shaw cell. They found patterns that strongly 
resemble snow crystals! If viscous fingers are described by DLA, can the 
Ben-Jacob patterns be described by DLA with imposed anisotropy? 

Nittmann and Stanley [23] attempted to answer this question-specifically, 
they attempted to reproduce the Ben-Jacob patterns with suitably modified 
DLA. A scratch in a Hele-Shaw cell means that the plate spacing b is 
increased along certain directions, and the permeability coefficient k relating 
growth velocity to VP is proportional to b2(k a b2). Hence, Nittmann and 
Stanley calculattd DLA patterns for the case in which there was imposed a 
periodic variation in k. It is significant that their simulations reproduce 
snow-crystal type patterns, just like the experiments. These simulations relied 
for their efficacy on the presence of noise reduction. 

7. Noise reduction 

The original DLA and DBM models are prototypes of completely chaotic 
systems. No discernable pattern emerges. If there is a weak anisotropy, we 
expect that the resulting pattern reflects this anisotropy. For example, if the 
simulations are carried out on a lattice, then the presence of the lattice imposes 
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a weak anisotropy (e.g., on a square lattice, it is more likely that particles 
attach to the westernmost tip if they approach from the west than from the 
north or south). This weak anisotropy is not visually apparent unless large 
clusters are grown. However, the largest DLA clusters made [8] with mass 
about 4 million sites, clearly display the anisotropy (fig. 9). Unfortunately, no 
one can afford the computer resources to make such ‘mega-DLA’ clusters each 
time we wish to model a new phenomenon. Noise reduction is a computational 
trick that seems to have the property that it speeds up the attainment of this 
asymptotic limit. In the absence of noise reduction, a perimeter site becomes a 
cluster site whenever it is chosen (e.g., whenever a random walker lands on 
that site). 

‘Noise reduction’ means that we associate a counter with each perimeter site; 
each time that site is chosen, the counter increments by one. The perimeter site 
becomes a cluster site only after the counter reaches a pre-determined 
threshold value termed s [23-251. When s = 1, we recover the original noisy 
DLA. Growth is dominated by the stochastic randomness in the arrival of 
random walkers. If s is very large, then growth is determined by the actual 
probability distribution. 

For example, suppose we start with a large disc as a seed particle (instead of 
a single site). The growth probability at all points on the disc surface will be 
equal, assuming a continuum. 

< l < l 

I5000 LATTICE UNITS I6000 LATTICE UNITS 

(4 (b) 

Fig. 9. (a) A huge DLA cluster with a mass of 4 million sites grown on a square lattice. (b) Shown 
is only the last 5% of the growth. In reality, there is structure on all scales less than the width W of 
the 4 arms. Moreover, W scales with cluster mass as W- (1 lM)- I’“‘, just in the same way as the 
quantity c$, defined in eq. (1~). The spontaneous appearance of side branches is reminiscent of 
experimental dendritic growth patterns such as those shown in fig. 13 (after Meakin [8]). 
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Fig. 10. Schematic illustration of the difference between an outward (‘positive’) and an inward 
(‘negative’) interface fluctuation. A positive fluctuation tends to be damped out rather quickly, as 
mass quickly attaches to the side of the extra site that is added. On the other hand, a negative 
fluctuation grows, in the sense that mass accumulates on both sides of the tiny notch. The notch 
itself has a lower and lower probability of being filled in, as it becomes the end of a longer and 
longer fjord. This is the underlying mechanism for the tip-splitting phenomenon when no 
interfacial tension is present. Part (a) shows the advancing front (row a) of a cluster with s = 50. 
The heavy line separates the cluster sites (all of which were chosen 50 times) from the perimeter 
sites (ah of which have counters registering less than 50). In (a), no fluctuations in the counters of 
these three sites have occurred yet, and all three perimeter counters register 49. Part (b) shows a 
negative fluctuation, in which the central perimeter site is chosen slightly less frequently than the 
two on either side; the latter now register 50, and so they become cluster sites in row p. The 
perimeter site left in the notch between these two new cluster sites grows much less quickly 
because it is shielded by the two new cluster sites. For the sake of concreteness, let us assume it is 
chosen 10 times less frequently. Hence, by the time the notch site is chosen one more time, the two 
perimeter sites at the tips have been chosen 10 times (c). The interface is once again smooth (row 
y), as it was before, except that the counters on the three perimeter sites differ. After 40 new 
counts per counter, the situation in (d) arises. Now we have a notch whose counter lags behind by 
10, instead of by 1 as in (b). Thus the original fluctuation has been amplified due to the 
tremendous screening of a single notch. Note that no new fluctuations were assumed: the original 
fluctuation of 1 in the counter number is amplified to 10 solely by electrostatic screening. This 
amplification of a negative ‘notch fluctuation’ has the effect that the tiny notch soon becomes the 
end of a long fjord. To see this, note that part (e) shows the same situation after 50 more counts 
have been added to each of the two tip counters, and hence (by the 10: 1 rule) 5 new counts to the 
notch counter. The tip counters, therefore, become part of the cluster, but the notch counter has 
not yet reached 50 and remains a perimeter site. The notch has become an incipient fjord of length 
2, and the potential at the end of this fjord is now exceedingly low. Indeed it is quite possible that 
the counter will never pass from 45 to 50 in the lifetime of the cluster. In our simulations we can 
see tiny notch fluctuations become the ends of long fjords, and all of the above remarks on the 
time-dependent dynamics of tip splitting are confirmed quantitatively (after Nittmann and Stanley 

[231). 
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By the D’Arcy growth law, this disc should evolve in time into a larger disc. 
On the other hand, for ordinary DLA (s = l), as soon as a random walker 
touches a single perimeter site on the disc, this site will become part of the 
cluster and the disc will lose its circular symmetry. The growth probabilities 
will all be re-calculated, and the perimeter sites close by the one that just grew 
will have higher growth probabilities. Thus, the disc with a single site added to 

(4 
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4 4 P3 p4 
e--- 
I 

0 1 
(Randcmnunber=O.2~ 
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. _A Pressure=0 

Fig. 11. Schematic illustration of the first steps in the generation of a DLA cluster by solving 
directly the Laplace equation on a square lattice. 
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it will be more likely to grow in the direction of that single site. At a later time, 
we will almost certainly not find a cluster with circular symmetry. 

Clearly, if s is very large, then the initial growth will preserve an almost 
circular structure. This is because before the first site is added to the circular 
seed, all the perimeter sites will acquire large numbers in their counters 
(S - 1, s - 2, etc.). After the first site is added, these additional perimeter sites 
will be very close to the threshold for growing while the new perimeter sites 
that were born when the first cluster site is added will all have counters 
initialized at zero. A typical cluster grown in this fashion is shown in fig. 10; 
actually this cluster is grown on a square lattice with first and second neighbor 
interactions, not on a continuum. However, Meakin et al. [26] have found an 
almost identical pattern for the continuum case. 

At first sight, there is little economy in computational speed, since one needs 
‘s times as many’ random walkers to reach a given cluster size. Thus, to grow a 
cluster with merely 4000 sites with s = 1000 requires almost as much time as to 
generate a mega-DLA with 4 000 000 sites and s = 1. Fortunately, there is a 
way around this problem. Instead of using random walkers to solve the Laplace 
equation (to sample the growth probabilities pi on each perimeter site), we can 
directly solve the Laplace equation numerically. This is the approach used 
when the dielectric-breakdown model was first proposed (fig. 11). Whether one 
calculates the growth probabilities by sending in random walkers or by solving 
the Laplace equation is immaterial: the difference between DLA and DBM is 
the boundary conditions, not the method of calculation. 

The advantage of the Laplace equation approach when s is large is obvious: 
one need re-solve the Laplace equation only after a site is actually added to the 
cluster. In between adding sites, one simply chooses random numbers weighted 
by the growth probabilities of each perimeter site. This is a relatively rapid 
procedure for the computer, compared with its counterpart of sending random 
walkers. 

8. Dendritic solid patterns: ‘Snow Crystals’ 

Of course, real dendritic-growth patterns (such as snow crystals) do not 
occur in an environment with periodic fluctuations in k(x, y). Rather, the 
global asymmetry of the pattern arises from the local asymmetry of the 
constituent water molecules. Can this local asymmetry give rise to global 
asymmetry? Buka et al. [27] replaced the Ben-Jacob experiment (isotropic 
fluid, anisotropic cell) by the reverse: isotropic cell but anisotropic fluid! 

To accomplish this, they used a nematic liquid crystal for the high-viscosity 
fluid. Thus, the analog of the water molecules in a snow crystal are the 
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rod-shaped anisotropic molecules bf a nematic. This experiment shows that the 
underlying anisotropy can as well be in the fluid as in the environment. 

Snow crystal formation is thought to involve mainly the aggregation of tiny 
ice particles and droplets of supercooled water. To the extent that snow 
crystals grow by accreting water molecules previously in the vapor or liquid 
phase, the growth rate is thought to be limited by the diffusion away from the 
growing snow crystal of the latent heat released by these phase changes. Under 
conditions of small Peclet number, the diffusion equation describing the space 
and time dependence of the temperature field T(r, t) reduces to the Laplace 
equation. Thus a reasonable starting point is DLA, independent of whether we 
wish to focus on particle aggregation, heat diffusion, or both. 

DLA reflects well the randomness inherent in a wide range of growth 
processes, including colloidal aggregation, it fails to describe dendritic solidifi- 
cation. While the deterministic models of snow crystals produce patterns that 
are much too ‘symmetric’, the DLA approach suffers from the opposite 
problem: DLA patterns are too ‘noisy’. That DLA is too noisy has long been 
recognized as a defect of this otherwise physically appealing model. Recently, 
an approach has been proposed [21] that retains the ‘good’ features of DLA 
and at the same time produces patterns that resemble real (random) snow 
crystals. 

Firstly, we introduce [21] controlled amounts of noise reduction of the same 
sort used previously for both DLA and for DBM. It is believed that noise- 
reduced DLA is in the same universality class as ordinary DLA - i.e., it has 
the same fractal dimension d,, the only difference being an increase in the 
characteristic local length scale W. One advantage of setting s > 1 is that the 
asymptotic behavior (M = 00) shows up much sooner than if s = 1. We do not 
explicitly introduce anisotropy - the only anisotropy present is the six-fold 
anisotropy arising from the underlying triangular lattice. 

The patterns obtained [21] have the same general features for all values of s 
greater than about s = 100 - the effect of increasing s seems mainly to be that 
of increasing the width W of the fingers and side branches. The fjords between 
the 6 main branches contain much empty space. Some snow crystals have such 
wide ‘bays’, but some do not. A better model would seem to require some 
tunable parameter that enables the complete range of snow-crystal mor- 
phologies to be generated. We have found one such parameter, n, that has the 
desired effect of reducing the difference in the ratio of the growth probabilities 
between the tips and fjords. Specifically, we relate by the rule pi CC (V#)’ the 
growth probability pi (the probability that perimeter site i is the next to grow) 
to the potential 4 (e.g., C#J may be the temperature T(r) at point r, or the 
probability that a tiny ice particle is at point r). Our model is thus the analog 
for DLA of the ‘7 model’. 
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We used q to tune the balance between tip growth and fjord growth and 
found growth patterns that resemble better the wide range of snow-crystal 
morphologies than have been experimentally observed [21]. To what does the 
case 7 # 1 correspond? For v= k (k = positive integer), we have a model [28] 
in which a site grows only if it is chosen k times in succession (k = 1 is pure 
DLA). It is possible that we have a situation not altogether different from the 
classic n-vector model of isotropically-interacting n-dimensional classical spins: 
this model makes physical sense only if n is a positive integer, yet its study for 
other values of n has led to rich insights-particularly the cases it = 0 (the 
dilute-polymer chain limit), n = w (the spherical model) and n = -2 (the 
mean-field limit). Similarly, the Q-state Potts model makes physical sense only 
if Q is an integer above 1, yet the cases Q = 0 (random resistor network), 
Q = 1 (percolation) and Q = s (a spin-glass model) are of great interest. 

The fractal dimension d, is believed to be independent of the value of the 
noise reduction parameter s (s renormalizes the cluster mass). We confirmed 
this belief. However, we found d, does depend on 7. The most reliable 
estimates were obtained by first calculating estimates of d, for a sequence of 
increasing cluster masses, and then extrapolating this sequence to infinite 
cluster mass. Our values for d, agreed remarkably well with values we obtained 
by digitizing photographs of experimentally observed snow crystals. Of course 
this preliminary study [21] does not completely ‘solve’ the snow-crystal 
problem: 

(i) The initial seed of a snow crystal is almost certainly hexagonal (i.e., 
quasi-2-dimensional), since this is the local geometry that water molecules take 
when they form hexagonal ice Ii,. Are DBM-type considerations (small growth 
probability near the center of a plate-like structure) sufficient to explain why a 
snow crystal remains quasi-Zdimensional as it continues growing? Why does its 
thickness remain less than its width? It is perhaps appropriate to mention that 
no adequate explanation has yet been advanced for why a snow crystal remains 
quasi-2-dimensional throughout its growth, despite the fact that the ‘assembly 
plant’ is certainly 3-dimensional. Intuition on this subject stems from ex- 
perience not only from critical phenomena but also from recent theoretical and 
experimental work on pattern formation, where it was found that even minute 
amounts of anisotropy are sufficient to stabilize structures of lower effective 
dimension. 

(ii) What are the microscopic mechanisms that give rise to the feature that 
real snow crystals contain branches (and sidebranches) which are much more 
than one molecule thick? Is noise reduction relevant, or is noise reduction 
merely a ‘computational trick’ that allows one to see the asymptotic form of a 
DLA cluster using reasonable masses? (For example, on a square lattice, the 
same cross-like pattern for a mass of 5 000 sites seen in noise-reduced DLA 
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with a noise-reduction parameter of s = 500 is also seen in ordinary ‘noisy’ 
DLA (s = 1) provided the mass is allowed to increase to roughly 5 000 000 
sites!) We know that DLA is obtained even if the incoming random walkers 
have a sticking probability that is less than one. Hence we anticipate that DLA 
might possibly describe a modest range of phenomena with structural re- 
arrangement. What is the actual sticking probability for newly arriving water 
molecules in real snow crystals? Is a value of the sticking probability less than 
unity sufficient to account for the fact that the arms and sidebranches of real 
snow crystals have macroscopic thickness? 

(iii) Are those real snow crystals which possess relatively compact cores with 
ramified dressing on their surfaces products of different environments of 
assembly, or did melting and structural re-arrangement take place after 
formation? Can one mimic the effect of the changing environments in which a 
given snow crystal is actually assembled ? Do these correspond to varying 
parameters such as n or y in the course of the growth process? To study this 
effect, we generated patterns with values of n and y that change during the 
growth process - e.g., we might choose n + 1 for an initial fraction f of the 
growth (thereby creating a hexagonal core), and n = 1 thereafter (thereby 
creating a ramified exterior portion). 

(iv) Does the presence in the clouds of a wind whose direction and speed 
varies randomly (both in time and in space, with characteristic time scales and 
length scales that are microscopic) imply that the actual trajectories of water 
molecules and water droplets might more resemble those of some extremely 
‘pathological’ path than those of a conventional DLA type random walk? We 
know that the random-walk trajectories of DLA correspond exactly to the 
present electrostatic growth model, the DBM with DLA boundary conditions. 
What are the trajectories in ‘real space’ corresponding to a choice of the 
n-parameter below unity? One can speculate that a Levy flight with tunable 
fractal dimension may be related to the path of a real ice particle buffeted 
around in a cloud. 

(v) How significant, in practice, is the role played by diffusion of latent heat 
away from the growing aggregate in determining the actual structure of a snow 
crystal? We know that this phenomenon is of paramount importance in 
dendritic growth of crystals from a liquid phase. How significant is the role 
played by the capillary length d,, = y/L in vapor-phase deposition of water 
molecules onto a growing snow crystal? (Here L is the latent heat.) An ideal 
model might encompass both the diffusion of heat away from the snow crystal 
and the aggregation of particles toward the snow crystal? 

(vi) Are real snow crystals sometimes fractal objects? This intriguing ques- 
tion has been the object of considerable discussion in recent years. Our growth 
patterns are fractal, for all positive values of n. We found [21] that the fractal 
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dimension d, is independent of the value of the noise reduction parameter s (S 
seems to mainly renormalize the cluster mass), but d, does depend on 77. We 
also found that these values for d, agreed well with Values we obtained by 
digitizing the corresponding photographs of experimentally observed snow 
crystals (fig. 12). 
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Fig. 12. (a) A typical snow crystal from the collection of 2453 photographs assembled in Bentley 
and Humphreys [44]. Other experimental examples may be found in Nakaya [42] and LaChapelle 
[43]. (b) A DLA simulation with noise-reduction parameter of s = 200 and non-linearity parameter 
t) = 0.5. (c) Comparison between the fractal dimensions of (a) and (b) obtained by plotting the 
number of pixels inside an L X L sandbox logarithmically against L. The same slope, d, = 
1.85 -t 0.06, is found for both. The experimental data extend to larger values of L, since the 
digitzer used to analyze the experimental photograph has 20 000 pixels while the cluster has only 
4000 sites (after Nittmann and Stanley [21]). 
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9. Dendritic solid patterns: Growth of NH,Br 

Dendritic-crystal growth has been a field of immense recent progress, both 
experimentally and theoretically. In particular, Dougherty et al. [29] have 
recently made a detailed analysis of stroboscopic photographs, taken at 20 
second intervals, of dendritic crystals of NH,Br (fig. 13a). They have found 
three surprising results: (i) the sidebranches are non-periodic at any distance 
from the tip, with random variations in both phase and amplitude; (ii) 
sidebranches on opposite sides of the dendrite are essentially uncorrelated; and 
(iii) the rms sidebranch amplitude is an exponential function of distance from 
the tip, with no apparent onset threshold distance. Some of these results are 
apparently at variance with predictions from recent theories [30-321. 

How can we understand these new experimental facts? Many existing models 
reflect the essential physical laws underlying the growth phenomena, but fail to 

Fig. 13. (a) Experimental pattern of dendritic growth, measured for NH,Br by Dougherty et al. 
[29]. (b) DLA simulation with noise-reduction parameter s = 200 (after Nittmann and Stanley 

1331). 
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find a tractable mechanism to incorporate the effects of noise on the growth. 
Growth of a dendrite from solution is controlled by the diffusion of solute 
towards the growing dendrite. In the limit of small Peclet number, the diffusion 
equation reduces to the Laplace equation (as mentioned above). The Laplace 
equation for a moving interface (the growing dendrite) brings to mind the 
diffusion-limited aggregation model (DLA). Growth patterns produced by the 
various DLA simulation algorithms do not resemble dendritic growth patterns: 
DLA patterns are much too chaotic in appearance. We shall discuss here a 
related model [33] whose asymptotic structure does resemble the patterns 
found experimentally - both in broad qualitative features and in quantitative 
detail. The picture that emerges is one of Laplacian growth, where noise arises 
from the fact that there are concentration fluctuations in the vicinity of the 
growing dendrite (these are estimated to be roughly *lo5 NH,Br molecules 
per cubic micron). 

Our starting point is the observation that minute amounts of anisotropy 
become magnified as the mass of a cluster increases. In fact, even the weak 
anisotropy of the underlying lattice structure can become so amplified that 
clusters of 4 000 000 particles take on a cross-like appearance (see fig. 1 of ref. 
[S]). A real dendrite has a mass of roughly 1Or6 particles; it is impossible to 
generate clusters of this size on a computer, since even clusters of size lo6 
require hundreds of hours on the fastest available computers. Fortunately, 
there is a computational trick - termed noise reduction - that speeds the con- 
vergence of the pattern toward its asymptotic ‘infinite mass’ limit. The patterns 
we obtained with noise-reduced DLA resemble fig. 1 of Dougherty et al. [29], 
reproduced in fig. 13a. 

A typical result [33] for a mass of 4000 particles is shown in fig. 13b. After 
each 333 particles are added, a contour is drawn: 

(i) It is apparent from the ‘stroboscopic’ representation of fig. 13b that the 
distance between successive tip positions is a decreasing function of the mass; 
in fact, we find that log xtip is linear in log M with slope 3. This result is 
consistent with the belief that d, = 1.5 for DLA with anisotropy. 

(ii) The tip is remarkably parabolic: Specifically, when we form ( y, - y,)’ 
(where y, is the contour, and y, is the centerline of the dendrite) and plot this 
on linear graph paper as a function of x - xtip, we obtain a straight line with an 
R value of 0.997. 

(iii) The sidebranches are non-periodic at any distance from the tip, with 
random variations in both phase and amplitude. To demonstrate this, we have 
analyzed our simulations in exactly the same mathematical fashion as Dougher- 
ty et al. analyzed the experimental dendrite patterns. 

An open theoretical question concerns the microscopic origin of the side- 
branching phenomenon. One current hypothesis predicts that the sidebranch 
amplitude would be periodic and the two sides of the dendrite should have 
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correlated sidebranching. Dougherty et al. [29] noted that their experimental 
data are not consistent with this hypothesis, and we can make similar remarks 
for the present model. A second hypothesis views sidebranching as a result of 
the noise arising from concentration fluctuations. To test this hypothesis, 
Dougherty et al. [29] plot the sidebranch amplitude as a function of n - xtiP, 
the distance from the tip. They found that the sidebranch amplitude decreases 
as the distance variable xtip - x decreases, and shows no sign of a threshold 
distance below which the amplitude is zero. 

Moreover, they found that close to the tip the sidebranch amplitude is 
roughly linear on semi-log paper. If we plot y,, the amplitude, which should 
scale rougly as the square root of the area under the peak if the peak maintains 
its shape as a function of x - _xtip; we find exactly the same exponential growth 
of sidebranch amplitude with distance from the tip. 

In summary, we have developed a model in which noise reduction is used to 
tune the effect of noise, and cubic anisotropy is introduced through the use of 
an underlying square lattice. The resulting patterns obtained strongly resemble 
the experimental patterns of Dougherty et al. both in their qualitative appear- 
ance and in the same degree of quantitative detail studied experimentally. 
Sidebranching arises from the fact that an approximately flat interface in the 
DLA problem grows trees (which resemble ‘bumps’ in the presence of noise 
reduction); these compete for the incoming flux of random walkers. If one tree 
gets ahead, it has a further advantage for the next random walker and so gets 
ahead still more. Thus some sidebranches grow while others do not. The 
characteristic spacing A between sidebranches scales with the dendrite mass 
with the same exponent 3 that characterizes the growth of dendrite length xtip. 
Moreover, the patterns we obtain are reasonably independent of details of the 
simulation in that similar patterns are obtained when we vary the surface 
tension parameter u over a modest range; we can also alter the boundary 
conditions of the model with some latitude and even allow for non-linearity in 
the growth process (7 # 1). 

The significance of the present findings is that the essential physics embodied 
in the DLA model-previously used to describe fluid-fluid displacement 
phenomena (‘viscous fingering’) - seems sufficient to describe the highly un- 
correlated (almost random) dendritic growth patterns recently discovered from 
the experiments and quantitative analysis of Dougherty et al. 

10. Summary 

We have argued that it is worth exploring all the consequences of a 
straightforward physical model. Our optimism is based on the success of the 
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Ising model and percolation in the past. We must be mindful that substantial 
variants of the original model may be called for. In our case, e.g., anisotropy 
must be introduced or else the pattern bears absolutely no resemblance to 
dendritic growth. Also, noise reduction must be introduced or else the 
computer time becomes prohibitive. 

This modest work perhaps raises more questions than it answers, but it, 
nonetheless, might stimulate further investigation of the basic physics of 
random systems that must be better understood in order to explain experimen- 
tally observed non-symmetric dendritic-growth patterns and fluid-mechanics 
patterns. The reader interested in more details than provided here may consult 
recent reviews on the subject [34-391. 
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