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Abstract. We introduce a new polychromatic correlated-site percolation problem, which
has the novel feature that the partitioning of the sites into different species arises from a
purely random process—that of random bond occupancy. A particular case of this
percotation problem is shown to be of possible relevance in providing a physical mechanism
which may contribute to the unusual properties displayed by liquid H,O and D,0O under
conditions of supercooling below the melting temperature.

1. Introduction

The unusual behaviour of liquid H.O and its isotope D2O has been appreciated for
some time. Recently, it has become increasingly clear—especially from the concerted
efforts of Angell and co-workers—that under conditions of supercooling these two
liquids display additional anomalous properties (see e.g. the recent review of Angell
(1979)). For example, as the temperature is decreased below the melting temperature,
Twm, various static response functions such as the isothermal compressibility K+ (T'),
constant-pressure specific heat Cp(T'), and thermal expansivity a (T') become larger at
an increasingly rapid rate, while the mass density p (T') decreases rapidly (Angell 1979).
In fact, Angell has postulated the existence of a thermodynamic singularity at a
temperature T, with T = —45 °C for H>O at a pressure P of 1 atm.

Thus far, no satisfactory physical mechanism underlying these unusual liquid
phenomena has been found. However, information obtained on supercooled water
provides an important testing ground for theories of water structure, since the super-
cooled domain is expected to be a smooth extension to T <Twm of the stable region.

+ A preliminary account of the present work was presented on 16 May 1979 in a seminar before the Sociéré
Frangaise de Physique.

1 John Simon Guggenheim Memorial Fellow, 1979-1980.

§ Equipe de Recherche Associée au CNRS.

|| Supported by the NSF, ARO and AFOSR.

0305-4470/79/120329+09$01.00 © 1979 The Institute of Physics L329



L330 Letter to the Editor

In this Letter we propose a correlated-site percolation model that is possibly of
relevance in providing some insight into the behaviour of supercooled water. Cor-
related-site percolation refers to the study of the connectivity of objects (‘sites’) whose
state is not randomly determined as in ordinary random-site percolation. Previous
studies of correlated-site percolation have concerned the connectivity of spins which
are partitioned into two classes on the basis of an Ising or lattice-gas interaction
(Miiller-Krumbhaar 1974, Coniglio 1975, Sykes and Gaunt 1976, Domb and Stoll
1977, Klein ez al 1978). This system has been found to be particularly useful (Coniglio
etal 1979) in interpreting experimental data on polymer gelation (Tanaka ez al 1979),
where the connectivity of the constituent polymer molecules is an essential physical
feature. In contrast to these previous studies, the present model of correlated-site
percolation has the novel feature that the partitioning of sites into classes arises from a
purely random process, that of random bond occupancy.

2. Definition of the model

Percolation problems do not require for their definition a regular lattice, a fact that will
prove to be of relevance if one uses percolation concepts for describing a fluid system.
However, since the method whereby one extends lattice percolation to ‘continuum
percolation’ has been studied elsewhere (e.g. Webman et al 1975), we shall define the
model directly for a lattice.

Consider, then, a lattice consisting of N sites, each of which has z nearest-
neighbours. Ignoring surface effects, there are Nz/2 pairs of nearest-neighbour sites. In
the random bond percolation problem (see Stauffer 1979 and references therein), one
randomly places bonds between a fraction pg of these Nz /2 pairs, and then studies the
properties of the resulting clusters of connected sites.

Our work begins with the simple observation that each site can be considered to be a
member of one of z + 1 different species, depending on whether 0, 1,2, ...,z bonds
emanate from that site. Since the bond distribution is random, it follows from the
binomial theorem that the mole fraction of species j is simply

f; =(f.)p’s(1—ps)’"". (1)

Although the total number of sites belonging to each species is determined solely by the
random variable pg, the connectivity properties are very different from those of pure
percolation. For example, it is impossible for a species-z site to appear as a nearest-
neighbour of a species-0 site. Similarly, if the z nearest-neighbours of a given site
belong to species z, then the site itself must be species z 1.

Because of the fact that the positions of each species are correlated, the extensive
results now available for random percolation are not applicable to this problem. Also
not applicable are the results for the previously studied correlated-site model in which
the correlation is introduced through an Isin‘& or lattice-gas interaction. Indeed, in
Ising-correlated percolation, none of the 2" states of an N-site system has zero
statistical weight, while in the problem introduced here, many states have zero weight as
illustrated by the examples cited in the preceding paragraph.

t Equally, one could state that if all the nearest-neighbours of a given site are species-0, then the site itself
must be species-0; indeed, there is symmetry under the transformation pp - 1 — p between the properties of
species / and species z —/.
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3. Bichromatic percolation

It is useful to discuss first the connectivity properties of a simple bichromatic percolation
model in which we partition the sites into only two classes (i.e. we colour each site one of
two possible colours). For example, suppose the members of class 1 (black sites) are the
Nf. species-z sites, so that class 2 (white sites) would then be the remaining N(1-f;)
sites. We display in figure 1 the results of computer simulations for a square lattice of
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Figure 1. Computer simulations of the bichromatic correlated-site percolation problem on
a square lattice (z =4) with 256 sites and 512 bonds. The species-z sites (‘class 1°) are
shown as solid circles, while the remaining sites (‘class 2’) are not shown. (@) f, = 0:0625
(ps = 0-500, the critical threshold of the random bond percolation problem), () f, =0-25
{(pe=0-707), (¢) f: =0-50 (pp=0-841), and (d) f; =0-60 (pg=0-880). One striking
feature of the site clusters formed by the members of class 1 is their far lower degree of
ramification in comparison with the remarkably high degree of ramification (Domb 1976)
and low fractal dimensionality (Stanley 1980) exhibited by clusters in random-site percola-
tion.
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Figure 2. Computer simulations as in figure 1, except that now we have omitted all the
bonds except those between species-z sites. This permits one to visualise better the
‘patches’ of four-bonded oxygens. Shown are N = 2500 sites and 2N = 5000 bonds. (a)
pe=0875 {f, =0-586), (b) pr=0-90 (f, =0-656), (c) pg=0-925 (f, =0732), d) pp=
0-95 (f, =0-815). Pictures such as these suggest that one might find relevant the considera-
tion of the ‘hard core’ of a cluster—i.e. one might define a new class of sites to be those for
which all four neighbours are species-z, and then consider the connectivity properties of this
new class (e.g. Cohen and Grest 1979, Reich and Leath 1978)).
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N =256 sites. For this lattice, f, =pp from equation (1). The bond percolation
threshold is exactly 0-5, and hence the members of class 1 are largely isolated single sites
unless one is well above the bond percolation threshold. Indeed, atpg =0-5, only 6%
of the sites are members of class 1 (figure 1a ), while at pg = 0-7—where 99% of the sites
belong to the ‘gel molecule’ or infinite cluster—only 25% of the sites belong to class 1
(figure 1b). It appears from preliminary Monte Carlo data (Blumberg, Shlifer and
Stanley unpublished), that the critical-point exponents are the same for the correlated
and the random site problem, though the threshold is somewhat lower for the correlated
problem (f; =0-56, ps =0-87), than for the random problem (ps = 0:593).

It is straightforward to obtain the exact solution of this bichromatic percolation
problem for the special case of a one-dimensional (d = 1) lattice, using the same
methods previously applied to the d = 1 random-site problem (e.g. Reynolds ez al 1977
and references therein). One finds, for example, that the total number of site clusters
(normalised per site)— the analogue of the Gibbs potential in thermodynamics-—is

G(f.)=f.(1-f%). (2a)

If one selects a species-z site at random, and asks how many other sites belong to this
particular cluster, one obtains the ‘mean cluster size’

S(f.)=Q+£12)/Q-f%). (2b)

Thus the black (species-z ) sites percolate at f; =1, and the critical exponents are the
same as for random percolation.

For d =2 and 3, we can compute the initial terms in low-density and high-density
series expansions, though this is rather more difficult than in the random case. Also, the
solution for the Cayley tree (‘d =0’) is readily obtained.

4. Polychromatic percolation

The division of the z + 1 species into only two classes is somewhat arbitrary unless
justified by the particular physical system at hand. The full connectivity problem
involving all z +1 species is an example of polychromatic percolation (Zallen 1977,
Halley and Holcomb 1978).

It is useful to consider the following line of reasoning. Suppose the sites correspond
in some sense to oxygen atoms of a three-dimensional network with coordination
number z =4, and the bonds to hydrogen bonds between neighbouring pairs of oxygen
atoms. Imagine also that the volume per oxygen atom, V;, depends on the number of
bonds ; emanating from the atom, with Vo<V, <V,<V3<V,. Suppose we now
partition the system into cells of characteristic dimension L, where L is, say, ten lattice
spacings. With each cell we associate a ‘local’ density p;, and we study the fluctuations
of this local density from cell to cell. Since the positions of each species are correlated,
and since the density is related to the site species, the density fluctuarions are correlated.
That is, they are quite different in character from the density fluctuations in the
corresponding random-site model consisting of the same five species, present in the
same mole fractions. The ‘isothermal compressibility’ in this correlated-site model is
enhanced, just as the isothermal compressibility in a van der Waals gas is enhanced
relative to its value in an ideal gas.



L334 Letter to the Editor
5. Discussion: possible relevance to supercooled H,O and D,0

The preceding models of correlated-site percolation are of theoretical interest, for the
reasons discussed above. However, since they were conceived in an attempt to seek a
physical mechanism for the unusual properties of liquid H>O and D0, it is appropriate
to conclude with some discussion of the way in which these models may be of relevance.

A striking feature of liquid H,O and D,O is that they are characterised by extensive
hydrogen bonding. In fact, Geiger et al (1979) have very recently demonstrated, from
analysis of molecular dynamics results, that for any reasonable definition of a hydrogen
bondt, H20 at 10°C is well above the bond percolation threshold. Hence the liquid
consists of a single connected (hydrogen-bonded) network that is infinite in extent, as
well as numerous finite networks. We shall refer to this infinite network as the ‘gel
molecule’, recognising that this particular ‘gel’ differs in many respects from the more
familiar and commonly occurring chemical gels (Gibbs ef al 1973).

Let us next partition the oxygen atoms into five species, depending whether they are
bonded to 0,1, 2, ..., 4 other oxygens, and let us focus on the ‘patches’ of the gel
defined by connected regions of the four-bonded species. As T decreases. pg(T)
increases and so does the fraction f4(T') of species-4 molecules; in fact, a 1% increase in
pe(T) leads to a 4% increase in f4(7'). The ‘mean size of a patch’, §, is only of order
10-10° water molecules per patch in the supercooled region.

X-ray scattering studies suggest that a rather considerable degree of short-range
order is present in liquid water (Eisenberg and Kauzmann 1969). Moreover, there are
unusually strong and narrow peaks in the oxygen-oxygen pair correlation function at
the distances appropriate to the positions of the nearest-neighbour, second-neighbour,
and even third-neighbour positions of crystalline ice I,. Accordingly, when the
temperature is sufficiently low that § ~10- 10%, we might reasonably expect that the
local density of the patches is less than that of the surrounding gel molecule. Thus the
patches give rise to spatial density fluctuations, whose magnitude also increases as T
decreases. Since the positions of the species-4 molecules are correlated, the density
fluctuations associated with the patches are also spatially correlated.

To summarise thus far: as T decreases, the correlated patches increase in size, the
overall mean density pr decreases, and the density fluctuations associated with the
patches,

{(p—(pN)/{p)xKr, (3)

increase.

One immediate effect of the low-density patches of the gel is to give rise (i) to an
anomalous negative contribution to the normally positive thermal expansivity and (ii) to
an anomalous positive contribution to the isothermal compressibility Kr. The following
intuitive arguments may be useful in this regard:

(i) Since

—pa = (3p/dT )p, (4a )

+ It is conventional to introduce some ‘cut-off’ energy Vg and to state tHat two molecules are bonded if their
interaction potential V' (r) is such that V(r)< Vg and unbonded otherwise (see, e.g., Stillinger 1975 and
references therein), Though this may seem to be imposing a ‘discrete’ symmetry upon a physical function,
V(r), that is not discrete, Hill (1956) and others have sought to justify this approximation by reasoning that
two particles are unbonded when V (r) is less than their mutual kinetic energy (see, e.g., Coniglio et al 1979
and Joanny 1979).
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we can write, schematically,

o ()2,

Now the density decreases as the fraction of hydrogen bonds increases, while py itself
decreases with increasing temperature. Thus —(pa)* is the product of two negative
factors and hence is positive, as observed experimentally. Moreover, it is clear that
—(pa )* increases as T decreases.

(ii) A similar schematic analysis applies to Kr, for since

pKr = (3p/oP)r, (5a)
we can write
a_(9) (%¢
KT ‘(apg)r (BP)T Lok

Now px(T, P) is a decreasing function of P and hence we conclude that K 7 is positive
and increases as T decreases. We can equally argue from (3) that K is a positive and
strongly increasing function, since the density fluctuations due to the patches are
correlated.

An analogous heuristic argument can be developed concerning the anomalous part,
due to hydrogen bonding, of the constant-pressure specific heat, given by T 'Cp =
(38/aT ) oc {(H — (H )*), where S is the entropy and H is the enthalpy.

Some of the more unusual properties of liquid H>O occur when it is subjected to
modest pressure (up to 2 kbar). Since f4«(T, P) = (ps(T, P))*, the correlated patches of
lower mass density decrease in size. Thus one would expect that the pressurised system
would have to be at a lower temperature in order to display the same hydrogen-
bonding-caused anomalies, so that T, K+ (T, P), and the TMD (temperature of maxi-
mum density) would all be expected to decrease with pressure. Indeed, all three
phenomena are observed experimentally (Angell 1979).

A second way of reducing the connectivity of the patches is through the introduction
of ‘network-breaking impurities’ (e.g. H2O;) that do not form four strongly directional
hydrogen bonds. One’s expectations are borne out by experimental data, which show
marked decreases in both T, and Kr. (To the best of our knowledge, extensive
measurements of the TMD have not been carried out for water containing network-
breaking impurities.)

There is one ‘network-enhancing’ impurity, D,O, which might be expected to
increase T, Kr, and the TMD—and all three phenomena are indeed observed.

It is tempting to speculate on the possibility that T is associated with the percolation
of four-bonded molecules or the percolation of some subset of species-4 molecules (e.g.
the percolation of those species-4 molecules all of whose neighbours are also species-4).

Indeed, the fact that both pressure and network-breaking impurities decrease T', while
D,0 increases T, is consistent with this possibility, Moreover, extrapolationto T =T,
of experimental data on pr(T) strongly suggests that pr (T =T,) <pi(T =T3), as
would be predicted if fo(T =T5) # 1.

The dynamic properties of water are characterised by the fact that hydrogen bonds
are breaking and re-forming with a characteristic time 7 that is of the order of
picoseconds at room temperaturet. If the fraction fo(T,P)=(1—ps(T,P))* of

1 Thus water does not support a static or low-frequency shear stress, unlike more commonplace gels.
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unbonded water molecules makes a significant contribution to transport properties such
as self-diffusion Dg(7, P) (Pruppacher 1972, Gillen et al 1972), then one would predict
that fo(T, P) and hence Ds(7, P) (a) decrease as T is reduced, (b) increase with pressure
and (c) decrease with D,0O dilution. All three phenomena are observed in water at low
temperatures (Angell 1979). Conversely, to the extent that the highly structured local
patches of the infinite connected network are responsible for the dramatic decrease in
transport at low temperatures, then one predicts the same observed effects of (a) 7, (b) P
and (c) isotope substitution.

In conclusion, we emphasise that this picture of water structure is highly oversim-
plified, even if regarded as a zeroth-order approximation. However, there are
numerous examples from recent work in phase transitions (e.g. the lattice-gas model)
where a highly simplified model has in fact been sufficient to capture the essential
physical mechanisms operative in a given phenomenon—and it is quite possible that the
formation of correlated low-density connected patches of the hydrogen-bonded water
network is a relevant mechanism in supercooled water.
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