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cubic, and bcc lattices, respectively. For H<KH, this
expression reduces to the parabolic form used above
with y=¢/H2. The correspondence of quantities in
the Ising and Heisenberg Hamiltonians permits us
to write H,=—3zJ/gus where J is a nearest-neighbor
exchange integral and z is the coordination number.
Taking g=4.9 and y=1.60X10"° Oe2, one finds
2J/k=—7.6°K and —4.8°K for {=0.87 and £=0.35,
respectively. Treating the exchange interaction in the
molecular field approximation, an analysis’® of the
paramagnetic susceptibility yields zJ/k~—4°K. An-
other estimate, 2J/k=—4.6°K, is obtained from the
simple molecular field relation for the Néel tempera-
ture Tw(0). It is interesting that these latter estimates
of zJ/k agree best with the value deduced from the
phase boundary curvature assuming £ appropriate to
a three-dimensional rather than a two-dimensional
Ising model. It is not clear, however, from the limited
number of cases calculated whether £ is uniquely deter-
mined by dimensionality.

The apparent parabolic character of the phase
boundary also suggests, of course, that its slope is
infinite at H=0. It is instructive, however, to consider
this slope in a somewhat different way. The thermo-
dynamic theories of \ transitions due to Buckingham
and Fairbank! and to Pippard,” adapted to magnetic

16T, Kimura and N. UryQi, J. Chem. Phys. 45, 4368 (1966).
17 A, B. Pippard, Elements of Classical Thermodynamics (Cam-
bridge University Press, New York, 1957), p. 143.
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state variables, yield®
Cu/T=(dH/dT)xr+K,

where (dH/dT)s is the slope of phase boundary. Terms
referred to as K are expected not to change rapidly
with T near the transition point for certain classes of
systems. One may speculate that this is true of anti-
ferromagnets such as CoCly: 6H;0. Aplot of C, (H=0)/T
versus x|, extrapolated to values corresponding to
Tx(0) should then have a slope equal to the square
of the initial slope of the antiferro-paramagnetic
phase boundary for H parallel to the preferred spin
direction. Such a plot was first made by Sawatzky
and Bloom using earlier data for CoCly:6H;0 and gave
paradoxical results for 7> T. The analogous plot of
the present data outside the region in which the A
anomaly is rounded off is shown in Fig. 5. It yields
curves which approach vertical asymptotes both above
and below Tx(0). An ideal crystal of CoCly»6H:0
might thus be expected to exhibit a sharp phase bound-
ary with essentially infinite initial slope at H=0, as
anticipated above. This analysis removes the paradox
noted by Sawatzky and Bloom. It suggests also that
the state of the real crystal in the interval AT~10"2°K
about Tx may have no simple thermodyanmic descrip-
tion possibly because of spatial inhomogenity of the
system. Thus it might prove difficult to reconcile
microscopic effects seen by resonance techniques
within this interval with macroscopic thermodynamic
quantities.
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The zero-field susceptibility of the classical Heisenberg model is expanded in the new expansion param-
eter u=£(2J/kT) and a formal similarity with the S=% Ising-model expansion is noted. The new
Heisenberg-model expansion is seen to provide more reliable extrapolations (especially for one- and two-
dimensional lattices) than heretofore, and to permit comparison with Brown’s recent work on the Bethe-

Peierls approximation.

HE zero-field reduced susceptibility x'=x?/xcurie’

of the S=% Ising model has been developed by
Oguchi! as a power series in the variable y=tanhK,
where K=2J/kT and —2J is the interaction energy of
nearest-neighbor spins. This suggests that there might
exist better expansion parameters than the parameter
K (customarily used) for the reduced susceptibility

=14 3 0,(3K)" (1)

n=1
of the classical (.S= ) Heisenberg model.2

* Operated with support from the U.S. Air Force.
1 T. Oguchi, J. Phys. Soc. Japan 6, 31 (1951).

Here we propose the new expansion parameter
u=£(K) =cothK—1/K, motivated (in part) by the
similarity between the exact expressions

X'=(1+v)/(1-v), (2a)
and

X =(14u)/(1—u) (2b)

2H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981
(1966) ; P. J. Wood and G. S. Rushbrooke, ibid. 17, 307 (1966);
G. S. Joyce and R. G. Bowers, Proc. Phys. Soc. (London) 88,
1053 (1966).

3 H. E. Stanley, Phys. Rev. 158, 546 (1967). There is a mis-
print in Eq. (3): The first summation should be restricted to
pairs of nearest-neighbor spins.
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for the S=% Ising and S= Heisenberg linear chains. 1. UTILITY FOR ESTIMATING CRITICAL

We have calculated the coefficients 4, in the new ex-
pansion

=14+ iAnu"

n=1

(3)

through order »=28 for general crystal structures (and
through order »=9 for the subclass of loose-packed
lattices). The coefficients 4, are obtained from the
general-lattice expressions® for the @, using the small-
argument expansion £(K)=%4K—75K*+--- of the
right-hand side of Eq. (3) .4

Besides having developed the new expansion (3),
we have made the observations listed in Secs. I and IT
below.

TasrE I. General-lattice expressions for the D,# through order n=

PROPERTIES

The radii of convergence #,=£(K,) of Eq. (3) (as
estimated by standard extrapolation procedures) agree
with the radii of convergence K,, estimated from the
conventional expansion (1), for all two- and three-
dimensional lattices studied. Moreover, the behavior
of the new coefficients 4, is generally smoother than
that of the coefficients a, in the old expansion (1),
thereby increasing the (subjective) reliability of
extrapolations based thereon.

[Note added in proof. For the fcc and bcc three-
dimensional lattices, the evidence that y=1.38 (=<11/8,
as some may prefer) is strengthened. Whereas for the
sc lattice the new series, like the old, is less smooth
than for the fcc and beg, it is nevertheless quite plaus-

8 (through order #=9 for the subclass of loose-packed lattices).

DgH = —06p3
Dy =—8p;—4.8p3

DstHf = —10ps—6.4p4+7.92p3+4.8 pra

DeHl = —12ps—8p5+10. 56 pa+ (133.2/7) pa-+4.8(psatpes) +8pec+42. 7250

DiH=—14p;—9.6ps+13.2p5+ (33.792/7) pat (83.52/7) p3+4.8 (pratpro-+pry) +10. 56 pre+8 (pra-+pre) +79. 297,

217,28 pra+46.32p0s+28. 8 poc+20. 736 pea+ (823.392/7) pisa

DgH = —16ps—11.2p,+15.84ps+- (42. 24/7) ps-+ (141.504/7) ps— (1071.792/49) p3-+4.8(psa—+ pav+psetpsa) +10. 56 (psetpss+ pap)
+8(pagtpantpsi+paw) +14.4p51+6.912p5,+86 . 4 (par+ pss) +49.92(pra+pm) +106. 752p76+28. 8 (pra+pre)
+17.28pr+ (815.04/7) prp+-17. 28 pp+139. 968 psat (627.84/7) par+33 . 6pec+74. 88 pea—+ (140.640/7) psa

Dyl = —12.8ps+ (50.688/7) pe+ (138.0684/7) pa-+4.8(par+por) +8psi+10. 56 p9m—+17. 28ps.+28. 8pst-149. 76 per+13. 824 ps

4-(368.448/7) pra-+ (813.312/7) pea

4The first three A, are identical for both the classical Heisenberg model and the S=3 Ising-model expansions: 4;=3a;/2=3,
Ap=9as/4=120, and Ay=27as/8-+34:1/5=20"—6p; (notation as in Ref. 3). The general lattice expressions for the higher-order 4,
become increasingly complex; they are not given here, but may be obtained directly from Table I (see Ref. 10).
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ible’ that y should also be 1.38 (in contrast to the rather
more crude estimate of 1.4 proposed® on the basis of
the old expansion). ]

For the two-dimensional plane triangular, square and
honeycomb lattices, the new coefficients behave more
regularly and indicate a phase transition at a value of
the critical temperature which is appreciably different
from zero. Even for the Jeast regular of these three
lattices, the honeycomb, the sequences of ratios A,/A4, 1
and roots (A4,)Y» [Fig. 1(b)] are somewhat smoother
than the corresponding sequences @,/@,—1 and (a,)'»
[Fig. 1(a)].

For the one-dimensional lattice (linear chain), the
coefficients a, behave so irregularly with # that it
would seem the radius of convergence cannot be esti-
mated by extrapolation. However, the new coefficients
A, do behave smoothly [4,=2 for n>1] for the
linear chain, and indeed predict the exact value for
the radius of convergence, #,=1 (K,=, or T,=0).
This is relevant, as the case for the existence of a phase
transition (7,>0) for the two-dimensional classical
Heisenberg model?® is somewhat strengthened now
that high-temperature expansions ‘give correct
answers” in one dimension as well as in three dimen-
sions.

II. RELATION TO THE BETHE-PEIERLS
APPROXIMATION

It is well known that in the Bethe-Peierls approxi-
mation’
X'=(14v)/(1—0v),

x=1+u)/(1—ou), (4b)

where 0=3—1, and 2 is the lattice coordination number.
This suggests the following expansions of the exact

(4a)
and?®

5 Also the value y=1.43(2210/7) proposed [G. A. Baker, H.
E. Gilbert, J. Eve, and G. S. Rushbrooke, Phys. Letters 20, 146
(1966)] for the S=1/2 Heisenberg model is not supported in
this §= (classical) limit; hence it would appear that « is in-
deed spin-dependent. However, the “mnemonic formula” v(S) =
1.3340.05/S [H. E. Stanley and T. A. Kaplan, J. Appl. Phys.
38, 977 (1967) ] must certainly be revised in the light of the ad-
ditional terms now available and the more sophisticated extrap-
olation procedures explained in Ref. 3. Whether v should vary
smoothly and continuously from its value at S=1/2 to its value
at S= is not clear at present; however, a preliminary calcula-
tion indicates that v (.5)221.38, for all S>1/2. It is important
to realize that the above work is restricted to fcc, bee, and sc
lattices; indeed, extrapolations based upon the new expansion
(3) strengthen the evidence that v is appreciably Jess than 4/3
for the spinel lattice with nearest-neighbor ferromagnetic inter-
actions between B-site cations.

6H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 17,
913 (1966); J. Appl. Phys. 38, 975 (1967). N. D. Mermin and
H. Wagner, Phys. Rev. Letters 17, 1133 (1966); B. Jancovici,
ibid. 19, 20 (1967) ; G. A. Baker, H. E. Gilbert, J. Eve, and G. S.
Rushbrooke, Phys. Letters 25A, 207 (1967). For experimental
work, see J. Koppen, R. Hamersma, J. V. Lebesque, and A. R.
Miedema, Phys. Letters 254, 376 (1967); G. de Vries, D. J.
Breed, E. P. Maarschall, and A. R. Miedema, in Proceedings of
the International Congress on Magnetism (to be published).

7H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935);
R. Peierls, sbid. A154, 207 (1936).

8 H. A. Brown, J. Phys. Chem. Solids 26, 1369 (1965). M. E.
Fisher, Am. J. Phys. 32, 343 (1964) ; N. W. Dalton, Proc. Phys.
Soc. (London) 89, 845 (1966).
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Ising® and Heisenberg models:

H=(1—00)[1—(o—1)v—0v+ 3 D] (5a)
and "~

= (l—ow)"[1— (o= u—owr+ 3. DFuw].  (5b)

Whereas the A4, were rather unwieldy functions of
the basic lattice constants pm, [involving each pum,
multiplied by a complicated (%—m)th-order poly-
nomial in ¢]* the coefficients D, are quite simple
and are independent of o. The S=% Ising-model coeffi-
cients D, are given in Ref. 9; Table I lists the D,#
for the classical Heisenberg model.??

Brown!! has very recently studied the critical proper-
ties of the Heisenberg ferromagnet with the aid of the
Bethe-Peierls approximation; some of his results dis-
agree with extrapolations based upon high-temperature
expansions. For example, Brown points out" that
Eq. (4b) predicts y=1 in the assumed form of the
divergence of x, x~(T'—1T,)~ as T—T,", whereas
high-temperature techniques suggest y=<1.4 for some
lattices. The source of this disagreement can be seen
from Eq. (Sb) and Table I: All of the coefficients D,
become zero for a lattice which has no polygons or
other “closed circuits,”? and Eq. (5b) reduces to
Eq. (4b). Thus, it would appear that the Bethe-
Peierls result (4b) is exact for lattices with no closed
circuits. The common (multiply connected) crystal
structures found in nature possess many closed circuits,
and the D, are by no means zero. Thus, including terms
in the high-temperature expansion (5b) beyond order
n=2 corresponds, in some sense, to taking account of
the “multiple connectivity” of the lattice, and one
might expect extrapolations based upon high-tempera-
ture expansions carried beyond second order to be more
realistic than the Bethe-Peierls approximation.

III. CONCLUSION

We conclude by noting that many of the above re-
marks also apply to the Vaks-Larkin model and to the
high-temperature expansions of the internal energies
E’NZan’v" and EHNZ,,B,,HW of the S=% Ising,
and S= Heisenberg models. These observations will
be developed at greater length elsewhere.

9 M. F. Sykes [J. Math. Phys. 2, 52 (1961)] has carried out
the expansion (5a) for the Ising model.

10 The coefficients 4, may be recovered from the D, of Table I
by means of the recursion relation A,=Dp+204,1—02A,2; the
a, of Eq. (1) may be recovered in turn from the A4, using the
small-argument expansion of £(X). Thus, these general lattice
expressions for the D, contain all of the information contained
in the (much more lengthy) general lattice expressions for the
a, presented in Table I of Ref. 3. Note: we have extended the
calculation of Ref. 3 to include close-packed lattices in eighth
order. Of particular current interest (cf. Ref. 6) are the coeffi-
cients for the (close-packed) plane triangular lattice; the previ-
ously unreported coefficient in the conventional series (1) is
as=4351.6775.

11 H, A. Brown, Bull. Am. Phys. Soc. 12, 502 (1967).

12 The linear chain provides an example of a lattice with no
closed circuits, and Egs. (4a) and (4b) indeed reduce to Egs.
(2a) and (2b) upon setting o=z—1=1.



