adding, “although quantum cosmology can clarify questions about the universe in unprecedented ways, it does leave modest freedom for the myths.”

Bojowald’s honesty is to be commended. Of the many valuable lessons we learn in Once Before Time, a most relevant one is that physics is an empirical science. As Bojowald himself puts it, “It is important to remember what the aim of science is: to describe Nature; and Nature has her own sense of beauty.” In science so far removed from experimental guidance, it is wise to be humble.

Marcelo Gleiser
Dartmouth College
Hanover, New Hampshire

Dance of the Photons From Einstein to Quantum Teleportation

Anton Zeilinger

Anton Zeilinger is an unequivocal expert in the field of experimental quantum information, which alone is reason enough for you to read Dance of the Photons: From Einstein to Quantum Teleportation. Originally published in German in 2005, Dance of the Photons is written from the perspective of an omniscient third party who details the adventures of archetypes Alice and Bob as they explore the fascinating world of entangled quantum particles. Although the book covers many topics, the story of Alice and Bob is a step-by-step description of one of the many more important ongoing experiments of our time—testing the violation of Bell’s inequality.

Although a popularization, the storyline in Dance of the Photons, which is based on experimental quantum physics, won’t excite you the way a thriller or romance novel would. The difference, of course, is that this story is based in reality and the others in fantasy. Quantum physics is a factual description of the microscopic world. Or is it? To determine whether a particular view of the world accurately describes reality, one criterion could be to require positive verification based on what can be known to the senses (that is, “measured”). That is what Zeilinger presents in Dance of the Photons.

Zeilinger shies away from conflating interpretation and observation, basing the story of Alice and Bob on their measurements of entangled photons. In so doing, he fulfills half of the believability criterion. The other half is a bit more subtle and involves the violation of Bell’s inequality.

On a high level, Bell’s inequality is the foundation for a test to verify a key component of quantum mechanics, entanglement. If you really want to understand Bell’s inequality, you should study quantum physics for a few years and then pour over a measurement chart created by an experimentalist you trust. The second best way is to read Zeilinger’s description of entanglement in the appendix, in which he gives a clear description of the key idea without resorting to formal mathematics. Indeed, that section is a must read for everyone studying quantum physics, regardless of their formal training.

The possibility of the conveyance of keen insights into the quantum world is most assuredly facilitated by Dance of the Photons. That makes it a force to be reckoned with among quantum physics texts, even if some readers may need to supplement their knowledge to fully appreciate what is contained therein. But for his part, Zeilinger has clearly presented the thought process and pedagogy needed to shift one’s perspective from local realism to a more valid way of viewing the world.

Aaron D. O’Connell
Belmont, California
oconnell@physics.ucsb.edu

Complex Webs Anticipating the Improbable

Bruce J. West and Paolo Grigolini

From taking an airplane to how much we earn, many aspects of our daily lives are connected to webs and networks. That idea is stressed by Bruce West and Paolo Grigolini in their eminently readable inquiry, Complex Webs: Anticipating the Improbable, in which they note the global pursuit by scientists and engineers to develop the field of network science. Past attempts have met with limited and often disappointing results; those attempts include generalized systems theory, complexity theory, catastrophe theory, and the theory of complex adaptive systems. The present search for
SRS has added four new high voltage power supplies to the PS300 series — −10 kV, +10 kV, −20 kV and +20 kV. All PS300 series supplies offer a wide range of features including programmable current and voltage limits, selectable overload response, short circuit protection, and a GPIB computer interface.

- 0.001% regulation
- 0.05% accuracy
- 1 volt resolution
- 0.0015% ripple
- Limits & trips
- GPIB interface

25 Watt Power Supplies ... $1395 (U.S. list)
- PS310 ±1.25 kV
- PS325 ±2.5 kV
- PS350 ±5 kV

10 Watt Power Supplies ... $2250 (U.S. list)
- PS355 −10 kV
- PS365 +10 kV
- PS370 −20 kV
- PS375 +20 kV

Complex Webs is mathematically rigorous, data rich, and entertaining. The first two chapters emphasize that hundreds of complex phenomena dominating our lives have statistical properties described by inverse power laws instead of by the normal Gauss distribution. An unpredictable bridge collapse, the bursting of an economic bubble, or the onset of a heart attack — each is part of a different elaborate web. Gaussian statistics cannot predict those phenomena because such events have their roots in the complexity of webs that represent the flow of such commodities as information, finance, food, and transportation.

This web complexity is manifest in time series that have divergent second moments and that are nonstationary, nonergodic, and non-Poisson. How the new perspective influences fields of investigation such as physiology and bioengineering is an interesting story and provides a context for the authors to introduce many of the mathematical ideas used in understanding webs. For example, in their discussion of fractal physiology and like phenomena, the authors introduce fractal geometry and fractal statistics that follow from the scaling behaviors of power laws.

Our ability to predict the operation of inanimate objects but not of living things means that we can understand the devices cluttering up our world but not much about their relationship to us. To model the lack of understanding, in chapter three the authors provide the physicist’s rationale for randomness. They discuss the shift in prediction from a single trajectory that solves the equations of motion to an ensemble of such trajectories, whose distribution solves the phase-space equations for the probability density. Thus, a preliminary understanding of nature is expressed in terms of averages, fluctuations, and non-Gaussian distributions.

In chapter four, the authors introduce the mathematical techniques used to describe randomness and chaos, and in chapter five they transition to applications of the fractional calculus. There are two distinct strategies for modeling the dynamics of complex webs: “dynamic” dynamics describing the phenomenon and the evolution of the associated probability density. The authors systematically develop both methods and explain the extension into the fractional calculus to incorporate memory; those methods give rise to fractional stochastic differential equations in the first approach and fractional diffusion equations in the second.

Chapter six contains an all-too-brief review of some contemporary developments in network theory. It reflects the authors’ tastes instead of presenting exhaustive coverage of a vast amount of high-quality research from the past decade. The authors tell the familiar story of the progression in our understanding from random networks, to small-world networks, to scale-free networks, and they discuss various...
measures that allow comparisons of real-world networks to mathematical idealizations.

In chapter seven, the authors discuss recent research findings, including some they themselves have published; they somehow avoid being dogmatic in their presentation. Among the new results described is a generalization of linear response theory clarifying a misconception that appeared in the physics literature a few years ago. The generalization is used to explain how information transfer between complex networks depends on the measures of complexity. It is also used to derive a generalized Onsager principle.

West and Grigolini artfully develop mathematical models for understanding data sets drawn from a variety of fields, and, more importantly, to those underpinnings of the science of network science that make it stand out. I strongly recommend this remarkable book to those interested in learning the mathematical underpinnings of the science of networks and, more importantly, to those thinking of teaching a course in it.

H. Eugene Stanley
Boston University
Boston, Massachusetts

new books

plasmas and fusion

quantum physics

Society and government

Introducing MadPLL™

Instant AFM and NSOM—just add science.

MadPLL™ includes software, digital PLL controller, probe and amplifier boards, and is fully compatible with Mad City Labs nanopositioning systems.

- Low cost imaging tool
- Automated control
- Integrated package
- Integrated z-axis control loop
- Suitable for resonant probes
- Build your own closed loop AFM!

+1 608 298-0855
sales@madcitylabs.com
www.madcitylabs.com

society and government

Introducing MadPLL™

Instant AFM and NSOM—just add science.

MadPLL™ includes software, digital PLL controller, probe and amplifier boards, and is fully compatible with Mad City Labs nanopositioning systems.

- Low cost imaging tool
- Automated control
- Integrated package
- Integrated z-axis control loop
- Suitable for resonant probes
- Build your own closed loop AFM!

+1 608 298-0855
sales@madcitylabs.com
www.madcitylabs.com

society and government

space and planetary science

Introducing MadPLL™

Instant AFM and NSOM—just add science.

MadPLL™ includes software, digital PLL controller, probe and amplifier boards, and is fully compatible with Mad City Labs nanopositioning systems.

- Low cost imaging tool
- Automated control
- Integrated package
- Integrated z-axis control loop
- Suitable for resonant probes
- Build your own closed loop AFM!

+1 608 298-0855
sales@madcitylabs.com
www.madcitylabs.com

statistical physics and thermodynamics