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Abstract

This manuscript is based on four opening lectures, which were designed to o�er a brief and

somewhat parochial overview of some “exotic” statistical physics puzzles of possible interest to

biophysicists, medical physicists, and econophysicists. These include the statistical properties of

DNA sequences, heartbeat intervals, brain plaques in Alzheimer brains, and 
uctuations in eco-

nomics. These problems have the common feature that the guiding principles of scale invariance

and universality appear to be relevant. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

One challenge of biology, medicine, and economics is that these sciences have no

metronome in time and no evident architecture – crystalline or otherwise. As if by

magic, out of nothing but randomness we �nd remarkably �ne-tuned processes in time

and �ne-tuned structures in space. To understand this “miracle”, we should put aside

the human tendency to see the universe as a machine. Our task is to �nd out how,

through pure (albeit, as we shall see, strongly correlated) randomness, we can arrive

at the structures in biology we all know exist. These introductory lectures are not gen-

eral, but rather concern four speci�c examples under investigation by cross-disciplinary

researchers in Boston. I apologize in advance to those whose related work I do not

include, due to constraints of time and space, and thank those whose research provided

the basis of this short lecture summary: L.A.N. Amaral, P. Bernaola, S.V. Buldyrev,

A. Bunde, P. Cizeau, L.C. Cruz, N.V. Dokholyan, A.L. Goldberger, P. Gopikrishnan,

I. Grosse, S. Havlin, B.T. Hyman, P.Ch. Ivanov, T.H. Keitt, H. Leschhorn, Y. Lee,

Y. Liu, P. Maass, M. Meyer, R.N. Mantegna, M. Meyer, C.-K. Peng, V. Plerou,

B. Rosenow, M.A. Salinger, M. Simons, M.H.R. Stanley, R.H.R. Stanley, B. Urbanc,

and C. Wyart.

∗ Fax: +1-617-3533783.

E-mail address: hes@bu.edu (H.E. Stanley).

0378-4371/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.

PII: S 0378 -4371(00)00341 -1



2 H.E. Stanley / Physica A 285 (2000) 1–17

2. Is there hidden information in DNA sequences?

2.1. Noncoding “Junk” DNA

Human DNA has become a fascinating topic for physicists to study. One reason for

this fascination is the fact that when living cells divide – which they are doing all the

time – the DNA is replicated exactly. Why is this so interesting? Because approximately

95% of human DNA is called “junk”, even by biologists who specialize in DNA. The

Human Genome Project will soon be completed, having carefully identi�ed 3 gigabases

at a cost of approximately 3 gigadollars. The raw data in the Human Genome Project

covers one million pages; every page is chocker-block full with 3000 letters, and each

letter is seemingly drawn at random from a set of four letters. But only 90 megabases (3%)

have any known meaning, even though they are copied faithfully at each cell division.

One practical task for physicists is simply to identify which sequences within the

molecule are the coding sequences. If we could e�ciently separate the junk from the

rest, we could save time and money. It also would be an important �rst step toward

�nding and hopefully understanding the genetic components associated with the onset

of three big gene-related killers: heart disease, cancer, and Alzheimer disease.

Another scienti�c interest is to discover why the junk DNA is there in the �rst

place. Almost everything in biology has a purpose that, in principle, is discoverable. If

something in biology does not have a purpose, we often can discover at least why it

is there, i.e., where it came from. For example, the appendix has no purpose that we

can discern, but at least we know why it is there.

2.2. Distinguishing coding and noncoding DNA

Noncoding DNA has statistical properties that distinguish it from coding DNA (see,

e.g. Refs. [1–6] and references therein). In noncoding DNA, there are correlations

between successive base pairs, correlations exhibiting a speci�c power-law form. These

power-law correlations are very similar to those near a critical point or the percolation

threshold. These same power-law correlations are not present in the coding DNA.

One big question in DNA research is whether there is some meaning to the order

of the base pairs in DNA. One can easily map each DNA sequence onto a landscape

(a “DNA walk”) [7,8]. To do the map, we distinguish between the DNA base pairs

that are single-ringed pyrimidines (made up of cytosine and thymine) and those that

are double-ringed purines (made up of adenine and guanine). For our map we take an

up-step for every pyrimidine and a down-step for every purine, producing a landscape

that resembles a cartoon mountain range. Just as with all scale-free phenomena, we

can measure the width of this mountain range as a function of the length scale over

which we measure it. This is the analog of measuring the characteristic size of the

structure of a polymer as a function of the length scale over which that size is studied

by, e.g. X-ray scattering. One �nds that the width depends on this length scale with a

power-law relation [9,10].
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If we look at a particular set of real data that are on the muscle gene of a rat, and

make a landscape corresponding to the 20,000 base pairs that constitute this gene, we

can immediately see that it is not an uncorrelated random walk. Instead there are huge

stretches of “up” and huge stretches of “down”.

It turns out that it is only the noncoding part of the DNA that displays this long-range

power law correlation. The coding part of the DNA does not. We have devised a kind

of virtual “machine” that walks along a DNA sequence and measures the correlation

with some index � such that �= 0:5 corresponds to coding (noncorrelated) base pairs

and �¿ 0:5 corresponds to noncoding (correlated) DNA. As the machine moves down

the chromosome, the correlation signal dips whenever the machine locates a region of

coding DNA [11]. The accuracy of �nding coding regions is comparable to that of

other methods – so long as the coding region is above ≈ 1000 base pairs in length.

2.3. Linguistic features of noncoding DNA

Why is this long-range power-law correlation present in the noncoding DNA? There

is another system that displays long-range power-law correlations: language. All languages

have some correlation. In English, for example, every “q” is followed by a “u”. When I

type my e-mail in English and make many errors, nearly everyone can still understand

what I am trying to communicate – re
ecting the fact that language has a built-in

correlation. This correlation is in fact long-range, similar to that found in junk DNA [12].

Fifty years ago – before computers were available – Zipf analyzed the frequency of

word use in a large written text. To construct his histogram, he counted the number of

times each word appeared, ranked them in order of their frequency of use, and graphed

the ranked data on log–log paper. The data were remarkably linear with a slope of

about −1. This is sometimes called Zipf’s law of language texts, a law that has been

con�rmed by numerous people and for many di�erent human languages (and even for

the size of business �rms [13]). Today, Zipf’s law can be demonstrated using virtually

any personal computer. This remarkable law implies the presence of a hierarchical

ordering in the structure of languages; if we want to move a word up in the word-use

hierarchy, we know exactly how much to increase its frequency of use in order to

change its rank order.

Mantegna and collaborators [14] used Zipf’s technique to analyze noncoding DNA

– with one “word” of noncoding DNA de�ned as a subsequence with n=6 base pairs.

A graph of 4000 such words yields the same linearity and slope as the Zipf graph. In

marked contrast, when they analyze the coding regions, the graph is not at all linear. If

we change the log–log plot to a linear-log plot, the coding data become linear. Thus,

the coding and noncoding regions of the DNA obey di�erent statistical laws di�erently

when analyzed in this linguistic fashion. That does not necessarily imply that junk

DNA is a language and coding DNA is not. It does suggest that we might study DNA

using the same statistical techniques that have been used to analyze language, and that

if information is contained in the junk DNA, it is less likely to be in the form of a

code and more likely in the form of a structured language.
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3. The challenge of heartbeat interval time series

3.1. The nonstationarity problem

The time di�erences between successive heartbeats – the interbeat intervals – can

easily be measured with millisecond accuracy. The traditional method of taking a

patient’s pulse measures only the average interbeat interval over a period of, typi-

cally, a minute or less. The 
uctuations around that average, however – supplied by

a cardiogram – constitute a body of data that is of interest to statistical physicists.

But when statistical physicists begin to study these admirably accurate data, almost

immediately they encounter a roadblock. Unlike similar data associated with critical

phenomena, these data have the property of nonstationarity. This means that the statis-

tical properties of those interbeat intervals are not constant in time; they are not served

up neatly as independent, identically distributed (i.i.d.) random variables.

Thus analyzing the heartbeat is a challenge because the statistical properties of heart-

beat intervals are not stationary functions of time. The heartbeat signal is anything but

stationary. As a function of time, it changes its statistical properties constantly. At one

point in time it has one average, and a little later it has another average [15]. At one

point in time it has one standard deviation or 
uctuation, and a little later it has another

standard deviation or 
uctuation [16]. At one point in time it has one fractal Hurst

exponent, and a little later it has another fractal Hurst exponent [17].

3.2. Detrended 
uctuation analysis

In order to get around this roadblock, there are a number of techniques we can

use. One of them is detrended 
uctuation analysis (DFA), which was developed by

Peng while working on his Ph.D. at Boston University [16,18]. We take a typical

time-dependent interbeat interval function – which is clearly nonstationary. We plot

that function and then divide the entire time-interval into “window boxes” of, e.g.

100 heartbeats. Within each window box we calculate the local linear trend in that

box. These local trends will di�er from each other. If we subtract the actual function

from each local trend we get something that 
uctuates much less, because the trend

is subtracted out. By forming a function that is the original heartbeat and subtracting

the local trend we can calculate a 
uctuating quantity that has the same statistical

properties as the function we are trying to understand. This technique helps clarify the

behavior of nonstationary time series for healthy and unhealthy heartbeat intervals.

3.3. Interbeat anticorrelations

When we apply DFA to interbeat intervals, we �nd something surprising: the inter-

beat intervals of a healthy heart have remarkably long-range “memory”. Speci�cally,

when we analyze a sequence of ≈ 60; 000 beats over a 15 h period, we see that these


uctuations are around a characteristic average value and that they are fairly big – some
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at least 20% the size of the average. Remarkably, one �nds that these 
uctuations are

anticorrelated in time [16,19].

This simpler interbeat pattern seems to leave the unhealthy heart more vulnerable

to trauma. Lacking interbeat correlations on a variety of scales, it becomes analogous

to a suspension bridge with only a simple primary resonance period – a resonance

period that, given the right wind velocity, allows the structure to sway at progressively

increasing amplitudes until it pulls itself apart. This actually happened to a bridge

60 years ago in the United States, near Tacoma, Washington. Since that time we have

been careful to design into our bridges a variety of resonance periods on a variety of

scales.

It seems possible that, in a similar manner, a healthy heart could perhaps require

its own kind of scale invariance – 
uctuations on a variety of scales – in its interbeat

intervals.

3.4. The wavelet method

The wavelet method, pioneered by mathematicians, has been systematically applied

to heartbeat analysis by Ivanov [20] and collaborators. If we take two heartbeat interval

data sets, one from a healthy heart and one from an unhealthy heart, an untrained eye

might not see the di�erence between the healthy and the unhealthy. How do we devise

a mechanism such that anyone can distinguish the di�erence? In wavelet analysis, we

take, e.g. 30 min of data, choose a scale over which to examine the 
uctuations in

the signal, and select the amplitude of some statistical quantity that we calculate. In

the unhealthy heartbeat, we �nd regularly repeating patterns of a characteristic scale.

In the healthy heartbeat the patterns are nonrepeating and scale-free. Wavelet analysis

sometimes requires fewer than 30 min of data in order to distinguish between healthy

and unhealthy heartbeat patterns. A much smaller data set, say 3 min, is sometimes

su�cient to detect the di�erence.

3.5. Multifractals

In a nonstationary signal, the Hurst exponent can have a variety of values. In or-

der to see this, we color-code the values of the Hurst exponent. Small values are

at the red end of the color spectrum and large values are at the blue end of the

spectrum. In a healthy heart, the color spectrum of the Hurst exponents constitute

a “Joseph’s-coat-of-many-colors” display – there are a very large number of di�er-

ent Hurst exponents; the value 
uctuates wildly. Since there are so many fractal di-

mensions, it is convenient to record these in a quantitative fashion called multifrac-

tal analysis. We encounter multifractals in many di�erent areas of modern statistical

physics.

Take a red �lter, place it on top of the color spectrum to separate out the red hues,

and determine the fractal dimension of the red pattern. Repeat the procedure with a
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yellow �lter, a blue �lter, and several others for perhaps a total of 10 di�erent color,

determining the 10 di�erent fractal dimensions (Fig. 1).

On the other hand, the color spectrum of the Hurst exponents of an unhealthy heart’s

interbeat intervals covers a much smaller region. It is immediately apparent to the eye

that there is a real di�erence.

4. The tragedy of Alzheimer disease

As we age, the probability that we will ultimately die of Alzheimer disease increases

sharply. It is a terrible disease about which we know very little. We are beginning to

believe that it may be associated with the appearance of aggregates of amyloid � protein

molecules called plaques, which appear in the brains of Alzheimer patients statistically

more frequently than in the brains of healthy people, but we do not know how these

plaques are formed or their morphology.

We are beginning to apply our understanding of scale-free phenomena to this problem

of plaque shape and formation. Using confocal microscopy and computer imaging [21–

25], we obtain a three-dimensional portrait of a plaque. It is a remarkable picture,

because it appears to be full of holes; indeed, it has a sponge-like porosity. This is

signi�cant because if plaques are porous they can be understood using aggregation

models that come from the theory of scale-free phenomena, and these aggregation

models in turn give us some insight into how the plaque is formed. Through these

holes traverse the nerve cells that are perhaps damaged in the course of Alzheimer

disease.

We can measure quantitatively various correlation functions, such as the familiar

g(r) that we have measured in statistical physics since Van Hove’s time. For exam-

ple, if we look at a picture of a 3 mm × 3 mm section of the brain, we see lamina

about 300 �m in diameter [26,27]. By quantifying the correlations g(x; y) in both x

and y directions (see Fig. 2), Buldyrev and co-workers discovered the existence of

little columns (resembling little “polymers” of about 11 “monomers”) positioned at

right angles to the lamina [28]. At present, we are studying these columns as they

occur in both the healthy brain and the Alzheimer brain [28]. The same sort of

correlation analysis that we had applied to plaques can also be applied to neurons.

We found that the morphology of speci�c dendrites is disrupted in the Alzheimer

brain [23].

In summary, statistical physics approaches to Alzheimer disease have yielded three

relatively �rm results thus far:

(i) A log-normal distribution of senile plaque size [29].

(ii) The plaque is a remarkably porous object [21], which can be quanti�ed by a

model characterized by both aggregation and disaggregation [21,24,25].

(iii) Quanti�able neuron architecture that suggests the existence of microcolumns

positioned at right angles to known lamina [28].
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Fig. 1. Decomposition of a heartbeat interval time series into subsets, each characterized by a di�erent Hurst

exponent h. Here the Hurst exponent is color coded by the rainbow, so that each subset has a di�erent

color. The “multifractal spectrum” D(h) is a function giving the fractal dimension D of each of the di�erent

subsets. This �gure is kindly contributed by Zbigniew Struzik.
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Fig. 2. The neuronal density in the human brain cortex, indicated in green (low density) and red (high density). This result was obtained by Buldyrev et al. [28] by

applying quantiative methods of statistical physics to brain architecture. The extended region of high density suggests the presence of vertical chains of cells forming

repeating units called neuronal microcolumns. Such microcolumns appear to contain about 11 neurons and have a periodicity of about 80 microns – a periodicity that

is disrupted in Alzheimer disease and in another neurodegenerative disease termed Lewy body dementia. This �gure is kindly contributed by S.V. Buldyrev.
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5. The intrigue of econophysics

Very recently, scale-free phenomena have been used to describe economic systems

[30]. This approach was pioneered by Mandelbrot almost 40 years ago. In 1963 he

introduced the L�evy distribution as an example of a scale-invariant distribution that

seemed to �t commodity (cotton) data that were available at the time [31]. Since that

time, working with larger databases, we have found that the L�evy distribution does not

apply to noncommodity data.

5.1. What is the question that physicists �nd interesting?

Statistical physicists, myself included, are extremely interested in 
uctuations. In

the �eld of economics, we �nd ourselves surrounded by 
uctuations – were it not

for economic 
uctuations, economists would have no work to do. Moreover, these


uctuations are thoroughly documented in large databases. If we take a graph of the

S&P 500 index comprising the 500 largest US �rms according to market capitalization,

and place it above a graph of an uncorrelated biased random walk with the same

overall bias, at �rst glance they seem almost identical. When we look closer, however,

we notice the graph of the S&P 500 has occasional large 
uctuations (e.g. the huge

drop that took place on Black Monday in October, 1987 – when most world markets

lost 20–30% of their value over a period of 1–2 days). We do not see this kind of

large 
uctuation in the biased random walk graph because the probability of taking a

very large number random steps in the same direction – which would be necessary for

a large 
uctuation – is exponentially small.

So the question we physicists �nd so interesting is “how do we quantify these

economic 
uctuations?”

5.2. Why should physicists want to quantify economic 
uctuations?

One reason physicists might want to quantify economic 
uctuations is in order to

help our world �nancial system avoid “economic earthquakes”. Not too long ago, a

particular �nancial �rm overextended itself and was unable to pay its loans – and other

�rms reached into their pockets and gave them the money they needed. This was not a

charitable gesture, but one made out of self-interest. The other �rms were aware that,

in the world economic system, everything depends on everything else. If one major

�nancial �rm is unable to cover its debts, perhaps investors in other similar �rms will

begin to lose their con�dence and withdraw their money – and then the other �rms

would be unable to pay their debts, and the phenomenon would propagate across the

world. Indeed, bailing out the company in trouble was a prudent action.

We want to be able to quantify 
uctuations in order to discover how to insure against

this kind of economic earthquake. When a localized economic earthquake occurred

several years ago in Indonesia, everyone in the region was a�ected. It caused the



10 H.E. Stanley / Physica A 285 (2000) 1–17

bankers to lose money, but it also caused a rice shortage in the country – and some

people actually starved.

A second reason physicists might want to quantify economic 
uctuations is that

economic 
uctuations and the clustering of economic 
uctuations has become very

much a part of our modern experience. The topic is in the newspapers, on television,

and in barbershop conversations. Almost anyone can understand what we are doing

even if they do not understand the speci�cs of how we are doing it.

A third reason is that it is a new topic, one that the American Physical Society

journals initially resisted recognizing as legitimate. Only after the rapid expansion of

the �eld (through Physica A, European Physical Journal, and other journals) and articles

on page 1 of The Wall Street Journal did the APS allow econophysics articles to be

published in Phys. Rev. E and Phys. Rev. Lett. Be forewarned that if you submit

articles on econophysics to physics journals, economists will be among the referees –

and the turn-around time for referee reports in that research community seems to be

an order of magnitude longer than in physics circles (on the other hand, their referee

reports are usually very polite, thorough, and gracefully written).

A fourth reason is because of cross-disciplinary interests. In the �eld of turbu-

lence, we may �nd some crossover with certain aspects of �nancial markets. Col-

loquially, people say “It’s been a turbulent day on Wall Street”. But there could

also be some serious analogies between the two �elds. In 1994, it was proposed

that in the same way that a glass of water, when stirred, dissipates a large in
ux

of energy on successively smaller scales – and we attempted to quantify that dissi-

pation – so also in economics, 
uctuations driven by the in
ux of information (the

energy source in economics) is dissipated on successively smaller scales [32,33]. This

is hardly a rigorous argument, but we do notice that when highly publicized infor-

mation that people consider important spills through the news channels – the resig-

nation of Boris Yeltsin as President of Russia, for example – the �nancial market

response is sharp and immediate (in this case, it meant a 23% drop in the Russian

stock market). It is obvious that important information causes big changes, but

even seemingly unremarkable bits of news can drive price 
uctuations, e.g. the news

that Apple Computer’s stock, though moving steadily upward, might not peak quite

as high as initially anticipated often causes the price to 
uctuate down. Most

people want to make a trade because they believe they have some information that

gives them an advantage in the trade. The analog to price changes in the stock

market is velocity changes in turbulence, but this analogy is only qualitative, not

quantitative [33], as the actual form of the functions that describe 
uctuations are quite

di�erent.

5.3. How can physicists quantify 
uctuations in �nance?

What do we do when we carry out research on economic 
uctuations? Our ap-

proach has been to use our experience in critical phenomena research and assume that

when we see 
uctuations, correlations may be present. If it were known that similar
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correlations are present in economic 
uctuations, each bit of information would perhaps

itself cause further 
uctuations. There would be a feedback event by virtue of the fact

of this correlation. Using this observation, perhaps economic 
uctuations are not cor-

related after all. But since there are lines of reasoning both for and against correlations

in economic 
uctuations, why not try this approach? We did it using the S&P 500

stock index over a 13-year period. The basic quantity is the price change G(t) de�ned

over a certain time horizon or “window”. If we open a window of a time-width

�t, and ask how much the price changes, the answer will depend on the size of the

window.

What sort of correlations can we �nd in G(t)? On a log-linear graph, the data for the

autocorrelation in G(t) fall approximately on a straight line, which means the decay

is exponential. The slope tells us something about the characteristic decay time, the

time in which the autocorrelation drops by a ratio 1=e to what it was about � minutes

earlier. We �nd � ≈ 4 min, and after ≈ 30 min the autocorrelation function disappears

into the noise [34,35].

Suppose we look not at the correlation of the G(t) values, but the correlation of

the absolute value of the G(t) values. Here we ignore whether the price change is up

or down and simply measure the volatility. If we make a log–log plot of the same

autocorrelation function of the absolute values of G(t), we see an approximate linearity

over 1.5–2.0 decades with a slope ≈−0:3 [35].

This behavior of the autocorrelation in both G(t) values and in the absolute value of

G(t) has already been discussed in the economics literature. What we have added to

the discussion is that we have tested these results using a variety of di�erent methods,

and uncovered an interesting crossover between two di�erent power laws.

We have calculated the Fourier transform of the autocorrelation function, i.e., the

power spectrum, and we �nd a straight line only up to frequencies of about 10−3 –

corresponding to a characteristic time on an order of magnitude of approximately

one day. There is another area of linear behavior corresponding to larger frequencies,

i.e., shorter times. It would appear that there are two di�erent power laws, one shorter

than ≈ 1–2 days (“high-frequency data”) and one longer (“low-frequency data”).

In order to verify this behavior, we created a random walk of these 
uctuations and

then analyzed the result using the detrended 
uctuation analysis method. Once again

we �nd two power laws – with characteristic exponents that are related algebraically

to the characteristic exponents of the power-spectrum data.

To summarize: the 
uctuations themselves have no correlations of any interest, but

the absolute values of the 
uctuations have long-range power-law correlations. Since

the 
uctuations have no correlations, we dump them on the 
oor (so to speak) and

pick them up in random order. Since we have destroyed the order of the numbers, we

cannot compute correlations, but we can make a histogram of the G(t) values.

Mandelbrot did this in 1963 with the price 
uctuations of cotton [31]. Some of them

were on a daily time scale and some were on a monthly time scale. He found that on

log–log paper the cumulative distribution of these price 
uctuations was approximately

linear. The slope of this line (over approximately one decade) was ≈1:7, consistent with
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the possibility that those price 
uctuations are described by a L�evy stable distribution.

These results enjoyed widespread acceptance until recently, when better data became

available.

Mandelbrot used data sets of approximately 2000 data points. Mantegna and I ac-

quired data sets of the S&P 500 stock index comprising ≈ 1 million data points [34]. In

studies of critical phenomena, an increase in data points usually means, at most, small

corrections to the previous result. This appears not to be the case in price 
uctuations.

Mantegna found on a log-linear graph that the data �t neither a Gaussian nor a L�evy

distribution beyond a few standard deviations, but are intermediate. This is good news,

since it implies that “rare events” are much less likely than if the data tails followed

a L�evy distribution.

These data exhibit a kind of scale invariance. This means that, if I know the 
uctua-

tions on one time horizon – e.g. 1 min – and I know the exponent � of the distribution,

I already know something about the 
uctuations on a much longer time scale, i.e., up

to approximately 3 trading days. How robust is this scale invariance? Skeltorp did this

same calculation for the Norwegian stock market, which is much smaller (5%) and

less active than the US, and found virtually the same behavior [36].

Plerou, Gopikrishnan, and collaborators acquired a database that recorded every trans-

action in all major US stock markets for two years [37–39]. They extracted 40 million

data points and analyzed them. They found that, if they constructed the same sorts of

histograms that Mantegna utilized, there was no indication of a L�evy regime at all. The

slope � is not ≈1:4, as Mantegna found, or ≈1:7, as Mandelbrot found, but ≈3:0. To

check this, they did a “best-�t” straight line and found the value of � for every stock.

We constructed a histogram of �-values and found that the typical data for all the

stocks tended to scatter around � ≈ 3:0, with almost all 1000 values falling between

� = 2 and 5. If we average all the �rms together on a �nal graph, we see that out to

100 standard deviations the data are linear with a slope 2.84 for the positive tail and

2.73 for the negative tail, with error bars that may bring those values closer to 3. This

means that events that are rare by 8 orders of magnitude – events that occur once in

every 100 million trades – fall on the same curve as everyday events.

Individual companies seem to exhibit �= 3 behavior all the way from one standard

deviation out to 100 standard deviations. The stock averages appear to be �¡ 2 (L�evy

regime) out to 2–3 standard deviations, and then resemble a “power-law truncated”

L�evy distribution with �= 3.

There is currently a great deal of work that is being done on cross-correlations be-

tween companies. That work would be scienti�cally interesting (as are cross-correlation

functions in almost any topic area), as well as have an obvious practical application that

would interest a great many people [40,41]. Speci�cally, their approach is to compare

the properties of cross-correlation matrices calculated from price 
uctuations to that of

a matrix with random entries (a random matrix). These studies determine precisely the

amount of nonrandom correlations present in the correlation matrix. In particular, one

can identify modes (eigenvectors of the correlation matrix) of correlations which are

stable in time, and determine their relative stability (Fig. 3).
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Fig. 3. Stability in time of the eigenvectors of the correlation matrix (calculated from 30 min returns), that

deviate from random-matrix bounds [40,41]. Two partially overlapping time periods A, and B, of four months

each were analyzed, January 1994–April 1994 and March 1994–June 1994. Each of the 225 squares has a

rainbow color proportional to the scalar product (“overlap”) of the largest 15 eigenvectors of the correlation

matrix in period A with those of the same 15 eigenvectors from period B. Perfect stability in time would

imply that this pixel-representation of the overlaps has ones (the red end of the rainbow spectrum) in the

diagonal and zeros (violet) in the o�-diagonal. The eigenvectors are shown in inverse rank order (from

smallest to largest), and we note that the pixels near the lower right corner have colors near the red end

of the spectrum corresponding to the fact that the largest 6–8 eigenvectors are relatively stable; in partic-

ular, the largest 3–4 eigenvectors are stable for very long periods of time. Further, we note that the remainder

of the pixels are distributed toward the violet end of the spectrum, corresponding to the fact that the overlaps

are not statistically signi�cant, and corroborating the �nding their corresponding eigenvalues are random

[40,41]. This �gure is kindly contributed by P. Gopikrishnan and V. Plerou.

5.4. Quantifying 
uctuations of economic organizations

How do organizations grow and shrink? The traditional approach in economics is

equivalent to a cluster approximation in critical phenomena [42]. The crudest approach
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is the mean-�eld approximation, in which you represent the interaction of all the sys-

tems with one spin using some e�ective �eld. This can be improved by taking not one

spin as your cluster, but by taking a sequence of larger and larger spins as your clus-

ter, treating exactly the interactions within that cluster, and then treating by mean-�eld

approximation the interaction of all the other spins with the spins in that cluster. That

is approximately what is done in the theory of the �rm in which one divides the entire

economy into sectors – e.g. manufacturing, food, automotive, and computers – treating

the �rms within each sector as strongly interacting with each other, and assuming that

�rms between sectors have no interaction at all.

The problem in critical phenomena is that no matter how much time we spend

working with larger and larger clusters, we always end up with exponents that are

wrong. Near a critical point, everything interacts with everything else, either directly

or indirectly. So also in the economy.

Suppose the news media announce that Ford has a serious design defect in its ve-

hicles. People react by buying GM cars, and GM experiences a sales increase be-

cause of Ford’s downturn in sales. Suppose the sales increase in GM is so great that

more workers are hired to help manufacture the cars, workers who then 
ood into the

McDonald’s across the street from the GM plant during lunchtime. So interactions

take place not just between �rms within one sector (automotive), but also between �rms

in di�erent sectors (automotive and food).

This is a kind of indirect interaction. The �rst company goes down and, as a result,

a McDonald’s located near another company in a di�erent city goes up, a kind of

second-order interaction. Just as in the situation near a critical point, all these indirect

interactions are signi�cant [43]. Since there are ≈104 business �rms in the US, to be

completely honest in our inquiry we must consider all ≈108 interactions between these

�rms. Since that task is much too complex, we go back to our histograms.

We take a database of all 104 �rms and calculate the growth rate of each �rm,

i.e., the size of the �rm this year (using some measurement, often sales) divided by

the size of the �rm last year. We put these calculations into 10 smaller data “bins”

as a function of the size of the �rm. We know intuitively that growth rates will

vary inversely with the size of the �rm. Larger �rms will have a narrower distri-

bution of growth rates and smaller �rms will have a wider distribution of growth

rates. How does the width depend on the �rm’s size? If we calculate the width and

plot it as a function of �rm size on log–log paper, we get an approximate straight

line that extends all the way from tiny kilodollar �rms to gigantic teradollar �rms

– 9 orders of magnitude and a very robust scaling [44,45]. The slope is approxi-

mately 0.2. This result seems to be universal in that if we change the standard of

measurement for �rm size – using number of employees instead of annual sales,

for example – the results are the same: same approximate straight line and same

slope 0.2.

Takayasu did a parallel �rm-size analysis on �rms in other countries, and got results

that agree with our �ndings [46]. On a suggestion from Je�rey Sachs, we did a parallel

analysis with the economies of entire countries, and got the same results, the same
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tent-shaped distribution for all the countries in the world over 42 years, where the size

of a country was measured by its GDP [47,48].

Plerou and collaborators found similar results for the changes in size of university

research budgets in the US [49]. In this situation, we researchers are the sellers and

the granting institutions are the customers. Keitt did a similar analysis on changing

bird populations, which 
uctuate in size from year to year, with similar results [50].

Thus, it appears that the pillars of scaling and universality may be relevant to a range

of “social” phenomena [51].
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